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Abstract
Objective Multiple myeloma (MM) exhibits significant heterogeneity, leading to variable treatment responses and 
poor clinical outcomes. Glutamine metabolism-related genes (GMRGs) represent critical regulators of tumor biology, 
yet their prognostic and therapeutic significance in MM remains unexplored. This study aims to identify GMRG-driven 
tumor signatures and establish their clinical utility as prognostic biomarkers, therapeutic targets and enhancers of 
drug sensitivity.

Methods Integrated transcriptomic and single-cell sequencing analyses of public multi-omics cohorts enabled 
systematic identification of GMRGs in MM through weighted co-expression network analysis coupled with univariate 
Cox proportional hazards modeling. Clinically prioritized GMRGs showing elevated expression in patient specimens 
were functionally validated through proliferation assays and pharmacological sensitivity profiling.

Results Integrated multi-omics analysis combining single-cell sequencing with bulk transcriptomic profiling and 
prognostic screening identified 51 prognostic GMRGs, with 10 core signature genes selected for model construction. 
The risk stratification system demonstrated robust prognostic capacity validated across multiple independent MM 
cohorts. Pathway enrichment revealed significant involvement in immune system, cell cycle and tumor signaling. MM 
patient validation identified DLD, SFT2D2, and UBA2 as significantly upregulated genes that promote tumor growth 
through enhancement of proliferation. Mechanistic investigations via shRNA-mediated knockdown established that 
DLD and UBA2 silencing significantly enhanced therapeutic efficacy of MM inhibitors.

Conclusion Multicohort-validated GMRGs (DLD/UBA2) drive MM progression and MM inhibitor responses. Clinical 
upregulation and functional silencing confirm dual therapeutic potential as prognostic biomarkers and drug-
sensitizing targets.
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Introduction
Multiple myeloma (MM) represents a heterogeneous 
plasma cell malignancy characterized by diverse cytoge-
netic abnormalities and molecular pathogenesis. Despite 
significant progress in molecularly targeted chemothera-
peutics, MM remains an incurable disease with variable 
clinical outcomes, posing substantial challenges in ther-
apeutic management [1, 2]. The median overall survival 
spans from weeks to over a decade, with five-year sur-
vival rates approaching 40% [3], underscoring the critical 
need for refined prognostic biomarkers to guide risk-
adapted therapeutic strategies. Such biomarkers could 
optimize treatment selection and enhance clinical out-
comes through personalized therapeutic paradigms [4].

Glutamine (Gln), a conditionally essential amino acid 
serving as a metabolic substrate for nucleotide synthesis, 
lipid biosynthesis, energy production via glutaminolysis, 
has emerged as a key metabolic vulnerability in cancer 
biology. Tumor cells frequently exhibit glutamine addic-
tion, characterized by oncogenic reliance on exogenous 
Gln to sustain proliferation and survival through gluta-
mate (Glu) conversion and oxidative phosphorylation [5, 
6]. This metabolic phenotype renders glutamine metab-
olism an attractive therapeutic target, with pharmaco-
logical inhibitors of glutamine transporters (e.g.,ASCT2/
SLC1A5) demonstrating preclinical efficacy in limiting 
tumor growth [7–9].

MM cells display distinct metabolic profiles compared 
to healthy counterparts, notably demonstrating reduced 
serum Gln levels [10]. Functional studies reveal that MM 
pathogenesis critically depends on glutamine homeosta-
sis, with enhanced expression of glutamine transporters 
facilitating oncogenic glutamine uptake [9]. This meta-
bolic adaptation drives MM cell proliferation through 
glutamine synthetase (GS)-mediated Gln biosynthesis 
from glutamate and ammonium [11, 12].These findings 
position glutamine metabolism as a potential therapeutic 
axis in MM.

