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Abstract
Background and Aims Breast cancer classify into four molecular subtypes: Luminal A, Luminal B, HER2-
overexpressing (HER2), and triple-negative (TNBC) based on immunohistochemical assessments. The multimodal 
ultrasound features correlate with biological biomarkers and molecular subtypes, facilitating personalized, precision-
guided treatment strategies for patients. In this study, we aimed to explore the differences of multimodal ultrasound 
features generated from conventional ultrasound (CUS), shear wave elastography (SWE) and contrast-enhanced 
ultrasound (CEUS) between molecular subtypes of breast cancer, investigate the value of prediction model of breast 
cancer molecular subtypes based on multimodal ultrasound and clinical features.

Methods Breast cancer patients who visited our hospital from January 2023 to June 2024 and underwent CUS, 
SWE and CEUS were selected, according to inclusion criteria. Based on the selected effective feature subset, binary 
prediction models of features of CUS, features of SWE, features of CEUS and full parameters were constructed 
separately for the four breast cancer subtypes Luminal A, Luminal B, HER2, and TNBC, respectively.

Results There were ten parameters that showed significant differences between molecular subtypes of breast 
cancer, including BI-RADS, palpable mass, aspect ratio, maximum diameter, calcification, heterogeneous echogenicity, 
irregular shape, standard deviation elastic modulus value of lesion, time of appearance, peak intensity. Full parameter 
models had highest area under the curve (AUC) values in every test set. In aggregate, judging from the values of 
accuracy, precision, recall, F1 score and AUC, models used features selected from full parameters showed better 
prediction results than those used features selected from CUS, SWE and CEUS alone (AUC: Luminal A, 0.81; Luminal B, 
0.74; HER2, 0.89; TNBC, 0.78).

Conclusions In conclusion, multimodal ultrasound features had differences between molecular subtypes of breast 
cancer and models based on multimodal ultrasound data facilitated the prediction of molecular subtypes.
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Introduction
Globally, second only to lung cancer in causing cancer-
related fatalities, breast cancer is the most prevalent 
malignant tumor diagnosed among women [1, 2]. Breast 
cancer is marked by profound heterogeneity, encompass-
ing diverse genetic signatures, phenotypic expressions, 
clinical presentations, and responses to therapeutic inter-
ventions, making it a complex disease [3, 4]. To address 
this heterogeneity, a classification system based on 
immunohistochemical assessments of estrogen recep-
tor (ER), progesterone receptor (PR), human epidermal 
growth factor receptor 2 (Her-2), and Ki-67 proliferation 
index, was introduced, segregating breast cancer into 
four molecular subtypes: Luminal A, Luminal B, HER2-
overexpressing (HER2), and triple-negative (TNBC) [5]. 
This stratification significantly impacts both treatment 
strategies and patient prognosis [6, 7]. Therefore, accu-
rate identification of these molecular subtypes is crucial 
for making individualized treatment plans and enhancing 
patient outcomes.

Ultrasound, renowned for its safety, non-invasiveness, 
and cost-effectiveness, is routinely employed for breast 
cancer screening and diagnosis [8]. In the realm of 
breast cancer diagnosis, conventional ultrasound (CUS) 
remains a cornerstone examination method [9, 10]. How-
ever, contrast-enhanced ultrasound (CEUS) surpasses 
CUS by concurrently depicting tumor morphology and 
dynamically elucidating the perfusion patterns within 
tumor microcirculation, thereby offering supplementary, 
invaluable insights. Research underscores a correlation 
between CEUS performance and breast cancer prognos-
tic factors, with the visualized microcirculatory architec-
ture serving as a predictive tool for molecular subtype 
classification [11, 12]. The shear wave elastography 
(SWE) image characteristics can visually depict the stiff-
ness distribution and stiffness differences of the lesion, 
which can then be utilized for the diagnosis of breast 
tumors. To refine diagnostic precision, multimodal data 
encompassing B-mode imaging, shear wave elastography 
assessing tissue stiffness [13], color doppler flow imaging 
(CDFI) detecting enhanced tumoral blood flow [14], are 
usually integrated. These multimodal ultrasound-derived 
features correlate with biological biomarkers and molec-
ular subtypes, facilitating personalized, precision-guided 
treatment strategies for patients [15, 16].

In this study, we aimed to explore the differences of 
multimodal ultrasound features generated from CUS, 
SWE and CEUS between molecular subtypes of breast 
cancer, investigate the value of prediction model of breast 
cancer molecular subtypes based on multimodal ultra-
sound and clinical features.

Methods
Patients
Breast cancer patients who visited our hospital from 
January 2023 to June 2024 were selected. The inclusion 
criteria were as follows: (1) Surgical resection of the tar-
get tumor; (2) Postoperative pathological confirmation 
of malignancy with complete clinical data; (3) Undergo-
ing CUS, SWE, and CEUS examinations within 2 weeks 
before surgery; (4) No neoadjuvant chemotherapy or 
other treatments received before ultrasonography; (5) No 
history of breast augmentation, pregnancy or lactation. 
In patients with multiple lesions, only the largest lesion 
was included and subjected to corresponding pathologi-
cal analysis. The exclusion criteria were: (1) Patients with 
surgical contraindications; (2) Any preoperative inter-
ventions and treatments, including radiotherapy, chemo-
therapy or radiofrequency ablation; (3) Patients who had 
undergone breast prosthesis implantation; (4) Non-stan-
dard image acquisition; (5) Contraindications to contrast 
agents.

