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Abstract
Objectives This study aims to develop and validate a novel radiomics model utilizing magnetic resonance imaging 
(MRI) to predict progression-free survival (PFS) in patients with unresectable hepatocellular carcinoma (uHCC) who are 
receiving a combination of immune checkpoint inhibitors (ICIs) and antiangiogenic agents. This is an area that has not 
been previously explored using MRI-based radiomics.

Methods 111 patients with uHCC were enrolled in this study. After performing univariate cox regression and the 
least absolute shrinkage and selection operator (LASSO) algorithms to extract radiological features, the Rad-score 
was calculated through a Cox proportional hazards regression model and a random survival forest (RSF) model. The 
optimal calculation method was selected by comparing the Harrell’s concordance index (C-index) values. The Rad-
score was then combined with independent clinical risk factors to create a nomogram. C-index, time-dependent 
receiver operating characteristics (ROC) curves, calibration curves, and decision curve analysis were employed to 
assess the forecast ability of the risk models.

Results The combined nomogram incorporated independent clinical factors and Rad-score calculated by RSF 
demonstrated better prognosis prediction for PFS, with C-index of 0.846, 0.845, separately in the training and the 
validation cohorts. This indicates that our model performs well and has the potential to enable more precise patient 
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Introduction
Hepatocellular carcinoma (HCC) was the sixth most 
commonly observed cancer and the third most com-
mon cause of cancer-related deaths worldwide in 2020 
[1]. Numerous patients suffer from late-stage disease as 
a result of delayed identification. The median overall sur-
vival is typically ranges from only 6 to 8 months [2].

Recently, systematic treatments for patients with 
advanced HCC include tyrosine kinase inhibitors (TKIs) 
and immune checkpoint inhibitors (ICIs). TKIs including 
sorafenib, regorafenib, lenvatinib, bosutinib, and ramuci-
rumab have been used as first-line and second-line treat-
ments for HCC patients [3–8]. Additionally, ICIs, which 
encompass the inhibitors of programmed death 1 (PD-1) 
and programmed death ligand 1 (PD-L1), have exhib-
ited remarkable therapeutic advantages for patients with 
advanced HCC [9]. PD-1 monoclonal antibodies, such 
as nivolumab, pembrolizumab, camrelizumab, and sin-
tilimab, have received approval for their use in advanced 
HCC following successful clinical trials [10–13]. Studies 
have demonstrated this combination therapy has a syn-
ergistic effect to improve overall survival (OS) and PFS 
[14–16]. However, some patients may not experience 
benefits from the combination of TKIs and ICI therapy, 
which is also associated with significant adverse events, 
including gastrointestinal hemorrhage, pneumonia, sep-
sis, and cardiac arrest. This highlights the urgent need for 
novel biomarkers to inform clinical decision-making [15, 
17].

Radiomics is an emerging field of image analysis that 
transforms images into quantifiable data, which can be 
analyzed to construct models that support decision-
making [18]. This approach can serve as a guideline for 
the diagnosis, staging, treatment planning, prediction of 
treatment response, and determination of patient prog-
nosis in HCC [19, 20]. Dong et al. conducted a study 
where they used a machine learning (ML) algorithm on 
noninvasive CT imaging to determine the effectiveness 
of TKI plus anti-PD-1 antibodies treatment in advanced 
HCC patients [21]. Using radiomics based on MRI is a 
valuable method for forecasting the reaction to transarte-
rial chemoembolization (TACE) in HCC [22, 23]. It has 
also been shown to be effective in assessing the effect of 

combined targeted therapy [24]. PFS has historically been 
the most commonly used surrogate endpoint in late-stage 
clinical trials, and early assessment of PFS is a robust 
surrogate endpoint for OS in immunotherapy trials for 
HCC [25, 26]. However, there is currently no published 
research focusing on the use of MRI-based radiomics to 
prognosticating progression-free survival (PFS) among 
patients diagnosed with uHCC.

As an emerging technology, artificial intelligence (AI) 
radiomics has profoundly changed the field of imaging 
analysis. It has important application in diagnosis, indi-
vidualized treatment and prognosis of HCC. ML is a clas-
sical technique of AI used to generate predictive models 
that are widely used in HCC research [27]. In this study, 
the objective is to develop an MRI-based radiomics 
model using machine learning ML. We also hypothesize 
that a comprehensive model, which combines radiomic 
features with clinical features, will enhance the accuracy 
of predicting PFS in patients with uHCC.

Methods and materials
Patient selection
From September 2019 to August 2022, 111 patients diag-
nosed with uHCC according to the national compre-
hensive cancer network guidelines [28] were enrolled 
in the study. These patients were treated with ICIs and 
anti-angiogenic agents at the First Affiliated Hospital of 
Wenzhou Medical University. The study was conducted 
in accordance with the Declaration of Helsinki and 
approved by the Ethics Committee of the First Affiliated 
Hospital of Wenzhou Medical University. Given that 
this investigation was retrospective, and involved regu-
lar examinations utilizing MRI and the analysis of clini-
cal data, obtaining individual informed consent was not 
considered mandatory. The eligibility criteria for inclu-
sion in this study were as follows: (1) individuals who 
had been diagnosed with HCC either clinically or patho-
logically; (2) patients who received complete treatment 
with PD-1 inhibitors such as toripalimab (Coherus Bio-
sciences, China), sintilimab (Innovent Biologics, China), 
or camrelizumab (Hengrui Medicine, China), along with 
anti-angiogenic agents therapy using sorafenib (Bayer 
Pharma AG, Germany), lenvatinib (Eisai Co., Ltd., 

stratification and personalized treatment strategies. Based on the risk level, the participants were classified into 
two distinct groups: the high-risk signature (HRS) group and the low-risk signature (LRS) group, with a significant 
difference between the groups (P < 0.01).

Conclusion The effective clinical-radiomics nomogram based on MRI imaging is a promising tool in predicting the 
prognosis in uHCC patients receiving ICIs combined with anti-angiogenic agents, potentially leading to more effective 
clinical outcomes.

