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Abstract 

Background  Increasing pulmonary nodule presentations in lung adenocarcinoma patients reveal diagnostic limita-
tions of CT-based invasiveness assessment. The critical unmet need lies in developing non-invasive biomarkers dif-
ferentiating invasive adenocarcinoma from premalignant lesions and benign nodules, while characterizing metabolic 
trajectory from health to metastatic disease.

Methods  Untargeted metabolomics analyzed plasma samples from 102 subjects stratified into four cohorts: con-
firmed adenocarcinoma (n = 35), benign nodules (n = 22), precursor lesions (n = 24), and healthy controls (n = 21). 
Multivariate analysis identified discriminative metabolites for constructing an infiltration prediction model.

Results  Three diagnostic groups exhibited distinct metabolic profiles. Hexaethylene glycol, tetraethylene glycol, 
and Met-Thr showed stage-dependent concentration gradients. Progressive malignancy correlated with elevated 
levels of 41 metabolites. An eight-metabolite panel achieved AUC 0.933 (0.873–0.994) in distinguishing precursors 
from early malignancies, sustained through internal validation (AUC 0.934, 0.905–0.966).

Conclusions  Met-Thr depletion inversely correlates with malignancy progression, while eight-metabolite signatures 
demonstrate diagnostic potential for preoperative infiltration assessment in nodular adenocarcinoma.

Keywords  Lung nodules, Lung adenocarcinoma, Metabolomics, High-resolution mass spectrometry, Noninvasive 
metabolomic model
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Background
As the leading contributor to cancer-related mortal-
ity, lung cancer is expected to account for 2.2 million 
incident cases and 1.8 million deaths globally in 2020. It 
constitutes the predominant cause of cancer mortality 
in males and the second leading cause in females, sur-
passed only by breast cancer [1]. As the world’s most 
populous nation, China confronts distinct challenges in 
pulmonary oncology management. Demographic aging 
and nationwide implementation of screening programs 
have synergistically driven a sustained increase in age-
standardized lung cancer incidence rates over the past 
decade [2, 3]. China will record approximately 871,000 
incident lung cancer cases and 767,000 cancer-specific 
deaths in 2022, constituting 18.1% and 23.9% of total 
malignant tumor morbidity and mortality, respectively 
[4]. The elevated mortality rate is primarily attribut-
able to only 30% of cases receiving stage I diagnoses, 
with over two-thirds first identified at advanced pro-
gression. Early-stage manifestations typically involve 
CT-detectable pulmonary nodules that lack pathogno-
monic clinical presentations [5]. Studies have shown 
that the five-year survival rate for stage I lung cancer 
is 65%, while the survival rate for stage IV lung cancer 
decreases to 5% [5, 6]. Widespread implementation of 
standardized screening protocols coupled with early-
stage diagnostic interventions constitutes a critical 
pathway for mortality rate mitigation [7].

With over 50% of all cases being Adenocarcinomas, 
this is the most common histologic subtype of lung can-
cer [8]. The American Thoracic Society (ATS), European 
Respiratory Society (ERS), and International Association 
for the Study of Lung Cancer (IASLC) collaboratively 
established a multidisciplinary classification system for 
lung adenocarcinoma in 2011. This framework catego-
rizes lesions into three principal groups: pre-invasive 
(encompassing adenocarcinoma in  situ [AIS] and atypi-
cal adenomatous hyperplasia [AAH]), minimally invasive 
adenocarcinoma (MIA), and invasive adenocarcinoma 
(IAC) [9]. The World Health Organization (WHO) estab-
lished a histopathological classification system for lung 
adenocarcinoma in 2015, building upon the 2011 IASLC/
ATS/ERS framework. This taxonomy was subsequently 
refined in 2021, with AAH and AIS reclassified as pre-
cursor glandular lesions (PGL) [10]. The widespread 
adoption of low-dose computed tomography (LDCT) 
screening has significantly increased detection of pulmo-
nary nodules, many demonstrating indolent biological 
behavior. Clinical management prioritizes balancing sur-
gical intervention timing to prevent overtreatment while 
ensuring timely therapeutic intervention. Accurate differ-
entiation between benign nodules and early-stage malig-
nant transformation is therefore critical [11].

Differentiating between healthy and malignant lung 
nodules has become increasingly difficult for doctors 
in recent years as public awareness of early lung cancer 
screening has grown [12]. Multinational guidelines cur-
rently recommend LDCT as the best noninvasive diag-
nostic method for tumor detection and evaluation [13, 
14]. However, there are issues with overdiagnosis, high 
false-positive rates, uneven criteria for determining 
high-risk populations, and cost-effectiveness when using 
LDCT [15, 16]. Therefore, enhancing lung cancer screen-
ing efficacy requires developing early detection biomark-
ers and optimizing screening protocols. Blood-based 
biomarkers hold particular promise due to their acces-
sibility, stability, and molecular diversity (encompassing 
proteins, nucleic acids, exosomes, lipids, and metabo-
lites), which reflect systemic pathophysiological states 
including tumor-derived signatures [17], It has been 
extensively utilized in many forms of therapeutic early 
screening since its composition can disclose the general 
pathophysiology of tissues and organs [18]. Metabo-
lomics, an emerging discipline following transcriptomics 
and proteomics, occupies the terminal position in gene 
regulatory networks, proximate to phenotypic mani-
festations. This proximity enables direct reflection of 
biological system functionality. The methodology facili-
tates disease trajectory prediction through detection of 
endogenous and environmentally modulated metabolic 
end-products. Liquid chromatography-tandem mass 
spectrometry (LC–MS) predominates metabolomic 
research due to its broad metabolite coverage, high sen-
sitivity, and expansive dynamic range [19, 20]. Thus, this 
study employs LC–MS-based untargeted metabolomics 
to identify diagnostic biomarkers differentiating benign 
and malignant pulmonary nodules in plasma.