Histopathology and immunohistochemistry
Regarding postoperative pathological findings as the gold 
standard, all surgical specimens underwent immuno-
histochemical examination with the diaminobenzidine 
staining method to obtain the molecular expression levels 
of ER, PR, Her-2, and Ki-67. The immunohistochemical 
results were judged by two pathologists separately, and 
the final decision was determined through joint discus-
sion. The criteria for ER and PR positivity were the pres-
ence of brown-yellow granules in the tumor cell nuclei, 
with the number of positively stained cells ≥ 1%. For Her-
2, positivity was defined as the presence of brown-yellow 
or yellow granules in the cell membrane and uniform 
cell membrane staining in > 10% of cancer cells. The cri-
terion for Ki-67 was that high expression was defined as 
the presence of brown-yellow granules in the tumor cell 
nuclei with ≥ 14% positively stained cells, and low expres-
sion as < 14%. According to the 2017 St. Gallen Breast 
Cancer Consensus [17], based on the differences in the 
expression levels of immunohistochemical markers ER, 
PR, Her-2, and Ki-67, the molecular subtypes were clas-
sified as follows: (1) Luminal A, ER (+) and/or PR (+), 
Her-2 (-), Ki-67 expression < 14%; (2) Luminal B, further 
divided into Her-2 (-) [ER (+) and/or PR (+), Her-2 (-), 
Ki-67 expression ≥ 14%] and Her-2 positive [ER (+) and/
or PR (+), Her-2 (+)]; (3) HER2, ER (-), PR (-), Her-2 (+); 
(4) TNBC, ER (-), PR (-) and Her-2 (-).

Conventional ultrasound
Using the Mindray Resona 8PRO color doppler ultra-
sound diagnostic instrument equipped with a superficial 
probe L14-5WU, patients were instructed to lie supine 
with their upper arms raised to fully expose both breasts. 
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After determining the location of the lesion, a physician 
with over 10 years of experience in breast ultrasound 
diagnosis performed multi-angle and multi-section scans 
and stored complete ultrasound image information. Con-
ventional ultrasound documentation included breast 
mass sonographic features such as lesion location, dis-
tance to nipple, size, margins, shape, echogenicity, pos-
terior acoustic features, ductal extension and presence 
of microcalcifications. The CDFI mode was activated 
to assess the blood flow characteristics of breast masses 
according to the Alder grading system: grade 0, no blood 
flow detected; grade 1, minimal blood flow with 1–2 
punctate or short rod-like vessels visible; grade 2, moder-
ate blood flow with 3–4 punctate vessels or one clearly 
defined vessel visible; grade 3, abundant blood flow with 
more than 4 punctate vessels or more than two clearly 
defined vessels visible [18]. Additionally, the masses were 
classified based on the Breast Imaging Reporting and 
Data System (BI-RADS) [19].

Shear wave elastography
Switched to the SWE mode with an elasticity measure-
ment range of 0–140 kPa. Placed the sampling box over 
the entire lesion and its surrounding normal tissue, froze 
the image once it stabilized, observe whether there is a 
hard edge sign around the lesion(i.e., the area surround-
ing the lesion was red or orange), and evaluated using 
the SWE 5-type classification: Type I, both the interior 
and periphery of the lesion appear uniformly dark blue; 
Type II, light blue or green appears within or around the 
lesion; Type III, local areas around the lesion appear red 
or orange, with a relatively uniform blue interior; Type 
IV, red or orange appears within the lesion, with uneven 
color distribution; Type V, a ring-shaped distribution of 
red or orange appears around the lesion, with a relatively 
uniform blue interior or color loss.

Upon initiation of the SWE mode, the largest portion 
of the lesion was placed at the center of the sampling box. 
In cases where the lesion is substantial, the cross-sec-
tion should be appropriately adjusted to ensure that the 
margin of the mass is at least 3  mm from the sampling 
frame. Instruct the patient to hold their breath and select 
the SWE quality-velocity dual-dynamic mode, applying 
appropriate pressure until the image within the sampling 
frame displays a uniform green background devoid of sig-
nificant purple artifacts, achieving a confidence index of 
95-100%, which indicates superior image quality. Then, 
switch to the grayscale SWE velocity dual mode, where 
red denotes hard tissue and blue signifies soft tissue. If a 
uniform green background cannot be achieved, the con-
fidence index will fall below 95%, and the measurement 
will be excluded from the study.

During SWE measurement, the sampling box is posi-
tioned over the entire lesion and the adjacent normal 

tissue, encompassing a minimum of 3 mm of the periph-
eral tissue. Due to the absence of a three-dimensional 
probe on the instrument, three-dimensional reconstruc-
tion of the tumor is not feasible; hence, the relatively 
accurate method of manual delineation is employed, with 
the maximum cross-sectional area of the tumor serving 
as the subject of study.

Manually outlined the tumor, and the system automati-
cally calculated various elastography parameters for the 
lesion, peripheral area and the area encompassing both 
the lesion and peripheral area, including the mean elas-
tic modulus (Emean), maximum elastic modulus (Emax), 
minimum elastic modulus (Emin), and elastic modulus 
standard deviation (Esd) of the lesion, the mean elastic 
modulus (Esmean), maximum elastic modulus (Esmax), 
minimum elastic modulus (Esmin), and elastic modu-
lus standard deviation (Essd) of peripheral area 2  mm 
around the lesion, the minimum elastic modulus (Els-
min), maximum elastic modulus (Elsmax), minimum 
elastic modulus (Elsmin), and the elastic modulus stan-
dard deviation (Elssd) of the area encompassing both the 
lesion and peripheral area.