The clinical relevance of glutamine metabolism-related 
genes (GMRGs) warrants systematic investigation as 
prognostic biomarkers and therapeutic targets. Notably, 
proteasome inhibitors (mainstays in MM therapy) induce 
metabolic stress that may synergize with glutamine-
targeted interventions to overcome chemoresistance. 
Elucidating the clinical significance of GMRGs could 
yield novel biomarkers for therapeutic stratification and 
inform combination strategies to enhance proteasome 
inhibitor efficacy in relapsed/refractory MM.

Single-cell RNA sequencing (scRNA-seq) has revolu-
tionized our ability to decipher cellular heterogeneity 
in hematologic malignancies, particularly by resolving 
transcriptional programs linked to therapeutic resistance 
and immune evasion [13, 14]. These subpopulations may 
serve as prospective treatment targets and be employed 

in the building of risk profiles. For instance, Zhao et al. 
identified a novel predictive biomarker for multiple 
myeloma using scRNA-Seq [15]. Building upon these 
findings, our study postulates that GMRGs critically 
influence MM prognosis. We aim to characterize key 
GMRGs associated with clinical outcomes and develop a 
robust prognostic model to enhance risk assessment and 
guide precision therapy.

In this investigative study, we acquired multi-omics 
data from the Gene Expression Omnibus (GEO) reposi-
tory, including single-cell transcriptomic profiles and 
bulk RNA-seq datasets from MM patients. Through com-
bined single-cell trajectory inference and weighted gene 
co-expression network analysis (WGCNA), we identified 
dysregulated GMRGs associated with MM pathogen-
esis. Machine learning-driven Least Absolute Shrinkage 
and Selection Operator (LASSO) regression (least abso-
lute shrinkage and selection operator) was subsequently 
applied to construct a GMRG-based risk signature. This 
integrative approach addresses a critical knowledge gap 
in MM biology by establishing the first glutamine metab-
olism-centric prognostic framework.

Materials and methods
Data preprocessing
Transcriptomic expression profiles and clinical data of 
MM were retrieved from the Gene Expression Omnibus 
(GEO) database. The single-cell RNA sequencing dataset 
GSE118900, comprising 597 CD138-positive plasma cells 
from 15 individuals, was analyzed to characterize cellu-
lar GMRGs. Raw data were normalized using log2 trans-
formation, and samples/genes with missing values were 
excluded to ensure analytical robustness. The GSE136337 
dataset served as the training cohort for prognostic 
model development, while GSE4581 was designated as 
the independent validation set.

Identification of glutamine metabolism-related genes
The single-cell dataset GSE118900 [16] was processed 
using the Seurat R package (v4.4.0). Quality control 
thresholds included retention of cells with < 20% mito-
chondrial gene content and > 200 detected genes. Fol-
lowing normalization via the “NormalizeData” function, 
the top 2,000 highly variable genes were identified using 
“FindVariableFeatures”. Cell type annotation using Sin-
gleR [17] confirmed all cells as B/plasma lineage. GMRGs 
were curated from the GeneCards database (correlation 
score cutoff: >15.0), yielding 226 candidate genes. Cel-
lular metabolic activity was quantified via the AUCell R 
package [18], with cells stratified into high/low glutamine 
metabolism (GM) groups based on median AUC val-
ues. Differentially expressed genes (scRNA-diff-Marker) 
between GM groups were identified using the “FindAll-
Markers” function.
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Weighted gene co-expression network analysis
Co-expression networks were constructed using 
WGCNA (v1.73) [19]. A soft threshold power (β = 10) 
was selected to achieve scale-free topology (R2 = 0.9). 
The dynamic tree cut algorithm identified gene modules, 
with a merging threshold of 0.25 to minimize module 
redundancy. Among nine identified modules, the green 
(positively correlated) and blue (negatively correlated) 
modules showing strongest associations with GM were 
retained. Intersection of module-derived genes with 
scRNA-diff-Marker defined the final GMRG set.