Keywords Hepatocellular carcinoma, Radiomics, Progression-free survival, Immune checkpoint inhibitors, Anti-
angiogenic agents
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Japan), or regorafenib (Bayer Pharma AG, Germany); (3) 
patients who underwent enhanced MRI before starting 
the treatment to obtain imaging data; (4) patients who 
had comprehensive clinical and treatment information 
accessible. The exclusion criteria for this study are as fol-
lows: (1) patients who underwent alternative anticancer 
therapies, like interventional therapy, were not included; 
(2) patients diagnosed with other forms of cancer, like 
cholangiocarcinoma, were not included; (3) patients with 
liver function classified as Child-Pugh class C were also 
not included. (4) patients with MRI data of low quality 
that was challenging to visualize or quantify were not 
included. The patients were allocated randomly into two 
cohorts (at a ratio of 2:1): training cohort (n = 74) and 
validation cohort (n = 37). The flowchart of patient enroll-
ment was illustrated in Fig. 1.

Treatment
The treatment protocol was determined by an expe-
rienced multidisciplinary team. The therapeutic regi-
ments included the administration of ICIs and TKIs. 
Toripalimab, at a dose of 3  mg/kg body weight or a 
fixed amount of 240  mg, was intravenously given every 
two weeks. Camrelizumab and Sintilimab, at a fixed 
dose of 200  mg, were intravenously administered every 
three weeks. Sorafenib, given orally, was provided at a 
fixed dosage of 400–800  mg per day. For patients with 
a body weight less than 60  kg, Lenvatinib was orally 

administered at a fixed dose of 8  mg per day, while 
patients with a body weight of 60 kg or more received a 
dosage of 12  mg per day. Regorafenib, taken orally, was 
administered at a fixed dose of 160 mg per day, every 3 
weeks within a 4-week cycle.

Follow-up and clinical endpoint
The subjects underwent regular monthly follow-up 
appointments throughout the initial year via the outpa-
tient service. Subsequently, they were reassessed every 
3–6 months. The endpoint of the study was to determine 
the PFS of patients. PFS refers to the duration between 
the introduction of ICIs and TKIs and the occurrence 
of disease progression or death. Disease progression is 
determined by RECIST guideline (version 1.1) [29]. The 
deadline for observation was established until March 30, 
2023. The mean follow-up time for both the training and 
validation cohorts was 6 months.

MRI data acquisition
The images, compliant with DICOM standards, were 
obtained from the Picture Archiving and Communi-
cation System (PACS) records. Acquiring the images 
involved the utilization of an 8-channel phased-array 
body coil-equipped Siemens 3.0 T Prisma MR scanner 
from Siemens Medical Solutions in Erlangen, Germany. 
The imaging protocol included T1-weighted (T1w), 
T2-weighted (T2w), diffusion weighted imaging (DWI), 

Fig. 1 Flowchart of patient enrollment. HCC, hepatocellular carcinoma; PD-1 Programmed death 1. *For training and validation of the model, use about 
2/3 to 4/5 of the sample for training, and the rest for validation [49]. The 2:1 ratio is a commonly used approach in machine learning and radiomics studies 
to balance the need for a comprehensive training dataset with the requirement for a substantial validation dataset
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and multiphase dynamic contrast-enhanced (DCE) imag-
ing. For the enhanced sequences, the following param-
eters were used: repetition time (TR) = 2 or 3 ms, echo 
time (TE) = 1 ms, field of view (FOV) = 420 × 420  mm, 
matrix (Mat) = 320 × 208, flip angle (FA) = 11°, and slice 
thickness = 3.0  mm. The MRIs of all patients were con-
ducted using 3.0-T machines within a period of 3 weeks 
prior to treatment. For the purpose of this study, only the 
enhanced sequences from the baseline MRI data were 
selected. Gadodiamide Injection (Omniscan®,0.2 mL/kg 
body weight) was intravenously administered with a flow 
rate of 1 mL/s. MR scans were performed in the arterial 
phase, portal venous phase, and delayed phase at 20–30 s, 
60–70 s, and 180 s after injection, respectively.

Tumor segmentation
The feature data in this study were obtained from spe-
cific regions of interest (ROIs). Each patient underwent 
multiparameter MRIs using a 3.0-T MR scanner. The 
images were then imported into a 3D Slicer software 
(version 4.11; https://www.slicer.org/) for manual  s e g m e 
n t a t i o n . Tumor segmentation was conducted by a radio-
logic oncologist and a proficient radiologist (5 years of 
radiological experience) on each transverse slice of 3 
enhancement phases. The two reviewers were blinded to 
clinical data and then independently assessed the images. 
In cases where patients had multiple liver lesions, the 
largest lesion was assessed to extract radiomics features. 
Additionally, a senior radiologist (20 years of experience 
in abdominal tumor radiology) validated and evaluated 
each segmentation. Any discrepancies or issues that 
arose during the segmentation process were resolved by 
seeking the opinion of another senior radiologist.

Feature extraction
This study used the PyRadiomics platform (version 3.0.1,  
h t t p  s : /  / p y r  a d  i o m  i c s  . r e a  d t  h e d  o c s  . i o /  e n  / l a t e s t / i n d e x . h t 
m l) to employ various feature algorithms to quantify  i n 
f o r m a t i o n on first order features, shape-based features, 
texture features (Fig. 2). MR images were resampled into 
isotropic resolution of 2.0 × 2.0 × 2.0 mm3 to eliminate the 
inconsistency of spatial resolution. This study utilized 
this platform to extract 971 features from each phase 
of the medical images. To ensure consistency and com-
parability, all radiomics features were normalized using 
z-scores.

Development and validation of PFS-Predictive models
All radiomics features were analyzed using a univariable 
Cox proportional hazard regression approach. Further 
investigation only considered variables that demonstrated 
a significant level (P < 0.05) in the univariate analysis. The 
initial feature set consisted of 2736 features extracted 
from the MRI images. While this high-dimensional data 

provides a comprehensive representation of the imag-
ing information, it also increases the risk of overfitting. 
Therefore, the optimal radiomics features were selected 
using the LASSO algorithms. The Rad-score for three 
phase of enhanced MRI was calculated using a linear 
combination of selected features, which are weighted 
by their respective LASSO coefficients. Based on Cox 
regression, a prediction model including three phases of 
rad-score was established.

