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Abstract
Background  Hepatocellular Carcinoma (HCC) is related to dysregulated lipid metabolism and immunosuppressive 
microenvironment. This study developed a genetic risk model using lipid metabolism-related genes to predict 
survival and immune patterns in HCC patients.

Methods  Differentially expressed genes (DEGs) related to lipid metabolism were identified in HCC via the TCGA-
LIHC dataset. A risk model for survival prediction was constructed via DEGs related to survival. The immune signature 
associated with the risk model was also evaluated by the CIBERSORT algorithm, tumor immune dysfunction and 
exclusion algorithm, and single sample gene set enrichment analysis.

Results  This study identified six lipid metabolism-related genes, ADH4, LCAT, CYP2C9, CYP17A1, LPCAT1, and ACACA, 
to construct a lipid metabolism-related gene risk model that can divide HCC patients into low- and high-risk groups. 
Internal and external validation verified that the risk model could be a signature that could effectively predict HCC 
patient prognosis. High-risk patients showed disrupted immune cell profiles, reduced tumor-killing capacity, and 
increased expression of immune checkpoint genes. However, they responded more favorably to immune checkpoint 
inhibitor (ICB) therapy. The top ten hub genes related to the risk model were associated with tumor progression 
and deteriorating prognosis. In vitro experiments verified that the downregulation of the top 1 hub gene CDK1 was 
correlated to the HCC cell proliferation.

Conclusion  The risk model constructed using lipid metabolism-related genes could effectively predict prognosis and 
was related to the immunosuppressive microenvironment and ICB immunotherapy. The hub genes related to the risk 
model were potential therapeutic targets.

Keywords  Hepatocellular carcinoma, Lipid metabolism, Risk model, Survival prediction, Tumor immunity, Immune 
checkpoint Blockade, Bioinformatics

From genes to therapy: a lipid Metabolism-
Related genetic risk model predicts HCC 
outcomes and enhances immunotherapy
Lei Xu1, Ting Xiao2, Tengfei Chao3*, Huihua Xiong3* and Wei Yao3*

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-025-14306-6&domain=pdf&date_stamp=2025-5-18


Page 2 of 16Xu et al. BMC Cancer          (2025) 25:895 

Introduction
Hepatocellular carcinoma (HCC) remains a formidable 
global health challenge, ranking as the sixth most preva-
lent malignancy and the second leading cause of cancer-
related mortality worldwide [1]. In the early stage, most 
HCC patients are asymptomatic, which results in late 
diagnosis, and only approximately one-third of cases 
have an opportunity for curative treatments [1, 2]. Tumor 
recurrence occurs in 70% of HCC patients receiving radi-
cal surgery within 5 years [1, 2].

No effective treatments were available for patients with 
advanced-stage HCC before 2008 [2]. A comprehensive 
understanding of molecular mechanisms of tumor ini-
tiation and progression has led to the introduction of 
targeted therapy and immunotherapy and improved out-
comes for HCC patients [3–7]. For example, sorafenib 
[8], lenvatinib [9], cabozantinib [10], ramucirumab [11], 
and regorafenib [12] have been authorized as the first/
second-line systemic drugs for HCC treatment by The 
FDA. When compared to placebo, sorafenib led to an 
increase in the median survival time by nearly 3 months 
[1, 8]. Although these therapies improve short-term out-
comes, HCC patients still face poor long-term survival, 
highlighting the need for continued research.

Emerging evidence highlights metabolic reprogram-
ming as a fundamental driver of oncogenesis and tumor 
progression [13]. The liver is a vital organ for the metab-
olism of lipids, and dysregulated lipid metabolism, such 
as metabolic-associated fatty liver disease (MAFLD), 
significantly increases the risk of HCC [14]. Lipids fuel 
tumor growth by acting as energy sources and signaling 
molecules. They also help create an immune-suppressive 
environment that aids cancer progression [15–18]. Previ-
ous studies have confirmed that lipid metabolism-related 
genes were closely related to HCC patient prognosis, 
and these genes as therapeutic targets benefited HCC 
patients [19, 20]. Thus, lipid metabolism genes can be 
potential prognostic biomarkers and therapeutic targets 
and need further investigation for HCC patients.

Capitalizing on the well-established linkage between 
dysregulated lipid metabolism and HCC pathogenesis, 
we developed an innovative prognostic model with three 

key advances. First, unlike traditional gene-based predic-
tions, our model integrates tumor immune environment 
data. This lipid metabolism-related signature uniquely 
reveals immune differences across risk groups, includ-
ing immune cell infiltration, tumor-killing capacity, and 
checkpoint protein levels. Second, it predicts patient 
responses to immunotherapy (ICB), making it both a 
prognostic tool and treatment guide. Third, we identi-
fied CDK1 as the core hub gene in this lipid network. 
Our analysis shows CDK1 drives HCC proliferation, 
offering new treatment targets that link metabolism and 
immunity.

Materials and methods
Data download
The clinical features of the HCC patients and corre-
sponding mRNA expression patterns were obtained from 
the TCGA-LIHC dataset and delineated as the training 
group. Besides, the clinical traits of HCC patients and 
corresponding mRNA expression profiles were available 
from the ICGC (LIRI-JP) data portal and delineated as 
the testing group. The clinical characteristics between 
training and testing group were listed in Table 1. scRNA-
seq data (GSE223204) were downloaded from The Gene 
Expression Omnibus, which included single cell RNA 
data of tumor and normal tissue in HCC patient. The 
lipid metabolism-related genes were obtained from Gene 
Set Enrichment Analysis (GSEA) dataset.