Prognostic model construction and validation
A 51-gene signature was derived from the intersection 
of single-cell sequencing and WGCNA module analyses. 
Prognostic relevance was determined through univari-
ate Cox regression. LASSO regression (glmnet R package 
v4.1-8) with L1-norm regularization was applied to tran-
scriptomic data to identify glutamine metabolism-related 
features. The optimal λ value (corresponding to 10 vari-
ables) was selected via 10-fold cross-validation using 
minimum mean squared error criteria.

Risk scores were calculated for each MM patient using 
modeling coefficients, with stratification into high/
low-risk groups by median cutoff. Survival analysis was 
performed using the survival R package across two inde-
pendent cohorts: GSE136337 (n = 426) and GSE4581 
(n = 414). Statistical significance was confirmed by log-
rank tests (both cohorts < 0.05). Time-dependent receiver 
operating characteristic (ROC) curves were generated 
with the survivalROC package to evaluate model perfor-
mance, quantified through area under the curve (AUC) 
values.

Functional enrichment profiling
Single-sample gene set enrichment analysis (ssGSEA) 
and Gene set variation analysis (GSVA) were respectively 
employed to calculate Enrichment scores and pathway 
scores. Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analyses were performed 
using clusterProfiler(v4.12.6) [20], with reference gene 
sets obtained from MsigDB ( h t t p  s : /  / w w w  . g  s e a  - m s  i g d b  . o  
r g / g s e a / i n d e x . j s p).

Immune microenvironment and drug sensitivity 
assessment
Immune cell infiltration levels were quantified via CIBER-
SORT [21] analysis of the GSE136324 cohort. Drug sen-
sitivity predictions were derived from the Genomics of 
Drug Sensitivity in Cancer (GDSC) using oncoPredict 
[22], with half-maximal inhibitory concentrations (IC50) 
estimated through ridge regression modeling of cancer 
cell line pharmacogenomic data.

qRT-PCR assessment of key gene expression in MM 
patients
This study received ethical approval from the Hospi-
tal Ethics Committee (No.2023 − 577). Bone marrow 
aspirates were collected from 11 newly diagnosed MM 
patients (age range: 18–65 years) and 9 age-matched 
healthy donors between January 20, 2024 and March 
20, 2024. Exclusion criteria included: (1) prior antican-
cer therapy; (2) concurrent malignancies; (3) severe 
comorbidities (e.g., cardiac/pulmonary insufficiency). All 
participants provided written informed consent in accor-
dance with Declaration of Helsinki guidelines. At each 
time point, 1–2 cm long bone marrow core samples were 
collected by experienced physicians following strict stan-
dard operating procedures to ensure sample quality.

CD138 + plasma cells were isolated from mononuclear 
cells using flow cytometry (FACSAria III, BD Biosci-
ences). Total RNA was extracted with TRIzol reagent 
(Thermo Fisher), reverse-transcribed using PrimeScript 
RT Master Mix (Takara Bio), and quantified via qRT-PCR 
on a QuantStudio 5 system (Applied Biosystems) with 
SYBR Premix Ex Taq (Takara Bio). The 2−∆∆CT method 
was employed for relative quantification using GAPDH 
as endogenous control. Primer sequences are detailed in 
Supplementary Table S3.

Cell proliferation assays
U266 myeloma cells (ATCC® TIB-196™) were transfected 
with siRNA targeting three model genes using Lipo-
fectamine 3000 (Thermo Fisher). For proliferation analy-
sis, 5 × 103 cells/well were seeded in 96-well plates. Cell 
viability was monitored daily for 5 days using CCK-8 
reagent (Beyotime Biotechnology, C0037), with absor-
bance measured at 450 nm after 2 h incubation at 37 °C 
(SpectraMax i3x, Molecular Devices).