Contrast-enhanced ultrasound
For the contrast-enhanced examination, the vascular 
probe L9-3U was utilized. The most irregular or hyper-
vascular section was selected, and the probe was fixed. 
The instrument was adjusted to the contrast mode. The 
contrast agent used was SonoVue (provided by Bracco 
Suisse SA)., a lyophilized powder of sulfur hexafluoride 
encapsulated in phospholipids, which was reconstituted 
with 5 mL of normal saline (0.9% NaCl) before use by 
shaking to form a suspension. A bolus injection of 4.8 
mL of the suspension was rapidly administered through 
the elbow vein, followed by a 5 mL saline flush. Patients 
were instructed to lie flat and maintain steady breathing. 
Depending on the number and location of the lesions, 
one or two injections were administered. Timing com-
menced at the moment of contrast agent injection, and 
real-time dynamic observation of contrast agent infu-
sion and washout in the lesions was performed. Continu-
ous observation lasted for 3 min, during which dynamic 
images were captured and stored. The images were 
reviewed, and a breast imaging physician with exten-
sive diagnostic experience was assigned to analyze the 
images, observing the enhancement intensity, enhance-
ment velocity, enhancement distribution, enhancement 
pattern, presence of perfusion defects, enhancement bor-
der, enhancement shape, presence of crab-claw-like pat-
tern, and any changes in enhancement area compared to 
the 2D image.

Quantitative contrast analysis software was used to 
generate a time-intensity curve, from which the following 
parameters were recorded: arrival time of the contrast 
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agent, time to peak (TTP), ascending slope (AS), peak 
intensity (PI), base intensity (BI), arrival time (AT), 1/2 
descending time (DT/2), descending slope (DS), area 
under the time-intensity curve (AUTIC), and mean tran-
sit time (MTT).

Statistical analysis
Quantitative data within characteristics of patients were 
described as the median and quartile. Categorical data 
were described as count and constituent ratio. Compari-
sons between groups of categorical variables were tested 
using the Fisher’s exact test or chi-square test. Differen-
tial analysis between groups of quantitative data were 
calculated using Wilcoxon rank-sum test. The receiver 
operating characteristic (ROC) curve was performed 
to calculate the area under the curve (AUC). For each 
model, the values of accuracy, precision, recall, F1 score, 
ROC curve and AUC value were conducted to evaluate 
the predictive ability of models. All statistical analysis 
were completed by R software (version 4.2.2,  h t t p s : / / c l o 
u d . r - p r o j e c t . o r g /     ) .  

Construction of prediction model.
Those indicators which were redundant or with null 

values more than 10% were removed for model construc-
tion. 80% of the original data was taken as a training set, 
and the remaining 20% was taken as a test set. A hierar-
chical partitioning method is adopted to make the pro-
portion of data of target subtypes (positive samples) and 
other subtypes (negative samples) in the training set and 
the test set consistent.

The training set and test set were both divided into 
four parts according to four molecular subtypes of breast 
cancer. Four prediction models were constructed based 
on each part of the training set and tested in each part 
of the test set. In addition, over the course of training on 
each molecular subtype, models used selected features of 
CUS, SWE, CEUS and full parameters were generated, 
respectively.

The predicting models in this study were constructed 
based on the combination of gradient boosting decision 
Tree frameworks and neural network frameworks on the 
model building and testing platform of AutoGluon ( h t t p s 
:   /  / a u t  o  . g l  u o  n  .  a i  / s  t a b  l e / i n  d e x . h t m l). To achieve great  p e r f 
o r m a n c e , AutoGluon is based on three main principles: 
(1) training a variety of different models, (2) using bag-
ging when training those models, and (3) stack-ensem-
bling those models to combine their predictive power 
into a “super” model. Bagging (Bootstrap Aggregation) 
is a technique used in machine learning to improve the 
stability and accuracy of algorithms. The key idea is that 
combining multiple models usually leads to better per-
formance than any single model because it reduces over-
fitting and adds robustness to the prediction. AutoGluon 
performs bagging in a different way by combining it with 

cross-validation. At prediction time, bagging takes all 
these individual models and averages their predictions 
to generate a final answer. Cross-validation allows us to 
train and validate multiple models using all the train-
ing data. The training data is partitioned into K folds or 
subsets of the dataset. Each model instance is evaluated 
against the hold-out fold that isn’t used during training. 
The predictions then are concatenated from the folds to 
create the out-of-fold predictions. The final model cross-
validation score was calculated by computing the evalu-
ation metric using the out-of-fold predictions and the 
target ground truth. Stacked ensembling is a multi-layer 
model. Each layer consists of several different bagged 
models that use the predictions from the previous layer 
as features in addition to the original features from the 
training data. The first layer uses only the original fea-
tures from the training data. The last layer consists of a 
single “super” model that combines the predictions from 
the second to last layer.

To make the new model have higher accuracy and bet-
ter ROC curve, the variables were selected by importance 
of variable. Computed via permutation-shuffling, feature 
importance scores quantify the drop in predictive perfor-
mance when one column’s values are randomly shuffled 
across rows. Features with non-positive importance score 
hardly contribute to the predictor’s accuracy, or may even 
be actively harmful to include in the data. These fea-
tures are removed from the data. Based on the selected 
effective feature subset, binary prediction models of fea-
tures of CUS, features of SWE, features of CEUS and 
full parameters were constructed separately for the four 
breast cancer subtypes Luminal A, Luminal B, HER2, and 
TNBC, respectively.