Differential gene expression analysis
False discovery rate < 0.05 and|Log2 fold change| > 0.585 
were the thresholds to determine differentially expressed 
genes (DEGs). Based on the “edgeR” (version 3.36.0) 
R package [21], the DEGs related to lipid metabolism 
between normal and tumor tissues were screened using 
the mRNA expression profiles from the training group.

Development of a risk model via DEGs related to lipid 
metabolism
The “survival” (version 3.3.1) R package identified the 
prognostic genes from the differentially expressed genes 
related to lipid metabolism by univariate regression 
analysis and logistic LASSO regression analysis. We 
chose LASSO regression for feature selection because it 
effectively handles high-dimensional data. This machine 
learning technique employs L1 regularization to mitigate 
overfitting while simultaneously performing automated 
feature shrinkage and dimensionality reduction. The 
algorithm’s inherent capacity to maintain optimal pre-
dictive accuracy while generating parsimonious models 
makes it particularly advantageous for clinical transla-
tion, where model interpretability and operational feasi-
bility are critical considerations. Then, a risk model was 
developed using the identified prognostic genes, and 

Table 1  Clinical characteristics between training and testing 
group
Items TCGA (n = 365) ICGC (n = 232) p Value
Age (years) 69.78 ± 30.87 67.72 ± 10.10 0.1018
Sex (male) 246 171 0.1015
Survival time (days) 811.9 ± 725.8171 811.9 ± 417.7 0.9998
Tumor stage
I 170 36
II 85 105
III 74 71
IV 4 19 < 0.0001
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each HCC patient was assigned a risk score (RS) deter-
mined by the following equation:

	 RS =
∑ i

m=1
Coefm × expm

where “i” signifies the number of lipid metabolism-
related genes, “Coe fm” represents the logistic LASSO 
regression coefficient of gene m, and “ expm” represents 
the mRNA expression level of gene m. HCC patients 
were classified into high- and low-risk groups via the 
median RS, with the high-risk group having a higher RS.

Validation of the risk model related to lipid metabolism
The predictive value of the risk model was internally 
validated by the training group and externally validated 
by the testing group. First, principal component analy-
sis (PCA) was performed to visualize and compare the 
predictive ability of the risk model by the “scatterplot3d” 
(version: 0.3–41) R package. Second, the risk plot dem-
onstrated the differences in the survival between the low- 
and high-risk groups by the “heatmap” (version: 1.0.12) R 
package. Third, Kaplan-Meier survival curves determined 
the differences in overall survival (OS) between the low- 
and high-risk groups via the “survminer” (version: 0.4.9) 
and “survival” (version: 3.3-1) R packages. Four, the area 
under the curve (AUC) of the receiver operating char-
acteristic (ROC) curves for the survival prediction were 
determined from the “survivalROC” (version:1.0.3) R 
package. Finally, The C-index evaluates the concordance 
between predicted and observed survival outcomes 
within each cohort independently using the “survcomp” 
(version: 1.44.1) R package [22], reflecting the model’s 
ability to rank patients by risk.

Nomogram construction and validation
Nomograms are commonly used tools for predicting 
survival in oncology research [23, 24]. In this study, a 
nomogram was developed by integrating the lipid metab-
olism-related gene risk model with the clinical character-
istics using the “rms” (version: 6.3-0), “foreign” (version: 
0.8–82), and “survival” (version: 3.3-1) R packages. The 
predictive prognostic value of the nomogram was esti-
mated by the AUC of the ROC and C-index. In addition, 
calibration curves were used to assess the consistency 
between the observed and predicted survival rates.

Investigation of the immune signature related to the risk 
model
In this study, CIBERSORT, a flexible computational algo-
rithm for quantifying cell proportions via gene expres-
sion profiles, was used for estimating the proportion 
of 22 types of immune cell subclusters for each HCC 
patient [25, 26]. The normalized enrichment scores of 

13 different immune functions were determined by the 
single sample GSEA (ssGSEA) by “GSEABase " (ver-
sion:1.58) and “GSVA " (version: 1.44) R packages [27]. 
The potential response to anti-PD1 and anti-CTLA4 
immunotherapies was estimated by the Tumor Immune 
Dysfunction and Exclusion (TIDE) score, and a lower 
TIDE prediction score indicated a better response [28].

Identification of the hub genes of the risk model
The DEGs between high- and low-risk groups were deter-
mined by the “edgeR” (version 3.36.0) R package. Based 
on DEGs, The STRING online database with an inter-
action confidence score ≥ 0.9 was used to build protein-
protein interaction (PPI) network. Then, the PPI network 
was visualized by Cytoscape software, and the hub genes 
were obtained by the “CytoHubba” plug-in using the 
degree method.