Random survival forest (RSF) is an ensemble tree 
method used to analyze right-censored data, which is a 
comprehensive method of random forest and survival 
analysis [30]. RSF can rank the importance of variables, 
and is known for its high predictive ability and interpret-
ability of the relationship between variables. The RSF 
method was also used to incorporate the selected fea-
tures to obtain the final Rad-score, and use Rad-score to 
build a prediction model.

Subsequently, the prediction ability of the two models 
was compared by C-index. The more predictive Rad-
score enters later studies. Using the Rad-score obtained 
through the computational model, the participants were 
categorized into two groups based on their risk level: 
high-risk signature (HRS) group and low-risk signa-
ture (LRS) group. The threshold for categorization was 
determined by taking the median value. To analyze the 
relationship between the Rad-score and PFS, Kaplan-
Meier survival analysis was conducted in both the train-
ing cohort and the validation cohort. In addition to the 
radiomics model, clinical characteristics were also con-
sidered in predicting PFS. Univariate and multivariate 
logistic regression analyses were conducted to select 
independent risk factors. Independent clinical factors 
were utilized to build a Clinical nomogram, while both 
the Rad-score and clinical risk factors were employed to 
create a Combined nomogram. These predictive models 
were then employed to forecast PFS in two cohorts.

Statistical analysis
This study utilized the t test or Mann‒Whitney U test for 
continuous data analysis for between-group compari-
sons. The chi-square test or Fisher exact test were used 
to analyze categorical data. The Kaplan–Meier method 
was employed for survival curve analysis, which was later 
compared using the Log rank test. Additionally, Harrell’s 
concordance index (C-index), time-dependent receiver 
operating characteristics (ROC) curves were employed to 
assess the forecast ability of the risk models. Moreover, 
calibration curves, decision curve analysis, subgroup 
analysis and N-fold cross-validation were used to mea-
sure the agreement between the predicted probabilities 
generated by our model and the actual observed out-
comes and to evaluate the net benefit of using our pre-
dictive model across a range of probability thresholds. 

https://www.slicer.org/
https://pyradiomics.readthedocs.io/en/latest/index.html
https://pyradiomics.readthedocs.io/en/latest/index.html
https://pyradiomics.readthedocs.io/en/latest/index.html
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Fig. 2 Radiomics workflow in this study. a Image segmentation was performed in arterial phase, portal venous phase, and delayed phase of Contrast-
enhanced MR images. b Features extracted from tumors were classified into shape, first-order statistics, texture, and the features were extracted by 
least absolute shrinkage and selection operator (LASSO) regression and random survival forest. c clinical nomogram and combined nomogram were 
established. d Two nomograms were compared by employing time-dependent receiver operating characteristics (ROC) curves, calibration curves, and 
decision curve analysis. Shape features capture the geometric properties of the tumor, which can be associated with tumor growth and invasiveness. 
First-order statistics describe basic image characteristics like mean intensity and variance. Texture features reflect the spatial distribution of pixel intensi-
ties, indicating tumor heterogeneity and complexity
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R software (version 4.0.3, http://www.rproject.org/) was 
utilized for conducting statistical analyses. The packages 
employed in the analyses include ‘survival’, ‘rms’, ‘ggplot2’, 
‘RMS’, ‘survminer’, ‘randomForestSRC’, ‘dplyr’, ‘timeROC’, 
and ‘interp’. The code for the modeling described in this 
paper is available on GitHub at  h t t p  s : /  / g i t  h u  b . c  o m /  N I - d  e 
s  i g n  5 6 /  e ff  e  c t  i v e - f u n i c u l a r.

Results
Baseline characteristics
In this study, 111 patients who were treated with ICIs and 
anti-angiogenic agents were included. The mean age was 
56.1 years, with 94.6% being male. Tumor size was sig-
nificant, with 66.7% having tumors larger than 5 cm, and 
49.5% having multiple tumors. Portal vein invasion was 
present in 47.7% of patients. The detailed flowchart of the 
study was shown in Fig. 1. Subsequently, 74 patients were 
designated for the training cohort, while 37 patients were 
allocated to the validation cohort. No significant varia-
tions in the baseline characteristics of the patients were 
observed between the two cohorts (Table 1).

Feature extraction
Each phase consisted of 912 features, with a total of 2736 
features initially selected. Subsequently, univariable Cox 
proportional hazard regression analysis and the LASSO 
algorithm were applied in each phase, resulting in the 
retention of 32 features (12, 10, and 10 in the arterial, 
portal venous, and delayed phase images).

Rad-score calculation
Rad-score calculated by lasso-cox regression
The computational formulae for determining the Rad-
score for each patient across the three distinct imaging 
phases is detailed in the supplementary materials pro-
vided with this study. The Rad-score of three phases was 
used to predict PFS by cox regression. The C-index of the 
training cohort was 0.760 (95% confidence interval (CI) 
0.723–0.789), and the C-index of the Validation cohort 
was 0.748 (95%CI 0.692–0.763).

Rad-score calculated by RSF
The Grid Search (GS) method was used to determine the 
combination of mtry and nodesize values when the out-
of-bag (OOB) error rate was lowest. As shown in Fig. 3a, 
under the parameter combination of mtry = 20 and node-
size = 9, the OOB error rate of the RSF model was the 
lowest (29.2%). Through parameter debugging, the error 
rate of the model tends to be stable when ntree was 1000 
(Fig.  3b). Using the parameters obtained by the above 
method, the RSF model was constructed, and the impor-
tance of the independent variables was ranked using the 
VIMP method, as shown in the Table  2. Ultimately, 32 
features were identified that were considered relatively 

valuable in all three phases. Considering the potential 
interrelationships of texture features, the established 
RSF model algorithm was used to predict PFS by calcu-
lating the Rad-score. The C-index of the training cohort 
was 0.837, and the C-index of the validation cohort was 
0.830. Since the C-index of the RSF model was slightly 
higher than that of the Lasso-Cox regression model, the 
RSF model was finally used in this study to calculate the 
Rad-score.