Our untargeted metabolomics case–control study sys-
tematically characterized metabolic trajectory altera-
tions from health to lung carcinogenesis. Analysis of 102 
plasma samples revealed temporal metabolic progres-
sion across stratified cohorts: established lung cancer, 
adenocarcinoma precursor lesions, and benign-nodule 
controls. An eight-plasma-metabolite panel demon-
strated diagnostic accuracy for distinguishing malignant 
transformation from precursor states. Overall, our 
results opened the door to more accurate disease detec-
tion and therapy by revealing a whole metabolic land-
scape that spans from healthy populations to lung 
adenocarcinomas.

Methods
Gathering of clinical samples
This study analyzed 102 plasma specimens collected 
from Peking University Shenzhen Hospital (August 
2021-January 2022), comprising 21 healthy controls(HC), 
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22 benign pulmonary nodules(BN), 24 adenocarci-
noma precursor lesions(PGL), and 35 confirmed lung 
adenocarcinomas(LC). Demographic and clinical param-
eters (gender, age, histopathology, medical/medication 
history) were recorded. Benign nodules encompassed 
inflammatory lesions, granulomas, lymphoid hyperpla-
sia, bronchiolar metaplasia, and fibrosis. Preoperative 
fasting participants underwent standardized blood col-
lection: 4–6  mL in K2EDTA tubes, with immediate ali-
quoting of 1 mL into pre-chilled EP tubes. Following dual 
centrifugation (1600 g, 10 min; then 1600 g, 30 min, 4°C), 
supernatants were cryopreserved at -80°C after transfer 
to barcoded EP tubes.

Untargeted metabolomics investigations
Plasma samples (100μL) underwent biphasic extraction 
with chilled dichloromethane/methanol (2:1, 400μL) via 
vortex mixing (10  min, 4°C). Centrifugation (16,000  g, 
10 min, 4°C) separated aqueous (upper) and lipid (lower) 
phases for independent collection. Concentrated extracts 
were lyophilized and stored at -80°C. For LC–MS anal-
ysis, reconstitution involved adding 100μL H2O with 
vortexing (2  min) and sonication. Lipid phase analysis 
required 20μL aliquot treatment with isopropanol/ace-
tonitrile/H2O (2:1:1). Chromatographic separation was 
achieved using HPLC coupled to Q-Exactive HRMS 
(Thermo) in dual polarity mode, with bioinformatics pro-
cessing of raw MS data.

Data analysis for metabolomics
Detection of metabolite
High-resolution mass spectrometry was employed for 
metabolite extraction, with subsequent detection con-
ducted in both positive and negative ion modes. This 
analytical approach generated substantial mass spectral 
datasets. Initial data processing involved three sequential 
phases: (1) format conversion using MS Convert to trans-
form raw data into mzXML format; (2) feature detection 
through XCMS in R, capturing mass-to-charge ratios 
(m/z), retention times, and ion intensities; (3) database 
matching via metaX software against HMDB and KEGG 
repositories using primary m/z values. The XCMS work-
flow systematically executed peak alignment, quantifica-
tion, and chromatographic feature identification. Primary 
metabolite annotations were established by cross-refer-
encing experimental m/z values with database entries. To 
resolve structural isomers sharing identical m/z values—
a prevalent limitation in primary identification—second-
ary mass spectral patterns were rigorously compared 
against authenticated reference spectra. This tandem 
verification protocol, combining primary m/z matching 
with MS/MS spectral congruence analysis, significantly 

enhanced annotation confidence across all detected met-
abolic features.

Metabolites quantification
Chromatographic peak regions at the substance level 
yield quantitative metabolite profiles. To ensure data 
quality, intensity values for each metabolite across all 
samples were extracted using XCMS. Subsequent pre-
processing involved: 1) elimination of low-abundance 
features (ion detection rates < 50% in quality control sam-
ples or < 80% in experimental samples); 2) missing value 
imputation via K-Nearest Neighbors algorithm; and 3) 
normalization through Probabilistic Quotient Normali-
zation. Features demonstrating coefficient of variation 
(CV) exceeding 50% in QC replicates were excluded from 
subsequent analysis due to excessive intra-experimental 
variability, as such fluctuations invalidated quantitative 
variance assessments.

Intergroup comparative analysis
Univariate and multivariate statistical analyses were con-
ducted via the open-source MetaX metabolomics platform 
to detect group-specific differential metabolites. Methodol-
ogies encompassed parametric/non-parametric hypothesis 
testing, principal component analysis (PCA), fold-change 
quantification, partial least squares (PLS) regression, and 
PLS discriminant analysis (PLS-DA) for experimental 
designs containing three or more biological replicates.

Multi‑phenotype metabolic variation analysis
For experimental configurations involving multiple phe-
notypic groups, comparative metabolic profiling was per-
formed through partial least squares discriminant analysis 
(PLS-DA) and one-way analysis of variance (ANOVA). Var-
iable Importance in Projection (VIP) scores were computed 
to quantify each metabolite’s contribution to intergroup 
discrimination, with a VIP threshold ≥ 1.0 applied for bio-
marker screening.

Multi‑comparison group integrative analysis
In studies incorporating multiple phenotypic groups and 
pairwise comparisons, a hierarchical analytical frame-
work was implemented. This combined global quantita-
tive assessments (e.g., correlation network analysis) with 
localized qualitative evaluations (e.g., Venn diagram anal-
yses of differential metabolites across comparison sets) 
to characterize both functional divergences and systemic 
relationships between experimental groups.