Results
Baseline characteristics
According to the inclusion and exclusion criteria, 157 
patients were included in this study. The patients’ clini-
cal characteristics are summarized in Table 1. Based on 
molecular detection results, 48 patients were Luminal A 
subtype, 64 patients were Luminal B subtype, 27 patients 
were HER2 subtype, 18 patients were TNBC subtype. 
The median age was 51 years of all patients, 49.5 of Lumi-
nal A, 50 of Luminal B, 55 of HER2, 52.5 of TNBC and 
there was no significant difference between molecular 
subtypes. Postmenopausal patients were 79 (50%), 21 
(44%), 30 (47%) and 18 (67%) in all patients, Luminal A, 
Luminal B, HER2 and TNBC, respectively. It was indi-
cated that HER2 and TNBC tend to occur in older meno-
pausal women.

Features of CUS, SWE and CEUS between molecular 
subtypes of breast cancer.

There were seven parameters which had significant dif-
ference between molecular subtypes in the examination 

https://cloud.r-project.org/
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result of CUS (Table  2). In BI-RADS, most patients in 
grade 4a were Luminal A (51.43%) and most patients of 
grade 4c and grade 5 were Luminal B (47.06%, 72.73%). 
Almost half of the patients who had palpable mass were 
Luminal B (44.12%). Patients with HER2 had lower 
aspect ratio (median: 0.6) and larger maximum diam-
eter (median: 25  mm) than others. HER2 patients had 
a higher ratio of calcification (89%) and heterogeneous 
echogenicity (96%). The proportion of TNBC patients 
was the least in patients with calcification (9.64%), irreg-
ular shape (10.60%) and heterogeneous echogenicity 
(11.02%). In the examination result of SWE, the Esd was 
13.27 of all patients, 14.65 of Luminal A, 12.10 of Lumi-
nal B, 16.10 of HER2, 10.97 of TNBC and different sig-
nificantly (Table  3). There were two parameters which 
had significant difference between molecular subtypes 
in the examination result of CEUS (Table 4). The time of 
appearance was 9 s of all patients, 9 s of Luminal A, 8 s of 
Luminal B, 9 s of HER2, 8.5 s of TNBC. The PI was 26.99 
db of all patients, 26.54 db of Luminal A, 25.75 db of 
Luminal B, 32.16 db of HER2, 29.25 db of TNBC. These 
differential features can enhance the classification ability 
of the model.

Results of prediction models
The performance of prediction models validating on 
test set was shown in Table  5, and the ROC curves 
were shown in Fig.  1. In the test set of Luminal A, full 

parameters model had highest model evaluation indica-
tors except precision (accuracy = 0.81, precision = 0.80, 
recall = 0.81, F1 = 0.80, AUC = 0.81). In the test set of 
Luminal B, the full parameter model had better perfor-
mance (accuracy = 0.74, precision = 0.74, recall = 0.73, 
F1 = 0.74, AUC = 0.74). The evaluation results of test set 
of TNBC were the same as results of Luminal B (accu-
racy = 0.87, precision = 0.80, recall = 0.87, F1 = 0.81, 
AUC = 0.78). On the HER2 test set, the SWE model had 
higher values of precision, recall and F1 score (accu-
racy = 0.78, precision = 0.77, recall = 0.79, F1 = 0.79, 
AUC = 0.84). However, full parameter models had the 
highest AUC values in every test set. In aggregate, judg-
ing from the values of accuracy, precision, recall, F1 score 
and AUC, models used features selected from full param-
eters showed better prediction results than those used 
features selected from CUS, SWE and CEUS alone.

Discussion
The determination of breast cancer molecular subtypes 
primarily relies on clinical methods such as biopsy or 
postoperative pathological immunohistochemical assays. 
This study examined the correlation between multi-
modal ultrasound features and breast cancer molecular 
subtypes using SWE and CEUS, based on conventional 
two-dimensional ultrasound and CDFI. Furthermore, 
structural data of CUS, SWE and CEUS were combined 
to construct multimodal ultrasound models to predict 

Table 1 Clinical characteristic of molecular subtype groups
Characteristic Overall (n = 157) Luminal A (n = 48) Luminal B (n = 64) HER2 (n = 27) TNBC (n = 18)
Age 51.00(45.00,58.00) 49.50(46.50,60.25) 50.00(43.00,59.00) 55.00(51.00,56.00) 52.50(45.75,57.50)
BMI 23.05(21.37,25.30) 23.10(21.42,26.39) 23.23(21.76,24.94) 22.19(20.11,24.56) 23.00(22.29,24.59)
Menopause 79 (50%) 21 (44%) 30 (47%) 18 (67%) 10 (56%)
Lymph node metastasis 45 (29%) 8 (17%) 22 (34%) 8 (30%) 7 (39%)
Her-2
 Negative 119 (76%) 48 (100%) 53 (83%) 0 (0%) 18 (100%)
 Positive 38 (24%) 0 (0%) 11 (17%) 27 (100%) 0 (0%)
Ki-67
 Negative 55 (35%) 48 (100%) 4 (6.3%) 1 (3.7%) 2 (11%)
 Positive 102 (65%) 0 (0%) 60 (94%) 26 (96%) 16 (89%)
ER
 Negative 45 (29%) 0 (0%) 0 (0%) 27 (100%) 18 (100%)
 Positive 112 (71%) 48 (100%) 64 (100%) 0 (0%) 0 (0%)
PR
 Negative 64 (41%) 4 (8.3%) 15 (23%) 27 (100%) 18 (100%)
 Positive 93 (59%) 44 (92%) 49 (77%) 0 (0%) 0 (0%)
Histologic grade
 I 17 (11%) 9 (19%) 8 (13%) 0 (0%) 0 (0%)
 II 87 (55%) 28 (58%) 41 (64%) 12 (44%) 6 (33%)
 III 28 (18%) 0 (0%) 12 (19%) 8 (30%) 8 (44%)
Differentiated degree
 Medium differentiated 87 (55%) 28 (58%) 41 (64%) 12 (44%) 6 (33%)
 Low differentiated 27 (17%) 0 (0%) 11 (17%) 8 (30%) 8 (44%)
 High differentiated 16 (10%) 9 (19%) 7 (11%) 0 (0%) 0 (0%)
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the molecular subtype of breast cancer. We found that 
the full parameter model achieved better results com-
pared to the others and revealed the feasibility of mul-
timodal ultrasound models in predicting molecular 
subtype of breast cancer, which have important guiding 
value for clinical diagnosis and treatment.