Functional enrichment analyses
Biological activities and signaling pathways of the genes 
were determined by GO and KEGG enrichment analyses 
based on the “org.Hs.eg.db” (version 3.14.0), “enrichplot” 
(version 1.14.2), and “clusterProfiler” (version 4.2.2) R 
packages.

scRNA-seq data analysis
The “Seurat” (version 4.4.0) R package was used to ana-
lyze the scRNA-seq data in the following ways: (1) 
Using the “CreateSeuratobjecct” function, the scRNA-
seq data were read and transformed into Seurat objects. 
Genes expressed in less than three cells were eliminated, 
whereas cells with 200–4000 genes and a mitochondrial 
gene percentage of less than 20% were allowed. The R 
package " scDblFinder " (version 1.16.0) was utilized to 
detect and eliminate doublets/multiplets. The R pack-
age “ccRemover” (version 1.0.4) was utilized to detect 
and eliminate cell-cycle effects. (2) Following quality 
control, Seurat objects were combined using the “Find-
IntegrationAnchors” and “IntegrateData” functions, then 
normalized using the “NormalizeData” function. (4) The 
“FindVariableFeatures” program was used to determine 
the top 2000 highly variable genes. Principal component 
analysis (PCA) and uniform manifold approximation and 
projection (UMAP) analysis were utilized to determine 
cell clusters using these highly variable genes. (5) Each 
cell cluster was annotated via DEGs and specific marker 
genes. Variations in lipid metabolism pathway were 
assessed using the “GSVA” R package via Gene Set Varia-
tion Analysis (GSVA) 29, with the “methods” parameter 
configured to “ssGSEA” and all other parameters set to 
default.
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Cell transfection
Small interfering RNAs (siRNAs) were used to specifi-
cally knock down CDK1 in the Huh7 cells. The sequences 
of the siRNAs are shown in Table 2.

Quantitative real-time PCR (qRT-PCR) and Western blotting
The protein and RNA expression level of CDK1 were 
detected by Western Blotting and qRT-PCR analysis 
based on the standard protocols. The primary and sec-
ondary antibodies for western blotting are provided 
in Table  3, and the primers for qRT-PCR are given in 
Table 4.

5-Ethynyl-2’-Deoxyuridine (EdU) assay
The knockdown of the CDK1 gene in HCC cells and their 
corresponding control cells were incubated in a culture 
plate at a rate of 1 × 105 cells per well for 24 h. The EdU 
assay was performed using the EdU Assay Kit (Absin, 
China) as per the manufacturer’s instructions. Quantita-
tive analysis of EdU-positive cells was performed using 
ImageJ software. Fine independent biological replicates 
were analyzed. Statistical significance was determined 
using a two-tailed Student’s t-test.

Results
Construction of the lipid metabolism-related gene risk 
model
786 genes related to lipid metabolism were selected from 
the GSEA database (Table. S1). Then, 70 DEGs related 
to lipid metabolism between HCC tumors and normal 
tissues were identified in the training group, consist-
ing of 36 downregulated and 34 upregulated genes in 
tumor tissues (Fig. 1A). The univariate regression analy-
sis confirmed 37 lipid metabolism genes associated with 
the survival of HCC patients (Fig.  1B). Finally, six lipid 
metabolism genes, namely, ADH4, LCAT, CYP2C9, 
CYP17A1, LPCAT1, and ACACA were identified by 
the logistic LASSO regression analysis (Fig.  1C). HCC 
patients with high ACACA and LPCAT1 expression had 
worse survival probability. HCC patients with increased 
expression of ADH4, LCAT, CYP2C9, and CYP17A1 had 
better survival probability (Fig. 1D). scRNA-seq analysis 
identified cell-type-specific lipid metabolism patterns in 
HCC (Fig. 1E-G). Hepatocytes predominantly expressed 
ADH4, LCAT, CYP2C9, ACACA, and CYP17A1, show-
ing strong cholesterol and triglyceride biosynthesis 
(Fig.  1F-G). Neutrophils enriched with LPCAT1 exhib-
ited marked cholesterol import and triglyceride break-
down (Fig.  1F-G). Monocytes demonstrated active fatty 
acid uptake (Fig.  1G). Stromal cells displayed dual cho-
lesterol import and export, suggesting extracellular lipid 
remodeling (Fig.  1G). These compartmentalized meta-
bolic activities reveal specialized lipid handling across 
HCC microenvironment components.

Further, the gene risk model was constructed by the six 
genes to predict the prognosis in HCC patients, and each 
patient was assigned an RS (Table. S2). The equation used 
for calculating RS is provided in the Material and Meth-
ods section. HCC patients with high RS had higher his-
tologic neoplasm grade, advanced T stage, and advanced 
TNM stage than patients with low RS (Fig.  1H). There-
fore, the lipid metabolism-related gene risk model was 
significantly associated with tumor progression.

Thorsson et al. identified six immune subtypes (C1 to 
C6) based on the immunogenomic analyses of 33 cancer 
types from the TCGA database [29]. HCC tumor sam-
ples were divided into four immune subtypes (C1 to C4), 
including wounding healing, IFN-γ dominant, inflamma-
tory, and lymphocyte depleted. This study confirmed the 
statistical differences in RS among the four immune sub-
types. HCC tumor samples belonging to the C1 (wound-
ing healing) immune subtype had the highest RS than 
other samples, while samples belonging to C3 (inflam-
matory) had the lowest RS (Fig.  1I). Hence, it can be 
stated that the risk model was also associated with tumor 
immunity.