Diagnostic modeling framework
Metabolite biomarker panels were constructed through 
least absolute shrinkage and selection operator (LASSO) 
regression using glmnet (v4.1–7, R v4.1.3). Predictive 
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modeling compared four machine learning architectures: 
1) random forest (RF) via randomForest (v4.1–1.2), 2) 
support vector machine (SVM) using e1071 (v1.7–16), 
3) K-nearest neighbors (KNN) implemented with class 
(v7.3–23), and 4) Gradient Boosting Trees (XGBoost) 
through xgboost (v1.7.10.1). Data preprocessing and 
model integration were conducted using caret (v7.0–1), 
with data manipulation performed via tidyverse (v2.0.0). 
Diagnostic efficacy was quantified through receiver oper-
ating characteristic (ROC) curve analysis using pROC 
(v1.18.4), with area under the curve (AUC) values calcu-
lated to evaluate predictive performance in pulmonary 
nodule classification.

Results
Metabolomics untargeted metabolic assays
Plasma samples were retrospectively collected from 
four cohorts: 35 lung cancer cases (including MIA and 
IAC), 22 benign pulmonary nodule patients, 24 precur-
sor glandular lesion cases (including AAH and AIS), 
and 21 healthy controls. Demographic characteristics 
are detailed in Table S1, with Fig. 1 presenting the study 
design schematic. While no significant intergroup dif-
ferences in gender distribution were observed (p > 0.05), 
statistically significant age disparities emerged between 
groups (p < 0.05).

Untargeted metabolomic profiling was performed on 
102 human specimens (including quality control repli-
cates) using a Q-Exactive high-resolution mass spectrom-
eter (Thermo Scientific) coupled with high-performance 
liquid chromatography (HPLC) in dual-polarity mode. 

Mass spectral data acquisition was integrated with bio-
informatic interrogation through compound discovery 
pipelines. Post-extraction metabolites were subjected 
to high-resolution tandem mass spectrometry (HRMS/
MS), yielding final ion statistics presented in Table 1. Ini-
tial detection identified 2,516 positive-mode and 6,632 
negative-mode metabolic features, with subsequent MS/
MS verification confirming 662 positively-charged and 87 
negatively-charged molecular species.

Intensity distribution visualizations (box plots and 
kernel density estimates) were generated to character-
ize median metabolite abundances and dynamic ranges 
across samples (Fig. S1). Principal component analysis 
(PCA), a multivariate dimensionality reduction tech-
nique, was applied to derive composite variables captur-
ing maximal metabolic variance. As depicted in Fig. S2, 
exceptional clustering of quality control samples demon-
strated analytical reproducibility, validating methodolog-
ical reliability.

HMDB (p) denotes the number of metabolite peaks 
that were matched to primary molecular weights 
using the HMDB database; KEGG (p) denotes the 
number of metabolite peaks that were matched to 

Fig. 1  Overview of the study design

Table 1  Extraction and identification of mass spectra peak in 
metabolomics

Mode All MS2 HMDB (p) KEGG (p) Annotated

negative 2516 662 1380 1454 1653

positive 6632 87 4206 4190 4834
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primary molecular weights using the KEGG database; 
All denotes the number of all metabolite peaks; MS2 
denotes the number of metabolite peaks with second-
ary mass spectrometry identifications; and Annotated 
denotes the number of peaks with identification infor-
mation (primary or secondary). metabolite peaks, and 
Annotated describes the number of peaks that have 
secondary or primary identifying information.

Metabolite identification
As depicted in Fig.  2A, a comprehensive classification 
of identified secondary metabolites was performed. 
Initial categorization organized molecular species 
into nine major classes: hydrocarbons, homogeneous 
non-metallic compounds, lignans/neolignans, alka-
loid derivatives, phenylcyclic compounds, mixed tran-
sition metal complexes, nucleoside analogs, organic 

Fig. 2  The quantitative analysis of secondary identification metabolites. A Macroscopic evaluation of secondary identification metabolites. B Peak 
number of metabolites participating in KEGG function item (level 2). C Participate in enrichment analysis of KEGG function items (the third layer.)
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1,3-dipolar compounds, and composite organic mol-
ecules (encompassing acid derivatives, nitrogenous/
oxygenated/halogenated organics, heterocycles, orga-
nometallics, structural compounds, phenylcarbonyl 
species, and uncharacterized entities). Quantitative 
analysis revealed organic acid derivatives as the pre-
dominant class, representing 514 distinct molecular 
species.

Metabolic pathway enrichment analysis (Fig.  2B-C) 
employed KEGG ontology to stratify metabolites into 
seven functional domains: pharmacological activity, 
cellular processes, genetic regulation, environmental 
adaptation, disease pathogenesis, microbial interac-
tions, and metabolic transformation. Systematic quan-
tification demonstrated metabolic processes as the 
most populous functional category, while disease-asso-
ciated metabolites – particularly those linked to onco-
genesis, cancer subtypes, and infectious pathologies 
– constituted a minor proportion. Statistical modeling 
of metabolic networks elucidated compound biosyn-
thetic relationships and their macro-level biological 
implications.

Statistical and cluster analysis of differential metabolites 
in multiple phenotype groups
Quantitative characterization of secondary metabolites 
revealed distinct distribution patterns among the three 
clinical cohorts (Fig. S3). Differential metabolite identi-
fication employed a dual statistical framework: univari-
ate analysis incorporating fold-change ratios and t-test 
derived p-values (< 0.05 threshold), combined with 
multivariate partial least squares discriminant analysis 
(PLS-DA Variable Importance in Projection [VIP] > 1) as 
illustrated in Fig. 3A. This integrated methodology iden-
tified 788 significantly altered metabolites, including 168 
secondary differential metabolites exhibiting differential 
expression across all three cohorts (Fig. 3B).

Cluster analysis implemented through Mfuzz classi-
fied stage-specific metabolites into six expression tra-
jectories (Fig.  3C). The partitioning algorithm divided 
the sample set (n = 102) into k mutually exclusive sub-
classes, where each specimen was assigned to the sub-
class with minimal Euclidean distance to its centroid. 
Cluster 1 (n = 41 metabolites) demonstrated progressive 
upregulation throughout airway disease progression, 
dominated by organic acid derivatives (8 species). Clus-
ter 5 (n = 22 metabolites) exhibited sustained down-
regulation, predominantly comprising heterocyclic 
compounds (5 species). PGL expression displayed peak 
levels in Clusters 4 and 6, while reaching nadir values in 
Clusters 2 and 3.