Drug sensitivity testing was performed with three 
investigational compounds: AZD8186_1918, Doramapi-
mod_1042, and AZD6482_2169. Cells were exposed 
to serial drug dilutions (0–10 µM) for 2 h at 37  °C. The 
absorbance at 450  nm (OD450) was measured using a 
microplate reader. Dose-response curves were analyzed 
using mixed-effects models (lme4 package in R) with 
fixed factors (concentration, treatment) and random 
intercepts for experimental batches.

Statistical analysis
All anaiyses were conducted in R 4.2.2. Normality was 
assessed by Shapiro-Wilk test. Continuous variables 
were compared using Student’s t-test (parametric) or 
Wilcoxon rank-sum test (non-parametric). Two-tailed P 
value < 0.05 was considered statistically significant.

https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
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Results
Single-cell profiling reveals glutamine metabolic 
heterogeneity in MM
Quality-controlled single-cell RNA sequencing data 
(GSE118900, n = 15 MM patients) underwent normal-
ization and principal component analysis using Seurat. 
Following t-distributed stochastic neighbor embedding 
(t-SNE), cells segregated into six transcriptionally distinct 
clusters (Fig.  1A). Automated cell type annotation via 
SingleR confirmed all clusters as B-lineage cells (plasma 
cell/B cell identity; Fig. 1B). The AUCell algorithm quan-
tified GMRG activity scores across single cells (Fig. 1C). 
Median-based stratification separated cells into high and 
low glutamine metabolism subgroups (Fig.  1D). Differ-
ential expression analysis identified scRNA-diff-Marker 
genes distinguishing these subgroups.

Construction of a prognostic model related to glutamine 
metabolism
WGCNA was performed to identify glutamine metabo-
lism-related modules. A soft threshold power of 10 was 
selected to ensure a scale-free topology (Fig.  2A). Nine 
gene modules were generated by grouping related mod-
ules (Fig. 2B). Risk scores showed the strongest negative 
correlation with the green module (R = -0.46, p < 0.001) 
and the strongest positive correlation with the blue mod-
ule (R = 0.64, p < 0.001) (Fig. 2C). The intersection of dif-
ferential genes identified from these two modules with 
the high-low AUC group difference analysis was defined 
as GMRGs (Fig.  2D). Univariate Cox analysis was per-
formed to screen GMRGs for prognostic correlation with 
MM (Table S1). Subsequently, We performed LASSO 
regression analysis to model prognosis in the training 
cohort (Fig. 2E). The risk model incorporated 10 GMRGs 

Fig. 1 Single-cell characterization of glutamine metabolic heterogeneity in MM. (A) Heatmap of cluster-defining marker genes across six clusters tran-
scriptional subgroups. (B) t-SNE projection demonstrating B-cell/plasma cell identity via SingleR annotation. (C) GM-AUCell scoring distribution of gluta-
mine metabolic activity. (D) Bimodal stratification into high/low metabolic subgroups (median cutoff )
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(ANKRD28, DLD, FAM114A2, HSP90AA1, KIF13B, 
NFAT5, PGM3, SFT2D2, UBA2, UBA5), with detailed 
regression coefficients provided in Table S2.

Prognostic association of risk scores and clinical 
characteristics
Survival analysis validated the prognostic reliability of the 
glutamine metabolism-derived risk model. Both training 
and validation cohorts exhibited significantly reduced 
overall survival in high-risk MM patients (Fig.  3A-B). 
Univariate Cox regression identified age, albumin, B2M, 
LDH, ISS stage, R-ISS stage, and risk score as significant 
prognostic predictors (Fig.  3C). However, multifactorial 
Cox analysis demonstrated that only age, B2M, ISS stage 
and risk score could be independent prognostic factors 
(Fig.  3D). The risk score model achieved superior pre-
dictive performance for 1- to 3-year survival (AUC > 0.7; 

Fig. 3E), outperforming conventional indicators including 
age, B2M, ISS stage (Fig. 3F). These results suggest that 
risk scores are superior molecular indicators over tradi-
tional pathologic indicators.