Prediction models Establishing
In the training cohort, a total of 11 clinical variables were 
found to be predictive by univariate analysis (Table  3). 
Among these variables, 5 clinical factors consisting of 
BMI, tumor size, ALB, AFP, and ascites were indepen-
dently selected as predictors for recurrence through the 
application of multivariate analysis. The clinical nomo-
gram was constructed using these variables in the train-
ing cohort through Cox regression (Fig.  4a). However, 
when the combined nomogram was established, it was 
observed that the value of ALB and AFP for predicting 
survival was relatively insignificant. Therefore, the com-
bined nomogram was modified to include BMI, tumor 
size, albumin, and Rad-score (Fig. 4b).

This study further assessed the predictive effective-
ness of the aforementioned two models by comparing 
the C-index value and ROC curve. Results indicated that 
the composite clinical-and-radiomics models, which 
combined Rad-score with clinical risk factors, exhibited 
superior ROC curves compared to models using only 
clinical variables (Fig.  5). In terms of the C-index, the 
combined nomogram (0.846, 95% CI 0.804–0.879) dem-
onstrated better prognosis prediction for PFS compared 
to the clinical nomogram (0.752, 95%CI 0.692–0.789). 
A parallel performance was observed in the validation 
cohort (C-index, 0.709, 95%CI 0.586–0.772 vs. 0.845, 
95%CI0.767-0.893) (Table 4).

Verification of the radiomics nomogram
This study plotted ROC curves for both the clinical 
nomograms and the combined nomogram separately in 
the two cohorts. ROC curves evaluate the model’s abil-
ity to distinguish patients with different outcomes. The 
higher the AUC, the stronger the discriminative power. 
In our study, the AUC of the combined model (0.966 for 
9-month PFS in the training cohort) was higher than that 
of the clinical nomogram (0.850), indicating better risk 
stratification. A higher AUC helps identify patients at 
high risk of disease progression, thereby enabling more 
targeted treatment plans. The calibration curves (Fig. 6) 
showed a strong agreement between the predicted and 
observed PFS in both cohorts. Moreover, Calibration 
curves assess the consistency between predicted and 
observed outcomes. Well-calibrated predictions ensure 

http://www.rproject.org/
https://github.com/NI-design56/effective-funicular
https://github.com/NI-design56/effective-funicular
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Characteristic Entire cohort Training cohort Validation cohort P-value*
(n = 111) (n = 74) (n = 37)

Age (years) 0.667
 Mean (SD) 56.1(12.7) 56.5(12.4) 55.4(13.4)
 Median [Min, Max] 56[28,84] 57[31,84] 55[28,84]
Gender 0.398
 Male 105(5.4%) 71(95.9%) 34(91.9%)
 Female 6(94.6%) 3(4.1%) 3(8.1%)
Smoking 0.783
 No 43(38.7%) 28(37.8%) 15(40.5%)
 Yes 68(61.3%) 46(62.2%) 22(59.5%)
Drinking 0.219
 No 45(40.5) 27(36.5) 18(48.6%)
 Yes 66(59.5) 47(63.5) 19(51.4%)
Ascites 0.13
 No 89(80.2) 56(75.7%) 33(89.2%)
 Yes 22(19.8%) 18(24.3%) 4(10.8%)
BMI(kg/m2) 0.785
 Mean (SD) 22.3(2.66) 22.3(2.66) 22.2(2.70)
 Median [Min, Max] 22.4[14.9,27.3] 22.4[14.9,26.9] 22.4[15.6,27.3]
Chronic hepatitis 0.684
 No 7(6.3) 4(5.4) 3(8.1)
 Yes 104(93.7) 70(94.6) 34(91.9)
Liver cirrhosis 0.174
 No 30(27) 17(23) 13(35.1)
 Yes 81(73) 57(77) 24(64.9)
AFP(ng/mL)a 0.425
 Mean (SD) 5.25(3.24) 5.42(3.34) 4.90(3.06)
 Median [Min, Max] 5.10[0.293,10.9] 5.40[0.507,10.9] 4.61[0.293,10.9]
ALT(U/L) 0.574
 Mean (SD) 49.2(54.8) 51.4(51.2) 44.8(62.1)
 Median [Min, Max] 33[10,383] 40[11,319] 29[10,383]
AST(U/L) 0.1
 Mean (SD) 66.9(60.1) 73.2(63.1) 54.4(52.3)
 Median [Min, Max] 49[18,406] 50[21,406] 40[18,327]
ALB(g/L) 0.077
 > 37.5 47(57.7) 27(36.5) 20(45.9)
 ≤ 37.5 64(42.3) 47(63.5) 17(54.1)
GGT(U/L) 0.121
 Mean (SD) 188(238) 213(270) 138(146)
 Median [Min, Max] 118[19,1881] 132[19,1881] 88[21,678]
TBIL(µmol/L) 0.841
 Mean (SD) 18.3(10.6) 18.7(11.7) 17.3(8.04)
 Median [Min, Max] 15[5,69] 16[5,69] 14[6,48]
DBIL(µmol/L) 0.142
 Mean (SD) 7.05(5.45) 7.59(6.09) 5.97(3.69)
 Median [Min, Max] 6[2,29] 6.50[2,29] 5[2,17]
PLT(×109/L) 0.652
 Mean (SD) 172(156) 158(82.7) 198(243)
 Median [Min, Max] 147[15,1577] 148[15,459] 136[68,1577]
LYM(×109/L) 0.691
 Mean (SD) 1.34(0.604) 1.31(0.556) 1.40(0.70)
 Median [Min, Max] 1.20[0.40,3.7] 1.20[0.4,3.1] 1.20[0.4,3.7]

Table 1 Patient baseline characteristics in training and validation cohort
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Characteristic Entire cohort Training cohort Validation cohort P-value*
(n = 111) (n = 74) (n = 37)