Analysis of differential metabolites in the two phenotype 
groups
Comparative analysis of secondary differential metabo-
lites between pairwise groups identified 59 discrimina-
tors between LC and PGL cohorts, 104 between LC and 
HC + BN cohorts, and 75 between PGL and HC + BN 
cohorts (Fig. 4A). A Venn diagram revealed four shared 
metabolites across all three groups (Fig. 4B), from which 
three unique biomarkers were ultimately retained after 
removing one redundant compound: Tetraethylene gly-
col, Met-Thr (Methionine-Threonine), and Hexaethylene 
glycol. As shown in Fig.  4C, distinct distribution pat-
terns emerged among cohorts. Tetraethylene glycol and 
Hexaethylene glycol concentrations exhibited marked 
depletion in the PGL group (fold change: -3.2 and -4.1 
respectively) compared to elevated levels in HC + BN 
controls. Conversely, Met-Thr demonstrated significant 
accumulation in the PGL cohort (fold change: + 2.8) rela-
tive to other groups.

Metabolite screening and modeling of secondary 
differences between LC and PGL groups
There are clear distinctions in the therapeutic manage-
ment of the PGL and LC groups, with the former need-
ing case-by-case monitoring and follow-up and the latter 
needing more extensive treatment. These discrepancies 
between the two groups raise further concerns. Because 
it can influence clinicians’ decisions, identifying the 
metabolic differentiators between the two groups is espe-
cially crucial. Thus, as illustrated in Fig. 5A and B, we cre-
ated volcano maps, thermograms, and metabolic route 
maps for each of the top ten differentials to investigate 
the distinct metabolite profiles and metabolic pathways 
between the two. Remarkably, we discovered that Met-
Thr was also ranked among them, indicating that it was 
expressed more highly in PGL than in LC and possibly 
serving as a protective metabolite. The malignancy of 
lung cancer was linked to the decline in its level. In addi-
tion, by conducting KEGG functional enrichment analy-
sis on the metabolic differentiators, as shown in Figs. S4 
and S5, we found that the they were mainly related to 
metabolism. Three metabolites have also been found to 
be associated with cancers.

Additionally, we generated AUC curves for 59 second-
ary difference metabolites in the LC and PGL groups to 
examine the diagnostic efficacy of various tumor mark-
ers in differentiating the two groups to explicitly separate 
them. We were unable to locate any compounds with 
an AUC of more than 0.8, and only 28 metabolites had 
a diagnostic efficacy greater than 0.7, indicating that a 
single metabolite was not very effective in differentiating 
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between the two groups. Because of this, we selected a set 
of compounds with the goal of establishing a model that 
would have high credibility and clinical application. The 
lasso method was employed to screen for differential sec-
ondary metabolites in Fig. 5C. A total of eight secondary 
differential metabolites were screened; the pertinent data 

is displayed in Table  2. The diagnostic model was then 
established and its ROC curve was plotted. The diagnos-
tic efficacy of the model was 0.933 (95% CI: 0.873–0.994)) 
and its internal efficacy was confirmed by resampling the 
data 1000 times using the bootstrap method. The mod-
el’s exceptional diagnostic efficacy was fully proved by 

Fig. 3  Statistical and cluster analysis of differential metabolites in multiple phenotype groups. A The method of screening differential 
metabolites(ANOVA p-value < 0.05 and PLSDA VIP > 1). B The result of screening differential metabolites. C Cluster analysis and display of three 
groups of secondary differential metabolites (K-means)
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Fig. 4  Analysis of differential metabolites in the two Phenotype groups. A Quantitative analysis of secondary differential metabolites in two groups. 
B Wayne diagram based on secondary differential metabolites in each group. C Box diagram of the distribution of three different metabolites 
between three groups

Fig. 5  Secondary differential metabolites in PGL and LC. A VolcanoPlot (top 10, log2 greater than 0 is high expression, and log2 less than 0 is low 
expression metabolite). B Heatmap (top 10, Each row is a metabolic peak, and each column is a sample. The color of the heat map is the relative 
content of each metabolite in each sample). C Internal cross-validation of model based on LASSO. D Area under the curve of model based 
on Bootstrap
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its average diagnostic efficacy of 0.934 (95% CI: 0.905–
0.966) in Fig. 5D, which can assist doctors in differentiat-
ing between glandular precursor lesions and lung cancer.

Distinct therapeutic management protocols between 
PGL and LC cohorts—requiring surveillance monitor-
ing for the former versus comprehensive intervention for 
the latter—underscore the critical importance of eluci-
dating metabolic disparities. As depicted in Fig. 5A and 
B, we generated volcano plots, heatmaps, and metabolic 
pathway maps for the top ten differential metabolites to 
systematically characterize their divergent metabolic pro-
files and pathway alterations. Notably, Met-Thr exhibited 
elevated expression in PGL compared to LC cohorts, sug-
gesting potential protective properties, while its deple-
tion correlated with malignant progression in pulmonary 
malignancies. KEGG functional enrichment analysis 
of differential metabolites (Figs. S4-S5) revealed pre-
dominant associations with metabolic processes, with 
three metabolites demonstrating oncological relevance. 
Subsequent evaluation of diagnostic efficacy through 
AUC analysis for 59 secondary differential metabolites 
identified 28 compounds with AUC > 0.7, though none 
exceeded 0.8, indicating limited discriminatory power of 
individual biomarkers.