We observed significant differences in ten parameters 
across molecular subtypes of breast cancer, suggesting 
potential correlations with the phenotypic manifestations 
of these subtypes. Luminal A and Luminal B types of 
breast cancer usually have a lower degree of malignancy 
and primarily grow in an infiltrative manner. Therefore, 
when the lesions invade surrounding tissues such as 
lymphatic and blood vessels, spiculations, angular mar-
gins, or ill-defined edges may be displayed on ultrasound 
images. However, since the incidence rates of Luminal 
A and Luminal B types are relatively higher compared 
to the other two types, they account for a higher pro-
portion in each category of the BI-RADS classification. 

Patients with HER2 tumors tended to have a higher 
degree of malignancy and faster growth and exhibited 
lower aspect ratios, larger maximum diameters, higher 
calcification rates and greater echogenicity heterogene-
ity. Given the close relationship between the Her-2 gene 
and angiogenesis, as well as the expression of vascu-
lar endothelial growth factor (VEGF), which promotes 
endothelial cell proliferation, tumor growth, invasion and 
metastasis, necrosis is more likely to occur within these 
tumors [20]. They are more likely to experience local tis-
sue necrosis and subsequent calcification. These findings 
align with the research conducted by Magdale et al. [21], 
who further noted that posterior acoustic enhancement 
was more prevalent in aggressive cancers (Luminal B, 
HER2 and TNBC) and associated with a higher tumor 
cell count and a tendency towards high-grade tumors 
[22]. Conversely, TNBC patients demonstrated the low-
est proportions of calcification, irregular shape, and 
echogenicity heterogeneity, like those of benign masses. 

Table 2 Characteristic of CUS of molecular subtype groups
Characteristic Overall (n = 157) Luminal A (n = 48) Luminal B (n = 64) HER2 (n = 27) TNBC (n = 18)
BI-RADS
 3 2 (1.3%) 1 (2.1%) 1 (1.6%) 0 (0%) 0 (0%)
 4a 35 (22%) 18 (38%) 11 (17%) 2 (7.4%) 4 (22%)
 4b 75 (48%) 20 (42%) 28 (44%) 16 (59%) 11 (61%)
 4c 34 (22%) 9 (19%) 16 (25%) 7 (26%) 2 (11%)
 5 11 (7.0%) 0 (0%) 8 (13%) 2 (7.4%) 1 (5.6%)
Palpable mass 102 (65%) 25 (52%) 45 (70%) 22 (81%) 10 (56%)
Location
 Left 83 (53%) 29 (60%) 33 (52%) 15 (56%) 6 (33%)
 Right 74 (47%) 19 (40%) 31 (48%) 12 (44%) 12 (67%)
Distance to nipple
 < 20 mm 89 (57%) 29 (60%) 33 (52%) 17 (63%) 10 (56%)
 > 20 mm 68 (43%) 19 (40%) 31 (48%) 10 (37%) 8 (44%)
Maximum diameter 19.00(14.00,28.00) 17.00(11.75,24.25) 19.00(15.00,30.00) 25.00(18.50,35.00) 18.00(15.25,21.75)
Aspect ratio 0.73(0.58,0.86) 0.74(0.61,0.87) 0.75(0.64,0.87) 0.60(0.49,0.73) 0.70(0.61,0.86)
Blood flow signal
 0 15 (9.6%) 6 (13%) 6 (9.4%) 2 (7.4%) 1 (5.6%)
 1 54 (34%) 18 (38%) 21 (33%) 7 (26%) 8 (44%)
 2 58 (37%) 18 (38%) 25 (39%) 10 (37%) 5 (28%)
 3 30 (19%) 6 (13%) 12 (19%) 8 (30%) 4 (22%)
Resistance index 0.80(0.72,1.00) 0.77(0.67,1.00) 0.82(0.71,1.00) 0.81(0.75,1.00) 1.00(0.76,1.00)
Calcification 103 (66%) 28 (58%) 41 (64%) 24 (89%) 10 (56%)
Margin
 Clear 75 (48%) 23 (48%) 32 (50%) 11 (41%) 9 (50%)
 Unclear 82 (52%) 25 (52%) 32 (50%) 16 (59%) 9 (50%)
Shape
 Irregular 151 (96%) 46 (96%) 64 (100%) 25 (93%) 16 (89%)
 Regular 6 (3.8%) 2 (4.2%) 0 (0%) 2 (7.4%) 2 (11%)
Echogenicity
 Heterogeneous 127 (81%) 34 (71%) 53 (83%) 26 (96%) 14 (78%)
 Homogeneous 30 (19%) 14 (29%) 11 (17%) 1 (3.7%) 4 (22%)
Peripheral duct 60 (38%) 17 (35%) 24 (38%) 11 (41%) 8 (44%)
Posterior echo attenuation 21 (13%) 7 (15%) 7 (11%) 5 (19%) 2 (11%)
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Zhang et al. described this subtype using two distinct 
American image patterns: one characterized by irregu-
lar shape, lobular margins, lack of calcification and ves-
sels, and the other featuring oval shapes, lobular margins, 
and an absence of visible vessels [23]. TNBC typically 
exhibits high histological grades and Ki-67 levels, often 
presenting on ultrasound with micro-lobulated margins 
and minimal blood flow. Distinct from other subtypes, 
TNBC tends to follow a specific growth pattern of rapid 
proliferation, with tumor cells pushing against the mar-
gins and minimal connective tissue reaction, resulting 
in well-defined micro-lobulated edges [24]. Because the 
tumor grows rapidly, the central part is prone to necrosis, 
resulting in fewer overall blood flow signals.