PT(seconds) 0.892
 Mean (SD) 14.3(1.87) 14.2(1.38) 14.3(2.6)
 Median [Min, Max] 14.1[11.6,28.4] 14.3[11.6,21.8] 13.9[12,28.4]
INR 0.452
 Mean (SD) 1.12(0.20) 1.12(0.14) 1.14(0.30)
 Median [Min, Max] 1.1[0.9,2.8] 1.1[0.9,1.9] 1.1[0.9,2.8]
Child-Pugh class 0.476
 A 92(82.9%) 60(81.1%) 32(86.5%)
 B 19(17.1%) 14(18.9%) 5(13.5%)
BCLC stage 0.37
 A 12(10.8%) 6(8.1%) 6(16.2%)
 B 26(23.4%) 19(25.7%) 7(18.9%)
 C 73(65.8%) 49(66.2%) 24(64.9%)
ALBI grade 0.071
 1 36(32.4%) 19(25.7%) 17(45.9%)
 2 73(65.8%) 53(71.6%) 20(54.1%)
 3 2(1.8%) 2(2.7%) 0
TNM Classification 0.115
 II 16(14.4%) 7(9.5%) 9(24.3%)
 III 19(17.1%) 14(18.9%) 5(13.5%)
 IV 76(68.5%) 53(71,6%) 23(62.2%)
Tumor size(cm) 0.117
 ≤ 5.0 37(33.3%) 21(28.4%) 16(43.2%)
 > 5.0 74(66.7%) 53(71.6%) 21(56.8%)
Tumor number 0.591
 Solitary 56(50.5%) 36(48.6%) 20(54.1%)
 Multiple 55(49.5%) 38(51.4%) 17(45.9%)
Portal vein invasion 0.282
 No 58(52.3%) 36(48.6%) 22(59.5%)
 Yes 53(47.7%) 38(51.4%) 15(40.5%)
Progressionfree survival (days) 0.789
 Mean (SD) 184(131) 187(133) 179(131)
 Median [Min, Max] 144[21,601] 147[21,601] 144[21,600]
Progress 0.21
 No 12(10.8%) 6(8.1%) 6(16.2%)
 Yes 99(89.2%) 68(91.9%) 31(83.8%)
Immune checkpoint inhibitors 0.598
 Sintilimab 50(45.1%) 31(41.9%) 19(51.4%)
 Camrelizumab 35(31.5%) 24(32.4%) 11(29.7%)
 Toripalimab 26(23.4%) 19(25.7%) 7(18.9%)
Anti-angiogenic agents 0.17
 Lenvatinib 57(51.4%) 37(50%) 20(54.1%)
 Sorafenib 26(23.4%) 21(28.4%) 5(13.5%)
 Regorafenib 28(25.2%) 16(21.6%) 12(32.4%)
a The value is the natural logarithm of clinical alpha-fetoprotein

Abbreviations: SD, standard deviation; BMI, Body Mass Index; AFP, alpha-fetoprotein; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALB, albumin; 
GGT, glutamyl transpeptidase; TBIL, total bilirubin; DBIL, Direct Bilirubin; PLT, platelet count; LYM, lymphocyte; PT, prothrombin time; INR, international normalized 
ratio; BCLC, Barcelona Clinic Liver Cancer; ALBI, albumin-bilirubin; TNM, Tumor Node Metastasis

P-value* < 0.05 indicates a significant difference between the training and validation cohorts

Table 1 (continued) 
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that the model’s outputs can be confidently used for 
treatment planning and resource allocation. Our com-
bined model showed good calibration in both cohorts 
(Fig. 7).

Furthermore, to validate the robustness of our model, 
we conducted subgroup analyses based on body mass 
index (BMI). Patients were categorized into high BMI 
(BMI ≥ 25  kg/m²) and low BMI (BMI < 25  kg/m²) sub-
groups. The combined nomogram maintained high 
predictive accuracy within both BMI subgroups, with 
C-index values of 0.809 (95% CI 0.756–0.848) in the high 
BMI subgroup and 0.874 (95% CI 0.804–0.931) in the low 
BMI subgroup, confirming the model’s generalizability 
across different BMI categories. This subgroup validation 
using BMI subgroups further reinforces the clinical util-
ity of our model in predicting PFS in patients with uHCC.

Additionally, we used cross-validation to verify the 
survival prediction model. The cross-validation results 
showed that the combined nomogram had a significantly 
lower prediction error compared to a reference model, 
with a prediction error of 0.071 for the combined nomo-
gram versus 0.129 for the reference model (Fig. 8). This 
indicates that the combined nomogram not only per-
forms well in terms of discrimination and calibration but 
also has a robust predictive performance, further validat-
ing its reliability and utility in clinical settings.

Prognostic validation of rad-score
The Rad-score has been validated as a standalone prog-
nostic determinant for individuals diagnosed with 
uHCC. The classification of Rad-score was determined 

by establishing a threshold using the median value. This 
approach effectively segregated patients into either HRS 
or LRS groups. Survival analysis was conducted in this 
study using the Kaplan-Meier method, with the main 
focus being on monitoring disease progression as the pri-
mary endpoint (Fig. 9).

Discussion
HCC is one of the most common malignant tumors 
worldwide, with a particularly poor prognosis for 
patients. The prognosis of HCC is characterized by sig-
nificant heterogeneity, and the disease is challenging to 
treat. Therefore, there is an urgent need to character-
ize the disease status of individual patients to enable 
patient stratification and personalized treatment, ulti-
mately maximizing prognosis. In this study, we employed 
machine learning-based radiomics to predict the progno-
sis of patients receiving immune checkpoint inhibitors in 
combination with anti-angiogenic drugs for uHCC. This 
approach could assist in identifying high-risk patients 
who would benefit from appropriate treatment.

At present, there are multiple treatment alternatives 
accessible for advanced and uHCC, involving local-
regional therapy, immunotherapy, and molecular targeted 
medications [31]. The emergence of ICIs has signifi-
cantly enhanced the prognosis of different solid tumors, 
including HCC. Moreover, it has displayed synergistic 
impacts when merged with anti-angiogenic agents [32]. 
A study was carried out by Shigeta et al. to examine the 
effects of a combination therapy consisting of anti-PD-1/
VEGFR-2 on survival rates in HCC using orthotopic 

Fig. 3 a Tuning parameter of the RSF model. The OOB error rate is a measure of model accuracy, with lower rates indicating better predictive perfor-
mance. The black sign in the figure is the parameter combination of mtry = 20 and nodesize = 9 and the corresponding OOB error rate is 29.2%. b Curve 
of the OOB error rate for RSF model
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transplantation or induced mouse models [33]. By con-
currently targeting VEGFR-2 and PD-1, this dual block-
ade can promote the normalization of blood vessels, 
alter the immune microenvironment, and augment the 
anti-tumor immune response in HCC. Since selecting 
the most suitable treatment approach for advanced HCC 
patients from the available options can be challenging, 
it is crucial to identify potential HCC patients who will 
respond positively to ICI and anti-angiogenic agents. 
Optimal treatment strategies and the attainment of ther-
apeutic success heavily rely on the accurate identification 
of respective conditions. Regrettably, there is a dearth of 
studies that have prioritized the implementation of ML 

radiomics techniques in prognosticating the respon-
siveness of HCC to combination therapy consisting of 
ICIs and anti-angiogenic agents. In this investigation, 
researchers adeptly devised radiomics model utilizing 
ML to forecast the reaction to ICIs in concurrence with 
anti-angiogenic agents.