Validation of the risk model for prognostic prediction
The HCC samples from the TCGA-LIHC dataset were 
defined as the training group for internal validation of the 
six-gene risk model. All the HCC patients were classified 
into low- or high-risk groups via the median of RS, and 
patients in the low-risk group had a lower RS (Table. S2). 
The accuracy of the six-gene risk model in predicting the 
prognosis in different populations was determined by the 
HCC samples from the ICGC dataset which was defined 

Table 2  siRNA for CDK1
Gene Name SS sequence AS sequence
CDK1 si -1 GGUUAGUUCUAGAUCACUAAU UAGUGAUCUA-

GAACUAACCAA
si -2 GGAUAUUGACAGAAGGUUAAU UAACCUUCUGU-

CAAUAUCCUA
si -3 GAAGCUAAAUACUACACUAGU UAGUGUAGUAU-

UUAGCUUCUU

Table 3  Antibodies of the target genes
Gene Primary antibody Secondary antibody
CDK1 A0220 (ABclonal) Goat anti-rabbit IgG 

H&L (HRP) (abs20002)
B-ACTIN Abs119600 (Absin) Goat anti-rabbit IgG 

H&L (HRP) (abs20002)

Table 4  Primers for the target genes
Gene Forward primer Reverse primer
CDK1 AACTACAGGTCAAGTGGTAGCCATG TCCATGTACTGAC-

CAGGAGGGATAG
B-ACTIN CAGATGTGGATCAGCAAGCAGGAG AAGCCATGCCAAT-

GAGACTGAGAAG
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Fig. 1 (See legend on next page.)
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as testing group for the external validation. The HCC 
patients from the testing group were also assigned RS 
based on the Cox proportional-hazards model and were 
divided into low- or high-risk groups using the median of 
RS (Table. S3).

PCA analysis confirmed that RS could indicate the 
distinctive features of HCC patients in terms of distinct 
lipid metabolism-related gene expression (Fig.  2A and 
Fig. S1A). The risk plot demonstrated that patients in 
the low-risk group had better survival chances and sur-
vival times (Fig. 2B and Fig. S1B). Kaplan-Meier survival 
analysis substantiated that HCC patients in the low-risk 
group had a higher OS probability (Fig. 2C and Fig. S1C). 
The univariate (Fig.  2D and Fig. S1D) and multivariate 
(Fig. 2E and Fig. S1E) Cox regression analysis confirmed 
that the RS was an independent prognosis factor. The 
AUCs of the 1-year, 2-year, and 3-year ROC curves were 
0.749, 0.722, and 0.704 for the training group (Fig.  2F), 
respectively, and 0.761, 0.711, and 0.720 for the testing 
group, respectively (Fig. S1F). In addition, ROC curves 
indicated that the risk model had better survival diagnos-
tic performance than the clinical parameters, including 
gender, age, histologic neoplasm grade, and TNM stage 
(Fig. 2G and Fig. S1G). The C-index was 0.693 (P < 0.001) 
for the training group and 0.721 (P < 0.001) and for the 
testing group (Table  5). Thus, both the internal and 
external validation confirmed that the lipid metabolism-
related gene risk model could accurately predict HCC 
patient prognosis.

Development of a nomogram integrating risk model with 
the clinical parameters for prognosis prediction
Further, in this study, the clinical parameters were inte-
grated with RS to build a nomogram for the prediction of 
HCC patient prognosis (Fig. 3A). The univariate (Fig. 3B) 
and multivariate (Fig.  3C) Cox regression analyses 
showed that the nomogram was an independent prog-
nosis factor. The calibration curve exhibited an excellent 
consistency between the observed survival probability 
and that predicted by the nomogram (Fig. 3D). Besides, 
the AUCs of the ROC curves for the 1-year, 3-year, and 
5-year survival prediction were 0.767, 0.704, and 0.697, 
respectively, which also indicated that the nomogram 
showed a better survival diagnostic performance than 
RS and clinical parameters (Fig. 3E). Thus, a nomogram 
integrating the clinical parameters with gene signature is 
a better prognostic signature.

Investigation of the immune signature related to risk mode
The CIBERSORT estimated the proportions of 22 immu-
nocyte subclusters for each HCC patient (Fig. 4A). HCC 
patients in the high-risk group had a higher average per-
centage of follicular helper T cells, M0 macrophages, 
memory B cells, and neutrophils but a lower average per-
centage of M2 macrophages, naïve B cells, and γδ T cells 
when compared to the low-risk group (Fig. 4B). Further, 
ssGSEA correlation analysis indicated that antitumor-
related immune functions, including cytolytic activity, 
type I and II IFN response were weakened in the high-
risk group (Fig.  4C). Meanwhile, the high-risk group 
lowly expressed the cytotoxic effectors GZMK and FAS1 
(Fig. 4D).

As the ICGs regulated antitumor immunity, the asso-
ciation between lipid metabolism-related gene risk model 
and ICGs, including 20 stimulatory ICGs, 21 inhibitory 
ICGs, and 27 two-sided ICGs reported by the previous 
studies (Table. S4) [30], was investigated. The high-risk 
group differentially expressed nearly half of the inhibitory 
ICGs (9 upregulated and 1 downregulated), one-third 
of the stimulatory ICGs (7 upregulated), and a quarter 
of two-sided ICGs (5 upregulated and 1 downregulated) 
(Fig.  4E and Fig. S2A-B). TIDE [28] was performed to 
predict ICB response, which highlighted that the high-
risk group presented a lower mean TIDE score (Fig. 4F). 
This indicates anti-CTLA4 and anti-PD1 therapies may 
be more effective for HCC patients with high RS.