Immune microenvironment and drug sensitivity profiling
Tumor microenvironment (TME) analysis revealed 
distinct immune infiltration patterns between risk 
groups. High-risk patients showed increased infiltra-
tion of CD4 + memory-activated T cells and mast cells, 
alongside decreased macrophage M2 polarization and 
dendritic cell activation (p < 0.05; Fig.  4A). Pathway 
enrichment analysis further indicated upregulation of 
antigen-presenting cell (APC) co-stimulation pathway 
and downregulation of HLA-mediated antigen presen-
tation, immune checkpoint signaling, and type I inter-
feron responses in the high-risk group (p < 0.05; Fig. 4B). 

Fig. 2 Construction of a prognostic model related to glutamine metabolism. (A) Scale-free topology model fit for WGCNA soft-threshold selection. (B) 
Gene dendrogram and module colors of WGCNA. (C) Module-trait relationships highlighting glutamine-associated green/blue modules. (D) Venn dia-
gram intersecting MEblue module with scRNA-diff-Marker. (E) LASSO coefficient trajectories were used to develop prognostic models
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Fig. 3 Prognostic performance of glutamine metabolism-derived risk scores. Kaplan-Meier survival curves comparing overall survival between high- and 
low-risk MM patients in (A) training (GSE136337) and (B) validation (GSE4581) cohorts. (C) Forest plot of univariate Cox regression for clinical variables 
and risk scores. (D) Multifactorial Cox regression identifying independent prognostic factor. (E) Time-dependent ROC curves evaluating 1-, 3-, and 5-year 
survival prediction. (F) Comparative AUC analysis between risk scores and conventional prognostic indicators
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Drug sensitivity prediction via oncoConnect identified 
three compounds with preferential efficacy in high-risk 
patients: AZD6482_2169, AZD8186_1918, and Dora-
mapimod_1042 (p < 0.05; Fig. 4C-E).

Pathway characterization of risk stratification groups
Comparative transcriptomic analysis between high- and 
low-risk groups identified 72 differentially expressed 
genes (DEGs). GO enrichment revealed significant asso-
ciations with mitotic processes, including chromosome 
segregation and microtubule binding, alongside protein 
kinase regulator activity (Fig. 5A). pathway analysis dem-
onstrated predominant enrichment in cell cycle regula-
tion, p53 signaling, and cellular senescence pathways 
(Fig. 5B). GSVA quantification of KEGG gene sets further 
confirmed enhanced activity in pyrimidine metabolism, 
cell cycle, DNA replication, and RNA polymerization 
within high-risk patients (Fig. 5C).

Clinical validation of prognostic signature genes
The expression levels of ANKRD28, DLD, FAM114A2, 
HSP90AA1, KIF13B, NFAT5, PGM3, SFT2D2, UBA2, 
and UBA5 were detected by qRT-PCR in 20 bone 

marrow samples, including 9 controls and 11 newly 
diagnosed MM patients. As shown in Fig.  6A, DLD, 
SFT2D2, and UBA2 were upregulated in MM, which 
may be closely associated with disease progression, 
while HSP90AA1 expression showed no intergroup dif-
ference. CCK-8 proliferation assays demonstrated that 
siRNA-mediated silencing of DLD, SFT2D2, or UBA2 
significantly attenuated tumor cell growth (Fig.  6B-D). 
We investigated the effects of gene knockdown (DLD, 
UBA2, and SFT2D2) on the sensitivity of tumor cells to 
three drugs: AZD8186_1918, Doramapimod_1042, and 
AZD6482_2169. The results showed that DLD and UBA2 
play critical roles in mediating the sensitivity of tumor 
cells to these drugs (Fig.  7A-B), whereas SFT2D2 has a 
relatively minor impact (Fig. 7C).