Radiomics analysis involves the use of high-throughput 
feature extraction algorithms to quantitatively measure 
macroscopic disease features within and between tumors 
[18, 34], extending beyond the field of HCC to explore its 
clinical value in different types of tumors. ML is a well-
established AI technique employed to develop predic-
tive models, and it is extensively utilized in hepatology 

Table 2 Imaging features selected for the construction of combined model
Phase Features number Features selected Importance
Arterial phase 12 wavelet.LLH_glszm_LargeAreaLowGrayLevelEmphasis 0.027912

wavelet.HLL_glcm_Autocorrelation 0.016868
wavelet.LLL_glszm_GrayLevelNonUniformity 0.018511
wavelet.HHL_firstorder_Maximum 0.01982
wavelet.LLH_glcm_MaximumProbability 0.020024
wavelet.LHH_glcm_ClusterProminence 0.008468
wavelet.HLH_gldm_LargeDependenceHighGrayLevelEmphasis 0.011627
wavelet.LLL_glcm_Imc2 0.010737
wavelet.HHH_firstorder_Median 0.005421
wavelet.HLH_glszm_LargeAreaLowGrayLevelEmphasis 0.00187
wavelet.LLL_glrlm_GrayLevelNonUniformity 0.017364
wavelet.LHH_glcm_Imc2 0.002767

Portal venous phase 10 wavelet.LLL_glcm_Imc2 0.177879
wavelet.HHH_firstorder_Mean 0.007811
log.sigma.3.0.mm.3D_glcm_ClusterShade 0.013591
wavelet.HLH_glszm_LargeAreaLowGrayLevelEmphasis 0.002256
wavelet.LLH_firstorder_Kurtosis 0.006625
wavelet.LLL_glszm_LargeAreaHighGrayLevelEmphasis 0.000742
original_glszm_LargeAreaHighGrayLevelEmphasis 0.003997
log.sigma.5.0.mm.3D_glcm_Imc2 0.002265
wavelet.LLL_gldm_GrayLevelNonUniformity 0.003511
wavelet.LHH_glrlm_ShortRunEmphasis 0.003647

Delayed phase 10 wavelet.LLL_glcm_Imc2 0.030602
wavelet.LLH_firstorder_Kurtosis 0.006942
log.sigma.3.0.mm.3D_glcm_ClusterShade 0.014806
log.sigma.5.0.mm.3D_firstorder_90Percentile 0.00555
wavelet.HHH_glcm_Imc2 0.003582
wavelet.HLL_glcm_Correlation 0.010021
wavelet.HHH_glszm_LargeAreaLowGrayLevelEmphasis 0.006388
wavelet.LLL_gldm_LargeDependenceHighGrayLevelEmphasis 0.007395
log.sigma.3.0.mm.3D_gldm_SmallDependenceHighGrayLevelEmphasis 0.001644
wavelet.LLL_glszm_GrayLevelNonUniformity 0.01647

Wavelet Transform Features: These features are extracted using wavelet transform, a mathematical tool that allows for the analysis of data at different scales and 
orientations. “Wavelet. LLH_glszm_LargeAreaLowGrayLevelEmphasis” specifically measures the emphasis of large areas with low gray-level intensities within the 
tumor, which may indicate regions of necrosis or hypoxia and are associated with tumor aggressiveness and treatment resistance

GLSZM (Gray Level Size Zone Matrix) Features: Derived from the gray level size zone matrix, these features describe the distribution of pixel intensities within zones 
of uniform intensity. They provide information about the spatial arrangement of tissue characteristics within the tumor and can reflect tumor heterogeneity

GLCM (Gray Level Co-occurrence Matrix) Features: Calculated from the gray level co-occurrence matrix, these features quantify the spatial relationship between 
pixel intensities. Features such as “Wavelet. HLL_glcm_Autocorrelation” reflect the similarity of pixel values across the image, indicating the uniformity of the tumor 
texture



Page 11 of 18Xu et al. BMC Cancer          (2025) 25:888 

Variable Univariate cox regression Multivariate cox regression
P-value* Hazard ratio (95% confidence interval) P-value* Hazard ratio (95% confidence interval)

Age 0.633 0.99(0.98, 1.02)
Gender
 Male 0.637 0.75 (0.23, 2.43)
 Female
Smoking
 No
 Yes 0.775 0.93 (0.57,1.53)
Drinking
 No
 Yes 0.691 1.11(0.67, 1.83)
Ascites
 No
 Yes 0.0148 1.99(1.14, 3.46) 0.0446 1.86 (1.02, 3.41)
BMI 0.001 0.84 (0.76,0.93) 0.0173 0.87(0.77, 0.98)
Chronic hepatitis
 No
 Yes 0.144 0.46(0.16, 1.30)
Liver cirrhosis
 No
 Yes 0.89 1.04 (0.58, 1.87)
AFP a 0.0004 1.16 (1.07, 1.26) 0.021 1.10 (1.02, 1.20)
ALT 0.731 1.00 (0.99, 1.005)
AST 0.0428 1.00 (1, 1.007) 0.68 0.999(0.994, 1.00)
ALB
 ≤ 37.5 0.003 2.18 (1.30, 3.66) 0.0103 2.16 (1.20, 3.90)
 > 37.5
GGT 0.191 1.00 (0.99, 1.001)
TBIL 0.125 1.02(1.00, 1.04)
DBIL 0.025 1.05(1.01, 1.09) 0.52 1.02(0.96, 1.08)
PLT 0.112 1.00 (0.99, 1.01)
LYM 0.919 1.02 (0.66, 1.60)
PT 0.0793 1.17(0.98, 1.39)
INR 0.0263 6.01(1.24, 29.21) 0.061 6.11(0.92, 40.62)
Child-Pugh class
 A
 B 0.0002 3.65(1.85, 7.19) 0.46 0.66(0.21, 2.01)
BCLC stage
 A
 B 0.542 1.36(0.50, 3.69)
 C 0.334 1.58(0.62, 4.03)
ALBI grade
 1
 2 0.072 1.69(0.95, 2.98)
 3 0.094 3.59(0.80, 16.01)
TNM Classification
 II
 III 0.37 1.56(0.59, 4.14)
 IV 0.252 1.65(0.70, 3.89)
Tumor size
 ≤ 5.0 0.017 0.53 (0.30, 0.89) 0.004 0.40 (0.21, 0.74)
 >5
Tumor number