Analysis of DEGs between low- and high-risk groups
The DEGs between the low and the high-risk groups were 
further investigated to elucidate the potential pathways 
by which lipid metabolism-related genes regulate prog-
nosis and tumor immunity. The high-risk group down-
regulated 132 genes and upregulated 315 genes (Fig. 5A 
and Table. S5). Based on STRING online database, the 
DEGs were analyzed to construct a PPI network (Fig. 5B). 
Then, the PPI network was visualized by the Cytospace 
software (Fig. S3A), which further helped us to identify 
that CDK1, CDC20, BUB1, CCNB1, CCNB2, AURKB, 
TOP2A, BUB1B, KIF11, and ASPM were the top 10 hub 
genes (Fig. 5C and Table. S6). In this study, the patients 
highly expressed top 10 hub genes had worse OS (Fig. 5D 
and Fig. S3B). Besides, the enhanced expression levels of 
the top 10 hub genes were related to higher histologic 
neoplasm grade (Fig.  5E), advanced T stage (Fig. S3C), 
and advanced TNM stage (and Fig. S3D). Moreover, 

(See figure on previous page.)
Fig. 1  Construction of the lipid metabolism-related gene risk model. (A) The Heatmap plot shows DEGs between normal and tumor tissues in HCC. (B) 
The Forest plot shows 37 survival-related lipid metabolism genes identified by the univariate regression analysis. (C) Six out of 37 prognostic genes were 
selected by the LASSO Cox regression model. (D) Kaplan-Meier curves comparing the groups with different expression levels of 6 genes in HCC patients. 
(E) A total of 16,649 quality controlled single cells derived from tumor and normal tissues in HCC were divided into 8 cell-types based on scRNA-seq analy-
sis. (F) scRNA-seq analysis showed the expression of the six selected prognostic genes in each cell-type. (G) GSVA evaluated lipid metabolism pathway 
enriched in each cell type. (H) The box plot shows the relationship between the genetic risk model and the clinical features, including histologic neoplasm 
grade, T stage, and TNM stage. (I) The box plot shows the mean RSs in different immune subtypes
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enhanced expression of the top 10 hub genes were related 
to the high average proportions of memory B cells, M0 
macrophages, resting dendritic cells, activated memory 
CD4 T cells, follicular helper T cells, and Tregs but to 
the low average proportions of resting γδ T cells, naïve B 
cells, NK cells, and M2 macrophages, which was almost 
consistent with the findings from the lipid metabolism-
related gene risk model (Fig. S3E). Thus, it can be stated 
that the top 10 hub genes may be the key genes related 
to tumor progression, deteriorating prognosis, and tumor 
immunity.

Further, the underlying biological processes were elu-
cidated by the GO and KEGG enrichment analyses. 
GO enrichment analysis showed that nuclear division, 
chromosome segregation, mitotic nuclear division, sis-
ter chromatid segregation, and mitotic sister chromatid 
segregation were the top 5 biological processes; spindle, 
chromosomal region, chromosome (centromeric region), 
condensed chromosome (centromeric region), and kinet-
ochore were the top 5 cellular components; and micro-
tubule binding, organic acid transmembrane transporter 
activity, xenobiotic transmembrane transporter activity, 
steroid hydroxylase activity, and DNA replication origin 
binding were the top 5 molecular functions (Fig. 5F and 

Fig. S3F). Similarly, KEGG pathway enrichment analysis 
indicated that cell cycle, oocyte meiosis, bile secretion, 
progesterone-mediated oocyte maturation, and p53 sig-
naling pathway were the top 5 pathways (Fig. 5G and Fig. 
S3G).

The expression of prognostic genes related to lipid 
metabolism and the top 10 hub genes in HCC.

Both the testing and training groups have confirmed 
that RNAs of the prognostic genes, namely, ACACA and 
LPCAT1, were expressed at high levels in the tumor tis-
sues and high-risk group compared to normal tissue and 
low-risk group, respectively (Fig.  6A-B and Fig. S4A-B). 
On the contrary, ADH4, LCAT, and CYP2C9 were lowly 
expressed in tumor tissue and high-risk group (Fig. 6A-B 
and Fig. S4A-B). CYP17A1 was expressed at high levels 
in tumor tissue and the low-risk group (Fig. S4A-B). The 
Human Protein Atlas (HPA) also confirmed that protein 
expression and showed ACACA and LPCAT1 were sig-
nificantly higher in HCC tumor tissues and ADH4 and 
CYP2C9 were considerably higher in normal liver tissues 
(Fig. 6C).

The testing and training groups confirmed that the 
RNAs of the top 10 hub genes were highly expressed 
in tumor tissue and high-risk group compared to nor-
mal liver tissue and low-risk groups (Fig.  6D-E and Fig. 
S4C-D). The HPA database also confirmed that the pro-
tein expression of the hub genes were higher in tumor 
tissues, except for BUB1, BUB1B, and ASPM as the 

Table 5  The C-index for training and testing dataset
Dataset C-index (95%CI) P Value
TGCA 0.693 (0.645–0.742 ) < 0.001
ICGC 0.721 (0.639–0.804) < 0.001

Fig. 2  Internal validation of the risk model via TCGA dataset. (A) PCA plot shows expression profiles of six prognostic genes in different risk groups. (B) The 
risk plot shows the RS for each HCC patient and indicates that patients with high RS have worse survival times and survival rates. (C) Kaplan-Meier curves 
confirmed that the high-risk group had a lower survival probability. (D-E) Univariate Cox regression analysis (D) and multivariate Cox regression analysis 
(E) confirmed that RS could be an independent prognosis factor in HCC. (F) ROC curve indicated that the risk model could accurately predict HCC patient 
prognosis. (G) The ROC curve of time survival indicated that the risk model had better prognostic prediction performance than the clinical parameters
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immunohistochemical information of these three could 
not be found in the HPA database (Fig. 6F and Fig. S4E).