In the results of SWE examinations, statistically sig-
nificant differences were observed in the Esd among the 
molecular subtypes. Specifically, the Luminal A sub-
type had the highest Esd, with a value of 14.65, while the 
TNBC subtype had the lowest, at 10.97. A high Ki-67 
proliferation index is commonly seen in Luminal B, HER2 
overexpression, and TNBC subtypes, while Luminal A 
subtype usually has a lower Ki-67 proliferation index. 
This may be related to the fact that a high Ki-67 prolif-
eration index indicates more active and rapidly growing 
tumor cells, which continuously adhere to and invade 
the extracellular matrix, causing the mass to adhere to 
the surrounding tissue and increase in hardness. These 
findings are consistent with the research conducted by 
Hyunjin Kim et al., who reported that the Ki-67 positive 

Esd was significantly higher than that of Ki-67 negative 
lesions. Additionally, they found that the Ki-67 positive 
Emax and Esd were higher than those of Ki-67 negative 
lesions, although these differences were not statistically 
significant [25].

CEUS is a pure blood pool imaging technique that can 
reflect the perfusion information of blood flow within 
lesions, enhancing the contrast between blood and sur-
rounding tissues, and thereby improving the signal-to-
noise ratio of CEUS images. In recent years, it has been 
widely used in the differential diagnosis of benign and 
malignant breast lesions and the evaluation of the effects 
of neoadjuvant chemotherapy for breast cancer [26]. In 
this study, there were statistically significant differences 
in the enhancement time and PI among the four types 
of breast cancer, which is related to the formation of 
arteriovenous fistulas and thrombosis in vessels within 
malignant lesions. Breast cancer is a vasculature-depen-
dent disease, and the differences in CEUS enhancement 
patterns between breast cancer lesions and surrounding 
normal breast tissues are closely related to their blood 
perfusion and pathological characteristics. Breast can-
cers with higher histological grades tend to have poorer 
differentiation, higher malignancy, and increased angio-
genesis. Positive expression of ER and/or PR indicates 
that cancer cell growth and proliferation are still regu-
lated by endocrine factors [27]. Higher levels of positive 
ER and/or PR expression suggest better tumor differ-
entiation, fewer pathological vascular formations, and 

Table 3 Characteristic of SWE of molecular subtype groups
Characteristic Overall

(n = 157)
Luminal A
(n = 48)

Luminal B
(n = 64)

HER2
(n = 27)

TNBC
(n = 18)

SWE grade
 I 3 (2%) 2 (4%) 0 (0%) 1 (4%) 0 (0%)
 II 26 (16%) 9 (19%) 12 (19%) 1 (4%) 4 (22%)
 III 85 (54%) 28 (58%) 36 (56%) 13 (48%) 7 (39%)
 IV 44 (28%) 9 (19%) 16 (25%) 12 (44%) 7 (39%)
Hard edge sign 127 (81%) 38 (79%) 51 (80%) 25 (93%) 13 (72%)
Emean 43.93 (35.27,50.99) 40.85 (34.31,49.77) 43.87 (34.83,50.11) 45.94 (40.19,54.47) 43.64 (35.54,46.22)
Emax 101.37 (78.37,138.37) 99.07 (80.46,129.73) 103.47 (77.85,144.62) 127.50 (91.51,151.02) 93.27 (73.88,110.74)
Emin 15.56 (10.31,22.51) 13.99 (8.78,19.76) 16.07 (10.69,22.24) 19.17 (10.34,23.83) 18.09 (12.51,24.77)
Esd 13.27 (9.84,18.38) 14.65 (11.57,19.08) 12.10 (9.18,15.50) 16.10 (13.54,19.35) 10.97 (8.57,14.20)
Esmean 49.48 (40.84,56.19) 47.58 (37.46,56.91) 49.93 (44.10,55.85) 49.85 (43.70,56.11) 45.40 (40.02,54.07)
Esmax 127.51 (101.46,164.74) 119.70 (94.73,154.39) 135.96 (103.69,165.44) 137.32 (121.80,165.19) 107.89 (96.91,136.48)
Esmin 13.44 (6.44,18.89) 12.52 (6.18,18.03) 15.46 (7.48,19.71) 12.24 (5.20,18.51) 15.71 (7.73,18.74)
Essd 18.94 (14.87,24.92) 19.17 (13.09,25.68) 18.81 (14.97,25.17) 21.31 (17.67,23.35) 16.33 (13.57,19.01)
Elsmean 46.54 (38.32,53.81) 45.42 (36.29,54.69) 46.71 (39.15,53.35) 47.18 (43.56,55.02) 44.39 (37.04,48.65)
Elsmax 133.63 (105.55,167.53) 119.70 (98.90,154.39) 138.39 (106.07,171.16) 147.30 (124.16,165.46) 111.46 (98.03,136.48)
Elsmin 12.24 (6.29,18.70) 11.08 (6.18,15.22) 12.99 (7.07,19.37) 11.34 (5.20,18.28) 13.46 (7.73,18.74)
Elssd 17.01 (13.10,21.43) 17.74 (12.82,23.05) 15.20 (13.06,21.28) 19.04 (16.24,22.52) 14.51 (12.71,18.27)
Abbreviation: Emean, Mean elastic modulus value of lesion; Emax, Maximum elastic modulus value of lesion; Emin, Minimum elastic modulus value of lesion; Esd, 
Standard deviation elastic modulus value of lesion; Esmean, Mean elastic modulus value of shell; Esmax, Maximum elastic modulus value of shell; Esmin, Minimum 
elastic modulus value of shell; Essd, Standard deviation elastic modulus value of shell; Elsmean, Mean elastic modulus value of both lesion and shell; Elsmax, 
Maximum elastic modulus value of both lesion and shell; Elsmin, Minimum elastic modulus value of both lesion and shell; Elssd, Standard deviation elastic modulus 
value of both lesion and shell
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Charac-
teristic