Discussion
The association between glutamine metabolism and 
MM pathogenesis has been extensively investigated, 
yet clinical translation remains limited. As the second 
most prevalent hematologic malignancy, MM poses sig-
nificant therapeutic challenges due to chemoresistance 
and relapse [23]. Glutamine, an essential amino acid 

Fig. 4 Immune microenvironment and drug sensitivity profiling. (A) Differences infiltration levels of immune cell subsets between risk groups. (B) Enrich-
ment scores of immune-related pathways across risk groups. (C-E) Predicted drug sensitivity profiles for (C) AZD6482_2169, (D) AZD8186_1918, and (E) 
Doramapimod_1042 in high versus low risk patients
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in cellular metabolism, is involved in various biologi-
cal processes, including energy production, nucleotide 
synthesis, and antioxidant responses [24]. MM cells are 
reported to be highly dependent on glutamine metabo-
lism [25, 26], with human myeloma cell lines (HMCLs) 
exhibiting pronounced sensitivity to glutamine depletion, 
indicating their addiction to this amino acid [9]. This 
dependence may stem from the significantly higher glu-
tamine demand of MM cells. By regulating the glutamine 
metabolic pathway, MM cells can obtain sufficient energy 
and metabolic intermediates necessary for proliferation.

Recent studies suggest that inhibiting the glutamine 
metabolic pathway could represent a novel therapeutic 
approach for treating multiple myeloma. Targeting gluta-
mine metabolism enhances the binding of BIM to BCL-
2, thereby triggering synthetic lethality in response to 
Vincristine [27]. Consequently, continued research into 
the molecular mechanisms and prognostic indicators of 

glutamine metabolism in MM may help identify distinct 
MM subgroups, ultimately improving prospects for pre-
cision medicine in this disease.

To our knowledge, this study is the first to establish a 
novel survival risk profile using genes associated with 
glutamine metabolism. This profile demonstrated robust 
performance in both training and external validation 
sets, with the area under the ROC curve for 1–3 years 
exceeding 0.7, indicating good accuracy and discrimina-
tive power. Prognostic outcomes significantly differed 
between high-risk and low-risk patients. Drug response 
analyses suggest that AZD6482_2169, AZD8186_1918, 
and Doramapimod_1042 may provide greater therapeu-
tic benefits for high-risk patients. Notably, AZD8186 is a 
potent and selective inhibitor of PI3Kβ/δ, and AZD6482 
selectively inhibits p110β and PI3Kβ. Inhibition of PI3Kβ 
activity effectively suppresses tumor cell prolifera-
tion, migration, and survival. Similarly, Doramapimod, 

Fig. 5 Pathway dysregulation associated with risk stratification. (A) GO as well as (B) KEGG enrichment analysis of differential genes in high- and low-risk 
patient groups. (C) Heatmap for GSVA enrichment analysis of KEGG gene set in high and low risk patient groups
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a p38 MAPK inhibitor, plays a critical role in cellular 
stress responses, immune responses, and tumorigen-
esis and metastasis. By inhibiting p38 MAPK, tumor cell 
resistance and metastasis can be reduced, potentially 
enhancing therapeutic efficacy by modulating the tumor 
microenvironment.

Functional investigations reveal that high-risk patients 
exhibit increased activity in cell cycle progression, the 
p53 signaling pathway, and oxidative phosphorylation. 
The p53 protein, known as the guardian of the genome 
[28], plays a vital role in maintaining genomic stability. In 
response to DNA damage, p53 coordinates multiple DNA 
damage response mechanisms to protect the genome 
[29]. p53 activates the expression of DNA repair proteins 
such as DDB2 and XPC [30], influencing cell fates such as 
apoptosis, senescence, or tumorigenesis [31]. By repress-
ing CDK and cyclin B, which are essential for mitotic 
entry, p53 is implicated in G2/M phase blocking, reduc-
ing the likelihood of gene mutations and preventing the 
activation of carcinogenic genes [32, 33].