Identification of the top 1 hub gene CDK1 in vitro 
experiments
12 pairs of matched HCC normal and tumor tissues were 
tested by qRT-PCR and western blotting experiments, 
which indicated that the RNA and protein expression lev-
els of CDK1 were higher in tumor tissues (Fig. 7A and B). 
As the functional enrichment analysis indicated that the 
biological processes in the high-risk group were mainly 
enriched in cell proliferation, the biological functions of 
the top 1 hub gene CDK1 were further confirmed in vitro 
experiments. CDK1 knockdown in Huh7 cells by siRNAs 
was confirmed by qRT-PCR (Fig. 7C) and western blot-
ting experiments (Fig. 7D). The EdU assay confirmed that 
downregulation of CDK1 led to a decrease in HCC cell 

proliferation (Fig. 7E), which was in agreement with the 
functional enrichment analyses.

Discussion
HCC is a common and one of the most lethal tumors 
characterized by late diagnosis, early recurrence, metas-
tasis, and poor diagnosis [31–33]. It is challenging to treat 
this disease as the treatment options are limited. During 
the past decade, the short-term outcome of HCC patients 
has been improved by immunotherapy and targeted 
therapy, but the long-term prognosis still needs further 
development [6, 7]. Lipids, as signaling molecules and 
energy sources, support cancer progression and immu-
nosuppressive microenvironment [34, 35]. The liver is a 
central organ for lipid metabolism, and the dysregulation 
of lipid metabolism is the major risk factor for HCC [36]. 

Fig. 3  Construction and validation of nomogram. (A) A nomogram integrating clinical parameters with RS for prognosis prediction. (B-C) Univariate Cox 
regression analysis (B) and multivariate Cox regression analysis (C) confirmed that the nomogram was an independent prognosis factor. (D) Calibration 
plots predict the survival probability for HCC patients. The y-axis shows the actual survival probability, while the x-axis shows the predicted survival prob-
ability. (E) ROC curves indicated that the nomogram had better prognostic prediction performance than the clinical parameters and lipid metabolism-
related gene risk model
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Lipid metabolism-related genes are potential prognostic 
biomarkers and therapeutic targets in HCC patients [37].

In this study, Analysis of TCGA data revealed six differ-
entially expressed genes (DEGs) - ADH4, LCAT, CYP2C9, 
CYP17A1, LPCAT1, and ACACA - associated with both 
lipid metabolism and survival outcomes in hepatocellular 
carcinoma (HCC). Single-cell RNA sequencing demon-
strated predominant expression of these survival-related 
lipid metabolism genes in hepatocytes. Multi-dataset val-
idation (ICGC, TCGA, HPA) showed distinct expression 

patterns: ADH4 and CYP2C9 exhibited significantly 
reduced RNA/protein levels in tumor tissues compared 
to normal liver, while ACACA and LPCAT1 displayed 
marked overexpression in malignant lesions.

Clinically, reduced expression of ADH4, LCAT, 
CYP2C9, and CYP17A1 correlated with poorer patient 
survival, whereas lower ACACA and LPCAT1 levels par-
adoxically associated with improved prognosis. While 
existing literature has established the tumorigenic roles 

Fig. 4  Immune signatures related to risk model. (A) CIBERSORT calculated the relative proportions of immunocytes for each HCC patient in the training 
group. (B) Mean relative proportions of immunocytes between the low- and high-risk groups. (C) ssGSEA calculated the normalized enrichment scores 
for 13 different immune function pathways between the two groups. (D) Expression of cytotoxic effectors between two groups. (E) mRNA expression of 
inhibitory ICGs between two groups. (F) TIDE scores of the low- and high-risk groups. *: P < 0.05; **: P < 0.01; ***: P < 0.001; ****: P < 0.0001
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Fig. 5 (See legend on next page.)
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of LCAT, ACACA and ADH4 in HCC, recent mechanis-
tic studies provide new insights:

Xu et al. identified LCAT as a tumor suppressor 
through dual metabolic regulation. Their work revealed 
that LCAT inhibits triglyceride hydrolysis by disrupt-
ing CAV1-PRKACA interactions while simultaneously 
suppressing fatty acid oxidation via CPT1A degrada-
tion, thereby depriving tumor cells of critical metabolic 
substrates. Clinically, LCAT deficiency correlates with 
aggressive tumor behavior and reduced therapeutic 
response to lenvatinib. Notably, pharmacological inhi-
bition of fatty acid oxidation restored treatment sen-
sitivity in LCAT-deficient HCC models [38]. Liu et al. 
demonstrated that trichostatin A (TSA) can attenuate 
HCC progression and reduced hepatic lipid accumula-
tion. Mechanistically, TSA was found to restore c-Myc 
suppressed ADH4 expression through AKT/mTOR 
pathway inhibition. This metabolic reprogramming cor-
rected c-Myc induced NAD+/NADH imbalance and ATP 
depletion, positioning ADH4 as a crucial nexus between 
oncogenic signaling and metabolic homeostasis in HCC 
[39]. Peng et al. characterized ACACA as a pivotal fatty 
acid synthase in HCC pathogenesis. FASRL binding to 
ACACA increases fatty acid synthesis and lipid accumu-
lation to mechanistically exacerbate HCC [40].