To enhance diagnostic precision, we implemented 
LASSO regression to screen metabolites (Fig.  5C), ulti-
mately selecting eight biomarkers (Table  2) for model 
construction. The diagnostic model demonstrated 
robust performance with an AUC of 0.933 (95% CI: 
0.873–0.994), further validated through bootstrap resa-
mpling (1000 iterations) yielding a mean AUC of 0.934 
(95% CI: 0.905–0.966) (Fig.  5D), effectively differentiat-
ing PGL from LC. Comparative machine learning analy-
sis (RF, SVM, KNN, XGBoost) revealed method-specific 
strengths: KNN achieved optimal accuracy/F1-scores 
(0.89/0.91), while SVM exhibited near-perfect ROC-
AUC (0.98) (Fig. S6A-B). Notably, RF and XGBoost 
classifiers demonstrated perfect training AUC (1.0), 

suggesting potential overfitting requiring external vali-
dation. Surprisingly, Critical concordance emerged in 
feature selection: RF incorporated all eight LASSO-iden-
tified biomarkers, while XGBoost included seven (Fig. 
S6C-D). This convergence substantiates the reliability of 
our LASSO-derived biomarkers. Given overfitting con-
cerns with alternative methods, LASSO regression was 
retained as the optimal feature selection approach.

The term "ratio" denotes the average ratio between the 
LC and PGL groups, while "p.value" denotes the result of 
the t-test conducted to compare the two groups. Variable 
projection importance, or VIP for short, is a measure of 
how much each metabolite’s expression pattern influ-
ences and explains how each group of samples is catego-
rized to help with metabolic marker screening (VIP ≥ 1.0 
is typically taken as a screening condition). CV stands 
for coefficient of variation. The mass-to-charge ratio is 
denoted by MZ.

Discussion
Metabolomics investigates cellular metabolic intermedi-
ates and products, influenced by both endogenous and 
exogenous factors, that regulate physiological and path-
ological cellular processes. The metabolome provides a 
phenotypic assessment of systemic and cellular homeo-
stasis, offering translational potential for personalized 
medicine, pharmacological response evaluation, disease 
mechanism elucidation, and biomarker discovery [21]. 
Untargeted metabolomics revealed lung cancer-specific 
metabolic signatures through comparative plasma analy-
sis of four cohorts: lung adenocarcinoma patients, pre-
cursor lesion cases, healthy controls, and benign nodule 
subjects. Demographic parameters (age/sex) significantly 
correlated with lipid profiles, amino acid derivatives, 
and energy metabolism intermediates [22]. Age distri-
bution exhibited significant intergroup variation, poten-
tially reflecting the established oncogenic predisposition 
associated with advanced age. While this observation 

Table 2  Characteristic variables of the model

Metabolite ratio p.value VIP cv regulated MZ

2,5-Dihydro-2,4-dimethyl oxazole 2.15 0.01 2.94 0.07 up 100.08

Hypoxanthine 3.92  < 0.01 2.45 0.26 up 137.05

Acetyl-2,4-dimethyl oxazole 0.50 0.03 1.72 0.05 down 140.07

N-Acetylvaline 1.73  < 0.01 1.77 0.17 up 160.10

Questiomycin A 0.58  < 0.01 2.04 0.11 down 213.06

O2’-4a-cyclic-tetrahydrobiopterin 0.51  < 0.01 2.20 0.18 down 240.10

Prolyl-Gamma-glutamate 0.51  < 0.01 1.94 0.11 down 244.13

Met-Thr 0.39  < 0.01 3.18 0.00 down 251.11
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aligns with clinical epidemiology, it necessitates meth-
odological consideration of age-related confounding 
effects in metabolomic analyses. Our analytical frame-
work incorporated multivariate comparisons (pairwise 
and multi-group), hierarchical clustering, and LC–MS-
based quantitative metabolite profiling. Validation of sec-
ondary differential metabolites enabled KEGG pathway 
mapping to elucidate their functional roles in metabolic 
reprogramming.

Through multi-step bioinformatic filtering of inter-
group statistical variances and intersectional analysis, 
we identified three differentially abundant metabolites: 
hexaethylene glycol, tetraethylene glycol, and methio-
nine-threonine (Met-Thr). Met-Thr demonstrated more 
pronounced differentiation between precursor lesion 
(PGL) and lung cancer (LC) cohorts, exhibiting progres-
sive depletion correlating with advancing tumor malig-
nancy.As an essential proteinogenic amino acid requiring 
dietary intake due to endogenous synthesis incapacity, 
methionine undergoes cellular processing via the methio-
nine cycle. This pathway generates S-adenosylmethionine 
(SAM), the universal methyl donor that interconnects 
critical metabolic networks—including glutathione bio-
synthesis, nucleotide production, folate metabolism, 
polyamine synthesis, and transsulfuration pathways—
through its central role in epigenetic regulation [23]. 
Hoffman et  al.’s seminal 1976 investigation established 
tumor growth dependency on methionine through 
demonstrating tumor cell proliferation restriction upon 
methionine-to-homocysteine substitution in cell culture 
systems [24]. Emerging evidence demonstrates tumor 
cells’ metabolic dependence on methionine, termed the 
Hoffman effect. Recent studies reveal methionine’s novel 
role in autophagy inhibition within cancer stem cells, 
providing mechanistic insight into this phenomenon. 
Current models propose multiple hypotheses to elucidate 
tumor-specific methionine auxotrophy [25]. Threonine, 
an essential amino acid, demonstrates undercharacter-
ized oncological relevance despite its metabolic indispen-
sability. Emerging evidence indicates that hepatocellular 
carcinoma exhibits elevated serine/threonine-protein 
kinase 11 (STK11/LKB1) expression, clinically correlat-
ing with accelerated tumor progression and unfavorable 
prognosis [26]. Furthermore, complementary untargeted 
lipidomic profiling revealed four distinct lipid species 
demonstrating intergroup variation, though additional 
discriminators failed to reach statistical significance. This 
observation suggests either fundamental similarity in 
lipidomic landscapes between cohorts or reduced statis-
tical power attributable to the study’s modest sample size.
Using ANOVA (p < 0.05) and PLS-DA (VIP > 1) as selec-
tion criteria, we identified 788 distinct metabolites, with 

168 secondarily screened metabolites exhibiting inter-
group differential expression. Cluster analysis revealed 
six distinct metabolic profiles, where Cluster 1 metabo-
lites demonstrated malignancy-progressive expression 
patterns within the lung cancer cohort. Consistent with 
established literature [27], reduced clustering of specific 
secondarily differentiated metabolites in precancerous 
lesions (PGL) was observed, implying stage-specific met-
abolic vulnerabilities with potential translational value 
for early lesion surveillance.