Overall (n = 157) Luminal A (n = 48) Luminal B (n = 64) HER2 (n = 27) TNBC (n = 18)

Time of 
appear-
ance

9.00(7.00,10.00) 9.00(8.00,11.00) 8.00(7.00,9.75) 9.00(7.50,10.50) 8.50(7.00,9.00)

Time of 
peak

15.00(13.00,18.00) 16.00(14.00,18.00) 15.00(13.00,17.00) 16.00(14.00,18.50) 15.00(13.25,16.75)

Time 
from 
appear-
ance to 
peak

7.00(6.00,8.00) 6.00(5.25,8.00) 7.00(6.00,8.00) 7.00(6.00,8.00) 7.00(6.00,8.75)

Time of 
fading

40.00(34.00,49.00) 37.00(31.25,47.75) 40.50(34.25,51.75) 40.00(37.50,47.50) 36.00(30.25,47.25)

En-
hance-
ment 
border
 Clear 64 (41%) 16 (33%) 28 (44%) 15 (56%) 5 (28%)
 Un-
clear

93 (59%) 32 (67%) 36 (56%) 12 (44%) 13 (72%)

En-
hance-
ment 
pattern
 Ir-
regular

133 (85%) 41 (85%) 55 (86%) 21 (78%) 16 (89%)

 Reg-
ular

24 (15%) 7 (15%) 9 (14%) 6 (22%) 2 (11%)

En-
hance-
ment 
distribu-
tion
 Het-
eroge-
neous

118 (75%) 32 (67%) 49 (77%) 22 (81%) 15 (83%)

 Ho-
moge-
neous

38 (24%) 16 (33%) 14 (22%) 5 (19%) 3 (17%)

En-
hance-
ment 
intensity
 High 138 (88%) 40 (83%) 56 (88%) 24 (89%) 18 (100%)
 Low 2 (1.3%) 1 (2.1%) 1 (1.6%) 0 (0%) 0 (0%)
 None 4 (2.5%) 2 (4.2%) 2 (3.1%) 0 (0%) 0 (0%)
 Nor-
mal

13 (8.3%) 5 (10%) 5 (7.8%) 3 (11%) 0 (0%)

En-
hance-
ment 
direction
 Cen-
trifugal

15 (9.6%) 6 (13%) 6 (9.4%) 2 (7.4%) 1 (5.6%)

 Cen-
tripetal

116 (74%) 35 (73%) 47 (73%) 19 (70%) 15 (83%)

 Dif-
fuse

22 (14%) 5 (10%) 9 (14%) 6 (22%) 2 (11%)

Table 4 Characteristic of CEUS of molecular subtype groups
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slower contrast agent inflow. Her-2 positive expression 
is associated with increased vascular formation within 
breast lesions, and Her-2 expression positively correlates 
with high expression of vascular endothelial growth fac-
tor (VEGF), which promotes tumor vascular formation, 
therefore, high Her-2 expression reflects a high prolifera-
tive state of tumor cells. TNBC, which lacks expression of 
ER, PR, and Her-2, has the worst prognosis and shortest 
disease-free survival. The CEUS enhancement pattern of 
this subtype often appears as a clearly defined boundary, 
similar to that of benign tumors, which could be easily 
overlooked [28].

Our study has several limitations. Firstly, when ana-
lyzing the CEUS enhancement patterns and perfusion 

parameters, we selected the most irregular or the most 
vascularized slice, which may not reflect the overall blood 
flow perfusion status of the tumor. Secondly, except for 
the quantitative analysis of CEUS, the remaining param-
eters were manually identified. Although all examina-
tions were conducted by experienced sonographers, the 
subjectivity could not be eliminated from influencing the 
results. Thirdly, the inclusion of a relatively small sample 
of HER2 and TNBC patients may impact on certain sta-
tistical outcomes. Fourthly, due to the small sample size 
of this study, some samples with a small amount of miss-
ing data were included, therefore, the important variables 
identified through research and comparison may not be 
comprehensive enough. And, we constructed separate 

Charac-
teristic

Overall (n = 157) Luminal A (n = 48) Luminal B (n = 64) HER2 (n = 27) TNBC (n = 18)

Perfu-
sion 
defects

77 (49%) 23 (48%) 33 (52%) 10 (37%) 11 (61%)