A genetic risk model was constructed by integrating six 
lipid metabolism-related genes ADH4, LCAT, CYP2C9, 
CYP17A1, LPCAT1, and ACACA. Notably, HCC patients 
with high RS showed higher histologic neoplasm grade, 
advanced T stage, and advanced TNM stage. Both the 
risk plot and Kaplan-Meier survival analysis confirmed 
that HCC patients with high RS had a worse OS probabil-
ity. The univariate and multivariate Cox regression anal-
yses confirmed that RS was an independent prognosis 
factor in HCC patients. Moreover, the ROC curve con-
firmed that the risk model could accurately predict HCC 
patient prognosis and showed better survival diagnostic 
performance compared to clinical parameters, including 
age, gender, histologic neoplasm grade, and stage. TNM 
staging system was proposed in 1953 as a common lan-
guage for solid tumor prognosis [41], and recently served 
as the holy grail of prognostic models in cancer research 
[23]. However, the present study proved that the gene risk 
model based on prognostic genes related to lipid metabo-
lism had better prognostic prediction performance than 
that based on TNM staging in HCC patients. Thus, the 
lipid metabolism-related gene risk model consisting of 

ADH4, LCAT, CYP2C9, CYP17A1, LPCAT1, and ACACA 
showed prognostic significance for HCC patients.

Medical nomograms based on the clinical and bio-
logical parameters were used to construct a statistical 
prognostic model for calculating the probability of a clin-
ical event for a particular individual, for example, cancer 
recurrence or death [23, 24]. A nomogram model inte-
grating RS and clinical parameters was constructed for 
predicting personalized HCC patient prognosis in this 
study. The ROC curve confirmed that the nomogram had 
better prognostic prediction performance compared with 
RS and traditional clinical parameters. Thus, the pres-
ent study provides an improvised model which may be 
a valuable and effective tool for predicting HCC patient 
prognosis.

This study indicated that the lipid metabolism-related 
gene risk model was significantly associated with tumor 
progression and prognosis. In addition to lipids being a 
backup energy source to make up for energy shortages, 
they are involved in forming biological membranes, serv-
ing as substrates for biomass production, and activating 
intricate signaling pathways, which directly contribute to 
malignant transformation, proliferation, and migration in 
cancer cells [42, 43]. KEGG and GO enrichment analy-
ses also confirmed that the upregulated DEGs in high-
risk groups were strongly associated with cell division, 
proliferation, and survival. The EdU assay confirmed 
that the downregulation of the first hub gene CDK1 was 
correlated to the HCC cell proliferation. Previous study 
also demonstrated that CDK1 amplification, observed in 
46% of HCC cases, correlates with poor overall survival. 
In PDX models, combining the CDK1 inhibitor with 
sorafenib synergistically suppressed tumor growth and 
reversed drug resistance by downregulating the CDK1/
PDK1/β-catenin axis, reducing pluripotency markers and 
inhibiting epithelial-mesenchymal transition (EMT) [44].

Moreover, disrupted lipid metabolism in the tumor 
microenvironment impacts immune activity, which in 
turn drives tumor progression [43, 45]. Thus, the immune 
signature related to the risk model was also investigated. 
Based on the TCGA data, Thorsson et al. conducted an 
in-depth immunogenomic analysis of 33 different can-
cer types and found six intratumoral immune subtypes, 
including immunologically quiet, TGF-b dominant, 
inflammatory, lymphocyte depleted, IFN-γ dominant, 
and wound healing [29]. The present study indicated 
that HCC samples with high RS were enriched in the 

(See figure on previous page.)
Fig. 5  Analysis of DEGs between low-risk and high-risk groups. (A) The Heatmap plot shows DEGs between two groups. (B) The PPI network was con-
structed based on the DEGs. (C) The top ten hub genes marked in red were determined from the PPI network by Cytoscape software. (D) Kaplan-Meier 
curves confirmed that the high expression of the top ten hub genes in HCC patients indicated worse survival probability. (E) High expression levels of 
the top ten hub genes were associated with high histologic neoplasm grade. (F) GO enrichment analysis for the DEGs. (G) KEGG enrichment analysis for 
the DEGs
 ***: P < 0.001
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Fig. 7  Expression and biological functions of the first of the top 10 hub genes CDK1. (A) qRT-PCR confirmed that CDK1 was expressed at high levels 
in tumor samples compared to normal tissue samples. (B) Western blotting confirmed that the protein expression of CDK1 was upregulated in tumor 
samples. (C) mRNA levels in Huh7 cells after CDK1 knockdown confirmed by qRT-PCR. (D) Protein levels in Huh7 cells after CDK1 knockdown confirmed 
by western blotting. (E) EdU assay showed the decreased proliferation of Huh7 cells after CDK1 depletion
 ***: P < 0.001

 

Fig. 6  Expression of lipid metabolism-related genes and the top ten hub genes. (A) mRNA expression of the prognostic genes related to lipid metabolism 
in normal and tumor tissues in the training group. (B) mRNA expression of the prognostic genes related to lipid metabolism in the high- and low-risk 
groups in the training cohort. (C) Immunohistochemical data downloaded from the HPA database demonstrated the protein expression of the prognostic 
genes related to lipid metabolism in tumor and normal tissues. (D) mRNA expression of the top ten hub genes in tumor and normal tissues in the training 
group. (E) mRNA expression of the top ten hub genes in the high- and low-risk groups in the training cohort. (F) Immunohistochemical data downloaded 
from the HPA database demonstrated the protein expression levels of the top ten hub genes between tumor and normal tissues
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wound-healing immune subtype. The wound-healing 
immune subtype exhibits high proliferation, angiogenic 
gene expression, and Th2 cell dominance, creating a pro-
tumor microenvironment that promotes cancer growth 
[29, 46]. Meanwhile, the inflammatory immune subtype-
enriched HCC patients had low RS. The inflammatory 
immune subtype characterized by increased Th1 and 
Th17 genes, low proliferation capacity, lower somatic 
copy number alterations, and aneuploidy indicated an 
anti-tumor immunity in the tumor microenvironment, 
which was not conducive to tumor development and pro-
gression [29, 47, 48].