Comparative metabolomic analysis between PGL and 
LC cohorts identified 59 statistically significant differen-
tial metabolites. Despite implementing ensemble multi-
metabolite prediction models aligned with established 
methodologies for diagnostic classifier development, 
individual biomarkers failed to demonstrate sufficient 
discriminatory power between the groups [28]. LASSO 
regression identified a diagnostic model incorporating 
eight differential metabolites (Table  2). Notably, hypox-
anthine levels in the LC cohort demonstrated significant 
elevation compared to the PGL group, corroborating 
prior targeted metabolomics findings regarding purine 
metabolism dysregulation in lung carcinogenesis [29]. 
EGFR mutations may drive oncogenesis in lung adeno-
carcinoma through upregulation of hypoxanthine phos-
phoribosyltransferase (HGPRT) in the purine salvage 
pathway, consequently enhancing purine metabolism 
[30]. Current literature lacks explicit evidence establish-
ing the association between 2,5-dihydro-2,4-dimethyl 
oxazole and pulmonary adenocarcinoma. Preclinical evi-
dence indicates that isoxazole-fused compounds dem-
onstrate potent EGFR-targeting activity, suggesting their 
pharmacological potential as antineoplastic agents in 
lung cancer therapeutics [31]. The 2,5-dihydro-2,4-dime-
thyl oxazole in this study was significantly elevated in the 
LC group, suggesting that it may play an anti-cancer role. 
Questiomycin A has cytotoxic effects on a variety of can-
cer cells [32–34]. Questiomycin A exhibited significant 
depletion in lung cancer cohorts, indicating potential 
pathogenic implications in disease progression.

While this metabolic model demonstrated robust 
predictive stability (AUC = 0.934) through 1000-resa-
mple validation with comparable diagnostic efficacy 
(AUC = 0.933), mechanistic relationships between other 
model components and adenocarcinoma pathogenesis 
lack definitive characterization, with confounding poten-
tial from environmental exposures or comorbidities. The 
model’s discriminative capacity provides clinical utility in 
stratifying nodules approaching microinvasive transition 
requiring surgical intervention. Study limitations include 
unresolved etiological contributions from environmen-
tal confounders and distinct microbiome-metabolome 
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profiles observed between smoking and non-smoking 
cohorts [22]. Notably, the non-smoking status of all 
healthy controls contrasted with smoking exposure in 
partial lung cancer cohorts, potentially introducing con-
founding effects despite unadjusted statistical analyses. 
Current clinical practice heavily utilizes established lung 
cancer biomarkers for medical decision-making. While 
biomarkers comparisons between our metabolic findings 
and conventional biomarkers would prove methodologi-
cally valuable, our prior big-data analyses revealed that 
these biomarkers predominantly manifest in advanced-
stage malignancies, showing negligible deviations in 
early-stage carcinomas and precancerous lesions [35]. 
This investigation specifically focuses on early-stage 
lung adenocarcinoma and its precursor states. Nota-
bly, both cohorts exhibited tumor marker levels within 
normal ranges, with significant inter-individual vari-
ability observed in the cancer group. Given their limited 
discriminative capacity in this clinical context, direct 
comparative analysis with existing biomarkers was inten-
tionally omitted. Methodological constraints included 
limited sample size and absence of targeted metabolomic 
validation, which may affect result generalizability. Fur-
thermore, mechanistic validation through in  vitro and 
in  vivo models remains absent for identified metabolite 
candidates. Our future investigations will focus on two 
critical directions: validating the robustness of our diag-
nostic model through multi-center validation cohorts, 
and implementing targeted metabolomic assays to 
facilitate clinical translation following rigorous clinical 
validation. This dual approach aims to develop reliable 
biomarkers that can ultimately inform clinical decision-
support systems. Concurrent mechanistic investigations 
into differential metabolite pathways and their functional 
characterization will be essential to elucidate their bio-
logical underpinnings in pulmonary carcinogenesis. Nev-
ertheless, our findings establish foundational evidence 
supporting metabolomic profiling’s clinical utility in early 
lung adenocarcinoma detection.

Conclusions
Our findings demonstrate distinct plasma metabolome 
alterations in lung cancer compared to healthy states, 
with specific metabolite concentrations correlating with 
disease progression. We identified three high-confidence 
discriminant metabolites showing significant expres-
sion gradients across lung adenocarcinoma, precursor 
lesions, and healthy/benign cohorts. Furthermore, an 
eight-metabolite panel revealed significant discrimina-
tory capacity between lung cancers and adenocarcinoma 
precursor lesions.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12885-​025-​14253-2.

Supplementary Material 1.

Acknowledgements
Peking University Shenzhen Hospital, for their assistance in providing platform 
and resources for research.

Authors’ contributions
ZJ: conceptualization, methodology, formal analysis, data curation, writ-
ing – original draft, visualisation. ZZ: conceptualization, methodology, data 
curation, software, writing – review & editing. LY: methodology, software. 
HY: conceptualization, methodology. PR: conceptualization, methodology, 
WY:writing – review & editing, supervision, funding acquisition, project 
administration. XP: writing – review & editing, supervision, funding acquisition, 
project administration.