Crab-
claw-
like 
pattern

62 (39%) 18 (38%) 25 (39%) 12 (44%) 7 (39%)

En-
hance-
ment 
area
 Equal 34 (22%) 12 (25%) 14 (22%) 6 (22%) 2 (11%)
 Larger 123 (78%) 36 (75%) 50 (78%) 21 (78%) 16 (89%)
En-
hance-
ment 
time
 De-
layed

11 (7.0%) 4 (8.3%) 6 (9.4%) 0 (0%) 1 (5.6%)

 Early 88 (56%) 28 (58%) 33 (52%) 17 (63%) 10 (56%)
 Syn-
chro-
nous

58 (37%) 16 (33%) 25 (39%) 10 (37%) 7 (39%)

Rapid 
en-
hance-
ment

122 (78%) 40 (83%) 47 (73%) 21 (78%) 14 (78%)

Rapid 
fading

80 (51%) 29 (60%) 31 (48%) 14 (52%) 6 (33%)

BI 2.16(0.99,3.49) 2.01(0.95,3.57) 2.01(1.00,3.24) 2.64(1.00,5.58) 2.46(1.21,5.35)
AT 8.28(6.50,9.80) 8.33(7.29,10.26) 7.91(6.20,9.65) 8.50(7.68,9.87) 7.80(6.78,9.52)
TTP 16.50(13.51,20.01) 16.65(13.50,22.42) 16.50(13.62,19.75) 16.56(13.93,19.83) 14.93(12.80,17.78)
PI 26.99(21.83,32.76) 26.54(21.47,30.64) 25.75(19.94,30.53) 32.16(24.46,35.77) 29.25(25.04,33.13)
AS 0.65(0.52,0.84) 0.63(0.49,0.89) 0.66(0.53,0.83) 0.65(0.49,0.79) 0.71(0.58,0.83)
DT/2 91.91(75.60,115.03) 85.65(66.35,104.77) 93.60(78.80,118.00) 107.30(88.40,122.75) 80.36(75.62,105.23)
DS -0.13(-0.18,-0.10) -0.14(-0.20,-0.11) -0.13(-0.18,-0.10) -0.12(-0.17,-0.10) -0.15(-0.17,-0.11)
AUTIC 1,680.37(1,102.60,2,131.93) 1,535.61(1,063.06,1,956.72) 1,569.23(1,058.75,2,056.55) 1,912.24(1,548.84,2,268.58) 1,641.23(1,295.87,2,114.50)
MTT 85.80(67.78,105.34) 80.37(60.26,99.40) 86.10(69.30,106.12) 97.15(77.30,114.66) 70.84(68.45,98.35)
Abbreviation: BI, Basic intensity; AT, Arrive time; TTP, Time to peak; PI, Peak intensity; AS, Ascent slope; DT/2, Descending time 2; DS, Descending slope; AUTIC, Area 
under time intensity curve; MTT, Mean transit time

Table 4 (continued) 



Page 10 of 12Li et al. BMC Cancer          (2025) 25:886 

prediction models for each molecular subtype rather than 
a single model with molecular subtype as a combined 
outcome variable. While a unified model could provide 
an overview of predictor-subtype associations, we opted 
for subtype-specific models to better capture the unique 
biological and clinical characteristics of each subtype. 
This approach enhances interpretability and aligns with 
clinical decision-making, where subtype-specific insights 
are often required. However, we acknowledge that a 
combined model could offer additional perspectives and 
encourage future studies to explore this approach to fur-
ther refine predictive frameworks in this field.

We will try to conduct multicenter studies in the future, 
leveraging a larger sample size and radiomics based on 
American imaging standards, which aims to develop a 
more robust model to validate the findings of our cur-
rent study. Furthermore, we hope that the results can be 
applied to clinical practice, offering benefits to patients.

Conclusion
In conclusion, multimodal ultrasound features had differ-
ences between molecular subtypes of breast cancer and 
models based on multimodal ultrasound data facilitated 
the prediction of molecular subtypes.

Table 5 Results of models in predicting molecular subtype of BRCA
Models Accuracy Precision Recall F1 AUC
Luminal A
Full Parameter 0.81 0.80 0.81 0.80 0.81
CUS 0.74 0.81 0.74 0.66 0.74
SWE 0.74 0.73 0.74 0.73 0.79
CEUS 0.77 0.77 0.77 0.74 0.77
Luminal B
Full Parameter 0.74 0.74 0.73 0.74 0.74
CUS 0.71 0.72 0.71 0.72 0.72
SWE 0.68 0.67 0.68 0.67 0.73
CEUS 0.71 0.74 0.71 0.68 0.71
HER2
Full Parameter 0.81 0.77 0.79 0.78 0.89
CUS 0.75 0.74 0.76 0.75 0.87
SWE 0.78 0.77 0.79 0.79 0.84
CEUS 0.76 0.76 0.77 0.77 0.76
TNBC
Full Parameter 0.87 0.80 0.87 0.81 0.78
CUS 0.87 0.77 0.87 0.81 0.75
SWE 0.87 0.76 0.87 0.81 0.74
CEUS 0.81 0.75 0.81 0.78 0.70
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Abbreviations
AUC  area under the curve
CDFI  color doppler flow imaging
CEUS  contrast-enhanced ultrasound
CUS  conventional ultrasound
ER  estrogen receptor
Her-2  human epidermal growth factor receptor 2
HER2  HER2-overexpressing
PR  progesterone receptor
ROC  receiver operating characteristic
TNBC  triple-negative breast cancer
SWE  shear wave elastography
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