Further, the immunocyte subtypes and immune activ-
ity were investigated to elucidate the pro-tumor features. 
CIBERSORT analysis [25, 26] indicated that the high-
risk group showed a significantly higher ratio of follicu-
lar helper T cells, memory B cells, and neutrophils but 
a lower average percentage of naïve B cells, M2 macro-
phages, and γδ T cells than the low-risk group. Though 
the pro-tumor immunocyte subtypes previously men-
tioned were not detected in the high-risk group, ssG-
SEA correlation analysis showed weakened cytolytic 
activity and impaired type I and II IFN response in the 
high-risk group. Tumor killing is heavily dependent on 
cytolytic activity [49]. Type I and type II IFN response 
could directly block the tumor cell cycle progres-
sion and induce cell apoptosis as well as simulate anti-
tumor immune response and indirectly eliminate tumor 
cells, thereby preventing metastasis [50, 51]. Thus, the 
impaired antitumor immune response may be responsi-
ble for the pro-tumor immune microenvironment in the 
high-risk group.

Immunotherapy with checkpoint inhibitors is used 
as an effective therapeutic strategy as the checkpoint 
inhibitors have demonstrated potent anti-tumor activ-
ity in HCC patients [6, 52, 53]. CTLA-4 and PD1 check-
point inhibitors, namely, ipilimumab, nivolumab, and 
pembrolizumab have been approved for advanced HCC 
treatment by FDA [54]. However, immunotherapies with 
checkpoint inhibitors do not benefit all HCC patients. 
The identification of the HCC patients intrinsically resis-
tant to checkpoint inhibitors would help to consider 
other therapies for HCC, thereby saving a significant sum 
of financial and medical resources [6, 54].

The present study indicated that the high-risk group 
expressed ICGs, including HLA (MHC) molecules, 
CTLA-4, and PD1 at high levels. Rodig et al. confirmed 
that MHC I downregulation was the primary cause of 
resistance to anti-CTLA-4 therapy, while MHC II expres-
sion was the primary factor contributing to the positive 
response to anti-PD1 therapy [55]. MHC molecules con-
tribute to the emergence of immunoreactions following 
inhibitor therapy with checkpoints [54, 56]. In addition, 
increasing proportions of cells with high expression of 

CTLA-4 and PD1 within the tumor-infiltrating CD8 + T 
cell subset were strongly related to better anti-CTLA4 
and anti-PD1 responses. Notably, TIDE analysis identi-
fied that our lipid metabolism-related risk model exhib-
ited high predictive value as established biomarkers such 
as tumor mutational burden (TMB), immune cells and 
PD-L1 expression in stratifying ICB-responsive HCC 
patients [57, 58]. While TMB reflects neoantigen load and 
immune cell or PD-L1 status indicates localized immune 
activation, our model integrates metabolic dysregulation 
with immune checkpoint expression, potentially cap-
turing broader mechanisms of therapy resistance. This 
aligns with recent evidence that lipid metabolism repro-
gramming directly modulates T cell exhaustion and PD1/
CTLA-4 upregulation [59, 60], suggesting a synergistic 
role of metabolic and immune phenotypes in predicting 
ICB outcomes. Thus, the lipid metabolism-related gene 
risk model may be a potential signature for predicting 
the outcomes in HCC patients treated with anti-CTLA4 
and anti-PD1 therapies. Future clinical validation should 
compare this signature with conventional biomarkers to 
define its utility in therapeutic decision-making.

Compared to existing lipid metabolism models in 
HCC, our study offers three key advancements [61, 62]. 
First, we integrated scRNA-seq data to resolve cell-type-
specific lipid metabolic activities, revealing hepatocyte-
dominated biosynthesis versus neutrophil-mediated 
breakdown. This spatial resolution surpasses bulk tran-
scriptome analyses in prior studies. Second, our model 
uniquely links lipid metabolism to CDK1-driven pro-
liferation, experimentally validated as a therapeutic tar-
get, unlike earlier works focused solely on prognostic 
genes. Third, we incorporated TIDE scoring to predict 
ICB responsiveness, a feature absent in previous models. 
Notably, our risk signature achieved higher AUC values 
(1-year: 0.761 vs. 0.758) [61], underscoring its clinical 
robustness. These advances position our model as both a 
prognostic tool and a guide for immunotherapy selection.

Nevertheless, this study has several limitations that 
should be acknowledged. First, the retrospective design 
and reliance on public databases may introduce inher-
ent biases, particularly regarding potential confounders 
in bioinformatics analyses. Factors such as batch effects 
across different sequencing platforms and tumor het-
erogeneity within sample cohorts might influence gene 
expression patterns, potentially affecting the reproduc-
ibility and generalizability of our risk model. Second, 
while our primary focus on RNA-level investigation 
provides valuable transcriptional insights, this approach 
cannot fully capture post-transcriptional modifications 
or protein-level interactions that may critically regulate 
lipid metabolism pathways. Future studies should employ 
spatial transcriptomics and single-cell sequencing to 
address tumor microenvironment complexity, combined 
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with experimental validation using clinical specimens. 
Regarding therapeutic translation, our findings suggest 
potential value in exploring CDK1-targeted strategies 
and combination therapies that simultaneously modulate 
lipid metabolism pathways to disrupt cancer progression 
mechanisms.
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