Funding
The study was Supported by the Natural Science Foundation of Guangdong 
Province (2023A1515012460). Shenzhen Science and technology innovation 
Commission foundation (JCYJ20210324105411031); General Program for Clini-
cal Research at Peking University Shenzhen Hospital (No. LCYJ2021022).

Data availability
The datasets used and/or analysed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
The authors confirm that informed consent was obtained from all subjects 
in the study. All methods were conducted according to the principles of the 
Declaration of Helsinki and were approved by The Institutional Review Com-
mittee and the Medical Ethics Committee of the Peking University Shenzhen 
Hospital [2021] No. (413).

Consent for publication
Not applicable. Only aggregated data and/or results are shown in this 
manuscript.

Competing interests
The authors declare no competing interests.

Author details
1 Department of Pulmonary and Critical Care Medicine, Peking University 
Shenzhen Hospital, Shenzhen 518034, Guangdong Province, People’s Republic 
of China. 2 Peking University Health Science Center, Beijing, China. 3 Depart-
ment of Therapeutic Radiology, Yale University School of Medicine, New 
Haven, USA. 4 Department of Pulmonary and Critical Care Medicine, Huashan 
Hospital, Fudan University, Shanghai, China. 

Received: 21 November 2024   Accepted: 2 May 2025

References
	1.	 Leiter A, Veluswamy RR, Wisnivesky JP. The global burden of lung cancer: 

current status and future trends. Nat Rev Clin Oncol. 2023;20(9):624–39.
	2.	 Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray 

F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and 
mortality worldwide for 36 cancers in 185 countries. CA-Cancer J Clin. 
2021;71(3):209–49.

https://doi.org/10.1186/s12885-025-14253-2
https://doi.org/10.1186/s12885-025-14253-2


Page 12 of 12Zhang et al. BMC Cancer          (2025) 25:844 

	3.	 Cao W, Chen HD, Yu YW, Li N, Chen WQ. Changing profiles of cancer bur-
den worldwide and in China: a secondary analysis of the global cancer 
statistics 2020. Chinese Med J-Peking. 2021;134(7):783–91.

	4.	 Xia C, Dong X, Li H, Cao M, Sun D, He S, Yang F, Yan X, Zhang S, Li N, et al. 
Cancer statistics in China and United States, 2022: profiles, trends, and 
determinants. Chinese Med J-Peking. 2022;135(5):584–90.

	5.	 Miller KD, Nogueira L, Devasia T, Mariotto AB, Yabroff KR, Jemal A, Kramer 
J, Siegel RL. Cancer treatment and survivorship statistics, 2022. CA-Cancer 
J Clin. 2022;72(5):409–36.

	6.	 Brustugun OT, Gronberg BH, Fjellbirkeland L, Helbekkmo N, Aanerud M, 
Grimsrud TK, Helland A, Moller B, Nilssen Y, Strand TE, et al. Substantial 
nation-wide improvement in lung cancer relative survival in Norway from 
2000 to 2016. Lung Cancer. 2018;122:138–45.

	7.	 Goldstraw P, Chansky K, Crowley J, Rami-Porta R, Asamura H, Eberhardt 
WE, Nicholson AG, Groome P, Mitchell A, Bolejack V. The IASLC lung 
cancer staging project: proposals for revision of the TNM stage groupings 
in the forthcoming (eighth) edition of the TNM classification for lung 
cancer. J Thorac Oncol. 2016;11(1):39–51.

	8.	 Pavlova NN, Zhu J, Thompson CB. The hallmarks of cancer metabolism: 
Still emerging. Cell Metab. 2022;34(3):355–77.

	9.	 Lee HJ, Lee CH, Jeong YJ, Chung DH, Goo JM, Park CM, Austin JH. IASLC/
ATS/ERS international multidisciplinary classification of lung adeno-
carcinoma: novel concepts and radiologic implications. J Thorac Imag. 
2012;27(6):340–53.

	10.	 Minami Y. III. The notable topics of the 5th Edition of WHO Clas-
sification for the Thoracic Tumours (2021). Gan To Kagaku Ryoho. 
2022;49(8):847–52.

	11.	 Yeh YC, Nitadori J, Kadota K, Yoshizawa A, Rekhtman N, Moreira AL, Sima 
CS, Rusch VW, Adusumilli PS, Travis WD. Using frozen section to identify 
histological patterns in stage I lung adenocarcinoma of </= 3 cm: accu-
racy and interobserver agreement. Histopathology. 2015;66(7):922–38.

	12.	 Chen KN. Commentary: Pay attention to low-risk populations for 
lung cancer, but cautiously interpret ground-glass nodules screened 
by low-dose computed tomography scan. J Thorac Cardiov Sur. 
2020;160(3):833–4.

	13.	 Oudkerk M, Liu S, Heuvelmans MA, Walter JE, Field JK. Lung cancer LDCT 
screening and mortality reduction - evidence, pitfalls and future perspec-
tives. Nat Rev Clin Oncol. 2021;18(3):135–51.

	14.	 de Koning HJ, van der Aalst CM, de Jong PA, Scholten ET, Nackaerts K, 
Heuvelmans MA, Lammers JJ, Weenink C, Yousaf-Khan U, Horeweg N, 
et al. Reduced lung-cancer mortality with volume CT screening in a 
randomized trial. New Engl J Med. 2020;382(6):503–13.

	15.	 Adams SJ, Stone E, Baldwin DR, Vliegenthart R, Lee P, Fintelmann FJ. Lung 
cancer screening. Lancet. 2023;401(10374):390–408.

	16.	 Dresler CM, Evans WK. Breathing life into lung cancer screening trials. J 
Thorac Oncol. 2022;17(11):1244–6.

	17.	 He B, Huang Z, Huang C, Nice EC. Clinical applications of plasma prot-
eomics and peptidomics: Towards precision medicine. Proteom Clin Appl. 
2022;16(6):e2100097.