Table 3 The results of univariate and multivariate Cox proportional hazard analysis in this study
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research [35]. Previous studies have demonstrated that 
AI radiomics holds significant promise in forecasting the 
prognosis of patients with HCC. Akai et al. included 127 
hepatocellular carcinoma (HCC) patients who under-
went initial hepatectomy and developed a radiomic 
model utilizing the Random Survival Forest (RSF) algo-
rithm to effectively distinguish between high-risk and 
low-risk groups for survival risk, demonstrating high 
consistency [36]. Wang et al. included 201 HCC patients 
who underwent curative hepatectomy in a retrospective, 
multicenter study. The 30 radiomics features most associ-
ated with survival were selected from preoperative MRI, 
and combined with preoperative AFP and AST as inde-
pendent clinical risk factors, the model was constructed 
by RSF. The model demonstrated a good ability to predict 
5-year survival, with a mean AUC of 0.9804 and 0.7578 in 
the training and validation cohorts, respectively [37]. Bo 
Z et al. introduced a valuable machine learning radiomics 
model that showed excellent performance in predict-
ing the response to lenvatinib monotherapy in uHCC, 
achieving the highest AUC of 0.97 [38].

In the current investigation, researchers constructed a 
combined nomogram that integrates the Rad-score and 
three clinical characteristics (body mass index, tumor 
dimension, and albumin levels) to anticipate the efficacy 
of ICIs coupled with anti-angiogenic agents in manag-
ing uHCC. In this study, the combined model achieved 
a C-index of 0.846, which is significantly higher than 
predictive models that rely solely on clinical factors [39]. 
The models formulated in this study can provide valu-
able guidance in the judicious administration of ICIs and 
anti-angiogenic agents in real-world medical practice. 
The models formulated in this study can provide valu-
able guidance in the judicious administration of ICIs 
and anti-angiogenic agents in real-world medical prac-
tice. The combined nomogram can identify patients at 
higher risk of disease progression, allowing for the cus-
tomization of treatment strategies. For instance, a patient 
classified as high risk might be considered for more 
aggressive or alternative therapies, potentially leading to 
improved patient outcomes. Furthermore, the combined 

nomogram provides a quantitative risk assessment, 
which can be used to inform patients about their progno-
sis and potential treatment outcomes. This information 
is crucial for shared decision-making, allowing patients 
to understand their disease trajectory and participate in 
choosing the most suitable treatment path.

In some radiomics studies, a large number of radio-
logical features have been employed without appropri-
ate feature selection methods, leading to overfitting and 
consequently poor performance on new, unseen data 
[40]. This study adopted a rigorous feature selection 
process using univariate Cox regression and the LASSO 
algorithm. This approach helps to reduce overfitting by 
selecting only the most predictive features. Additionally, 
this study utilized RSF to construct our model, which 
is less prone to overfitting compared to other machine 
learning algorithms [41]. Moreover, some radiomics 
studies have focused solely on imaging features without 
integrating them with clinical data, which can limit the 
model’s predictive power as clinical factors often provide 
important additional information [42]. This study inte-
grates radiological features with clinical variables such 
as BMI, tumor size, and albumin levels. This integrated 
approach provides a more comprehensive view of the 
patient’s condition and enhances the model’s predictive 
capability.

The use of MRI in this study is a significant differentia-
tor from other imaging modalities such as CT. MRI pro-
vides superior soft tissue contrast compared to CT, which 
is crucial for imaging the liver and detecting small tumors 
or subtle changes in tumor morphology. This enhanced 
contrast allows for more accurate delineation of tumor 
boundaries and the identification of intra-tumoral 
heterogeneity, which is particularly important in the 
management of HCC. Furthermore, MRI offers multi-
parametric imaging capabilities, including T1-weighted, 
T2-weighted, diffusion-weighted imaging (DWI), and 
dynamic contrast-enhanced (DCE) sequences. Each 
sequence provides unique information about the tumor’s 
characteristics, such as cellularity, vascularity, and diffu-
sion properties. This multi-parametric approach provides 

Variable Univariate cox regression Multivariate cox regression
P-value* Hazard ratio (95% confidence interval) P-value* Hazard ratio (95% confidence interval)

 Solitary
 Multiple 0.015 1.863(1.13, 3.08) 0.081 1.614(0.94, 2.77)
Portal vein invasion
 No
 Yes 0.013 1.865(1.14, 3.06) 0.465 1.228(0.71, 2.13)
a The value is the natural logarithm of clinical alpha-fetoprotein

P-value* < 0.05 indicates a significant difference between the training and validation cohorts

Abbreviations: BMI, Body Mass Index; AFP, alpha-fetoprotein; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALB, albumin; GGT, glutamyl 
transpeptidase; TBIL, total bilirubin; DBIL, Direct Bilirubin; PLT, platelet count; LYM, lymphocyte; PT, prothrombin time; INR, international normalized ratio; BCLC, 
Barcelona Clinic Liver Cancer; ALBI, albumin-bilirubin; TNM, Tumor Node Metastasis

Table 3 (continued) 
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a more comprehensive view of the tumor’s biology and 
behavior, enhancing the predictive power of our model 
[43–45]. Variations in MRI imaging protocols and scan-
ner settings can significantly impact the reproducibility 
of radiomic features. To mitigate this issue, the study 
used a standardized imaging protocol across all patients 
in our study. This included the use of a consistent MRI 

scanner model and settings, ensuring that the images 
were acquired under the same conditions.