In addition to its role in glucose metabolism, p53 reg-
ulates various other cellular processes, including glu-
tamine catabolism. GLS2 mediates the influence of p53 
on glutamine catabolism [34]. p53 boosts GLS2 expres-
sion, leading to increased synthesis of glutamate and 
α-ketoglutarate within the cell. This enhancement sup-
ports mitochondrial oxidative phosphorylation and ATP 
production. Concurrently, GLS2 elevates cellular levels 
of the antioxidant glutathione by increasing intracellular 

glutamate, a precursor for antioxidant glutathione, thus 
lowering cellular ROS levels. Therefore, p53 plays a piv-
otal role in regulating glutamine metabolism, which is 
critical for tumor cell survival and proliferation.

An important finding of our study is that in patients 
with MM, high glutamine metabolic activity is strongly 
associated with reduced expression of HLA, immune 
checkpoints, APC co-inhibition, and interferon type I sig-
naling. This aligns with the work of Puchades-Carrasco et 
al., which demonstrates that MM patients exhibit unique 
metabolic profiles compared to healthy controls. These 
associations may reflect how tumor cells evade immune 
system surveillance through metabolic reprogramming. 
Cancer cells exploit nutritional stress to generate an 
immunosuppressive microenvironment, subsequently 
affecting the function of tumor-infiltrating lymphocytes 
[35]. The heightened metabolic demands of tumor cells 
and activated T lymphocytes may instigate competition 
for glutamine within the TME [36, 37]. This competition 
can lead to tumor cells outcompeting T cells for local 
glutamine, thereby altering the properties of tumor-infil-
trating lymphocytes. In this context, glutamine depletion 
not only promotes tumor cell proliferation and survival 
but also limits T cell-mediated antitumor immunity [38]. 
Consequently, glutamine may influence tumor antigen 
presentation pathways and promote reduced expres-
sion of immune checkpoint genes, facilitating immune 
evasion.

Fig. 6 Experimental validation of model-centered genes in clinical samples. (A) qRT-PCR quantification of 10 prognostic genes (ANKRD28, DLD, FA-
M114A2, HSP90AA1, KIF13B, NFAT5, PGM3, SFT2D2, UBA2, and UBA5) in control (n = 9) versus MM (n = 11) samples. (B-D) Cell proliferation rates following 
siRNA-mediated knockdown of (B) DLD, (C) SFT2D2, and (D) UBA2 (***p < 0.01 vs. Scramble)
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Three limitations of this investigation must be acknowl-
edged. First, the prognostic signature was derived 
solely from retrospective analysis of public datasets 
(GSE136337 and GSE4581), which inherently introduces 
selection bias due to uncontrolled confounding variables 
(e.g., treatment heterogeneity, undefined comorbidi-
ties). Second, the integration of bulk RNA-seq data with 
single-cell profiles may amplify technical variability, as 
batch effects between platforms were not systematically 
corrected. Third, although we validated three candidate 
genes (DLD, SFT2D2, UBA2) in clinical samples, func-
tional validation of the entire GMRG network remains 
incomplete. These limitations restrict the generalizability 
of our findings and underscore the necessity for prospec-
tive multi-center studies with standardized sample col-
lection protocols.

In conclusion, through single-cell sequencing and gene 
expression profiling, we identified a robust gene signa-
ture associated with glutamine metabolism that can serve 
as an independent biomarker for predicting survival in 

MM patients. These findings enhance our understanding 
of glutamine metabolism in MM and support the devel-
opment of stratified treatment and prognostic strategies. 
Additionally, this research addresses a gap in identify-
ing therapeutic targets within the glutamine metabolism 
pathway in multiple myeloma.

Future research should prioritize three key areas: 
(1) Prospective validation of the GMRG signature in 
treatment-naïve cohorts using flow cytometry-based 
metabolic phenotyping; (2) Experimental validation 
of glutamine-mediated immune evasion mechanisms 
through CRISPR-mediated Glutaminase knockdown 
models; (3) Development of GMRG-targeted combina-
tion therapies in immunocompetent MM xenografts.
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