	18.	 Liu C, Xiang X, Han S, Lim HY, Li L, Zhang X, Ma Z, Yang L, Guo S, Soo R, 
et al. Blood-based liquid biopsy: Insights into early detection and clinical 
management of lung cancer. Cancer Lett. 2022;524:91–102.

	19.	 Telu KH, Yan X, Wallace WE, Stein SE, Simon-Manso Y. Analysis of human 
plasma metabolites across different liquid chromatography/mass 
spectrometry platforms: Cross-platform transferable chemical signatures. 
Rapid Commun Mass Sp. 2016;30(5):581–93.

	20.	 Heiles S. Advanced tandem mass spectrometry in metabolomics 
and lipidomics-methods and applications. Anal Bioanal Chem. 
2021;413(24):5927–48.

	21.	 Schmidt DR, Patel R, Kirsch DG, Lewis CA, Vander HM, Locasale JW. 
Metabolomics in cancer research and emerging applications in clinical 
oncology. CA-Cancer J Clin. 2021;71(4):333–58.

	22.	 Nightingale Health Biobank Collaborative Group. Metabolomic and 
genomic prediction of common diseases in 700,217 participants in three 
national biobanks. Nat Commun. 2024;15(1):10092.

	23.	 Martinez Y, Li X, Liu G, Bin P, Yan W, Mas D, Valdivie M, Hu CA, Ren W, Yin 
Y. The role of methionine on metabolism, oxidative stress, and diseases. 
Amino Acids. 2017;49(12):2091–8.

	24.	 Hoffman RM, Erbe RW. High in vivo rates of methionine biosynthesis in 
transformed human and malignant rat cells auxotrophic for methionine. 
P Natl Acad Sci USA. 1976;73(5):1523–7.

	25.	 Xin L, Li SH, Liu C, Zeng F, Cao JQ, Zhou LQ, Zhou Q, Yuan YW. Methio-
nine represses the autophagy of gastric cancer stem cells via pro-
moting the methylation and phosphorylation of RAB37. Cell Cycle. 
2020;19(20):2644–52.

	26.	 Wang Y, Du X, Wei J, Long L, Tan H, Guy C, Dhungana Y, Qian C, Neale G, 
Fu YX, et al. LKB1 orchestrates dendritic cell metabolic quiescence and 
anti-tumor immunity. Cell Res. 2019;29(5):391–405.

	27.	 Nie M, Yao K, Zhu X, Chen N, Xiao N, Wang Y, Peng B, Yao L, Li P, Zhang 
P, et al. Evolutionary metabolic landscape from preneoplasia to invasive 
lung adenocarcinoma. Nat Commun. 2021;12(1):6479.

	28.	 Li J, Liu K, Ji Z, Wang Y, Yin T, Long T, Shen Y, Cheng L. Serum untargeted 
metabolomics reveal metabolic alteration of non-small cell lung cancer 
and refine disease detection. Cancer Sci. 2023;114(2):680–9.

	29.	 Yao Y, Wang X, Guan J, Xie C, Zhang H, Yang J, Luo Y, Chen L, Zhao M, Huo 
B, et al. Metabolomic differentiation of benign vs malignant pulmonary 
nodules with high specificity via high-resolution mass spectrometry 
analysis of patient sera. Nat Commun. 2023;14(1):2339.

	30.	 Geng P, Ye F, Dou P, Hu C, He J, Zhao J, Li Q, Bao M, Li X, Liu X, et al. HIF-
1alpha-HPRT1 axis promotes tumorigenesis and gefitinib resistance by 
enhancing purine metabolism in EGFR-mutant lung adenocarcinoma. J 
Exp Clin Canc Res. 2024;43(1):269.

	31.	 Ardhapure SS, Sirsat SB. One-pot synthesis of fused isoxazolo[4′,5′:4,5]
thiopyrano[2,3-d]pyrimidines as potent EGFR targeting anti-lung cancer 
agents. Tetrahedron Lett. 2024;151:155325.

	32.	 Gallo A, Ghilardelli F, Atzori AS, Zara S, Novak B, Faas J, Fancello F. Co-
occurrence of regulated and emerging mycotoxins in corn silage: rela-
tionships with fermentation quality and bacterial communities. Toxins. 
2021;13(3):232.

	33.	 Janic Hajnal E, Kos J, Malachova A, Steiner D, Stranska M, Krska R, Sulyok 
M. Mycotoxins in maize harvested in Serbia in the period 2012–2015. Part 
2: Non-regulated mycotoxins and other fungal metabolites. Food Chem. 
2020;317:126409.

	34.	 Machihara K, Tanaka H, Hayashi Y, Murakami I, Namba T. Questiomycin 
A stimulates sorafenib-induced cell death via suppression of glucose-
regulated protein 78. Biochem Bioph Res Co. 2017;492(1):33–40.

	35.	 He J, Wang B, Tao J, Liu Q, Peng M, Xiong S, Li J, Cheng B, Li C, Jiang 
S, et al. Accurate classification of pulmonary nodules by a combined 
model of clinical, imaging, and cell-free DNA methylation biomarkers: a 
model development and external validation study. Lancet Digit Health. 
2023;5(10):e647–56.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Metabolic characteristics of benign and malignant pulmonary nodules and establishment of invasive lung adenocarcinoma model by high-resolution mass spectrometry
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Gathering of clinical samples
	Untargeted metabolomics investigations
	Data analysis for metabolomics
	Detection of metabolite
	Metabolites quantification
	Intergroup comparative analysis
	Multi-phenotype metabolic variation analysis
	Multi-comparison group integrative analysis
	Diagnostic modeling framework


	Results
	Metabolomics untargeted metabolic assays
	Metabolite identification
	Statistical and cluster analysis of differential metabolites in multiple phenotype groups
	Analysis of differential metabolites in the two phenotype groups
	Metabolite screening and modeling of secondary differences between LC and PGL groups

	Discussion
	Conclusions
	Acknowledgements
	References