Nomograms are commonly used predictive models in 
evaluating tumor prognosis. Since a majority of hepato-
cellular carcinoma (HCC) instances are linked to chronic 
hepatitis and cirrhosis of the liver, the prognostic out-
come for liver cancer relies not solely on the tumor, but 
also on various factors encompassing the patient’s overall 

Fig. 4 Established clinical nomogram for combination regimen of unresectable hepatocellular carcinoma. (a) The Clinic nomogram for progression-free 
survival (PFS) including selected clinical risk factors of Table 3. For instance, consider a patient with a BMI of 27 (25 points), high albumin levels (23 points), 
large tumor size (25 points), presence of ascites (10 points), and an AFP score of 6 (6 points), totaling 89 points. Referring to the nomogram, this patient 
would fall into the high-risk stratum, with a 3-month PFS rate of approximately 0.5, indicating a moderate to high risk of disease progression. (b) The 
Combined nomogram for RFS including clinical risk factors and rad-score
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nutritional condition, the localized inflammatory micro-
environment, and the functioning of the liver reserve. 
This study found that BMI, tumor size, and albumin lev-
els are associated with the prognosis of uHCC patients 
receiving combination therapy. BMI serves as a straight-
forward and intuitive indicator to measure individual 
obesity levels. Previous research findings support the 
observation that patients with a higher BMI exhibit an 
extended period of PFS subsequent to treatment for HCC 
[46]. This could be attributed to the fact that advanced 

HCC is a highly consumptive disease, and patients with 
higher BMI may have better nutritional, physical, and 
mental statuses, along with greater energy reserves to 
combat tumor consumption. In addition, tumor size and 
albumin are important variables in predicting the prog-
nosis of HCC. Many staging systems use a tumor size 
of 5  cm as a cutoff point for treatment and prognosis 
of HCC [47, 48]. However, this study did not yield any 
statistically significant findings concerning ALBI grad-
ing. This outcome might be attributed to the inclusion 

Table 4 The performances of the models in the training and validation cohort
Cohort Rad-Score C-Index (95% CI) Clinical Nomogram C-Index 

(95% CI)
Combined Nomogram C-
Index (95% CI)

% Improvement 
Over Clinical 
Nomogram

Training cohort 0.837 (0.796, 0.878) 0.752 (0.692, 0.789) 0.846 (0.804, 0.879) 12.8%
Validation cohort 0.830 (0.744, 0.912) 0.709 (0.586, 0.772) 0.845 (0.767, 0.893) 19.1%

Fig. 5 a The time-dependent ROC curves of clinical nomogram in the training cohort. b The time-dependent ROC curves of clinical nomogram in valida-
tion cohort. c The time-dependent ROC curves of clinical and radiomics nomogram in the training cohort. d The time-dependent ROC curves of clinical 
and radiomics nomogram in the validation cohort. AUC Area under the curve
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Fig. 7 Decision curve analysis for clinical and clinicalandradiomics nomogram models in the training (a, b, c, d) and validation cohorts (e, f, g, h)

 

Fig. 6 Calibration curves of clinical nomogram and clinicalandradiomics nomogram in the training (a, c) and validation cohort (b, d)
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of patients with adequate liver function and the lack of 
substantial variations in bilirubin levels among them. 
Furthermore, AFP was omitted from the final integrated 
model, likely because the HCC patients encompassed in 
our study were predominantly in the intermediate and 
advanced stages, with the majority exhibiting high AFP 
values. When other clinical and radiological features 
were incorporated into the model, the hazard ratio (HR) 
of AFP failed to reach statistical significance, and its 
exclusion did not notably impact the overall performance 
of the nomogram.

This study has several limitations that warrant acknowl-
edgment. Firstly, the retrospective nature of the study 

design introduces potential selection biases in the collec-
tion and retrieval of MRI and clinical data. This inherent 
limitation highlights the necessity for additional prospec-
tive studies to validate the findings of this investigation. 
Secondly, there is variability in the use of ICIs and TKIs 
among patients. However, no studies have yet conducted 
comparative analyses to establish differences in effective-
ness between various PD-1 inhibitors. Thirdly, the short-
term follow-up, averaging six months, may restrict our 
ability to obtain long-term outcomes and fully assess the 
durability of PFS predictions. To address this limitation, 
we performed internal validation using N-fold cross-vali-
dation to evaluate the model’s performance on a subset of 

Fig. 9 Kaplan–Meier diagrams of HCC patients stratified according to rad-score a PFS survival curve of patients in the training cohort. b PFS survival curve 
of patients in the validation cohort

 

Fig. 8 Combined model validation: prediction error curves
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the data, thereby providing a more conservative estimate 
of its predictive power. Lastly, the study was conducted 
at a single institution, which may limit the generaliz-
ability of the findings to patients in different regions and 
institutions. In light of these limitations, we plan to con-
duct subgroup analyses by drug class in future studies to 
assess the impact of different ICIs and TKIs on treatment 
outcomes. We also intend to extend the follow-up period 
in our ongoing research to obtain long-term results, 
which will enable us to more accurately assess the dura-
bility of PFS predictions and validate the model’s perfor-
mance over a longer time horizon. Furthermore, we plan 
to explore the use of automatic segmentation techniques, 
such as deep learning-based methods, to improve the 
accuracy and repeatability of tumor segmentation. Given 
that the combination of TKIs and ICIs is a relatively new 
approach, large-scale, multicenter subgroup analysis 
studies should be prioritized for future research.

Conclusion
This study successfully developed an MRI-based 
radiomics model that accurately predicts progression-
free survival in patients with unresectable hepatocellular 
carcinoma. The combined nomogram, which integrates 
clinical factors and radiomic features, demonstrated 
superior predictive accuracy compared to clinical nomo-
gram alone. The model’s effectiveness across BMI sub-
groups highlights its broad applicability. Future research 
will focus on external validation and the potential inclu-
sion of additional biomarkers to further enhance model 
performance.
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