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Abstract 

Background  Lymphovascular space invasion (LVSI), a prognostic indicator closely associated with tumour invasive-
ness, lymph node metastasis risk, and recurrence rate, is crucial in endometrial cancer (EC) staging; however, LVSI 
is currently diagnosed via postoperative pathology, highlighting the need for non-invasive diagnostic methods. This 
study aimed to investigate the predictive value of intratumoural and peritumoral magnetic resonance imaging (MRI) 
multiparametric radiomics combined with clinical indicators of LVSI in EC.

Methods  This retrospective analysis included 310 patients with EC who underwent preoperative MRI examinations 
at the Affiliated Hospital of Shandong Second Medical University (Centre A) and the First Clinical Medical College 
of Shandong Second Medical University (Centre B). The patients were divided into training (Centre A) and valida-
tion (Centre B) sets. Clinically independent risk factors and intratumoural and peritumoural radiomic characteristics 
were screened. Five models were constructed: clinical, peritumoural radiomics, intratumoural radiomics, combined 
intratumoural and peritumoural radiomics, and combined clinical, intratumoural, and peritumoural radiomics. 
A nomogram was constructed based on the optimal model. The diagnostic efficacy of the five models was evaluated 
using area under the curve. The accuracy of the model was evaluated using calibration curves, and the clinical value 
of the model was analysed using decision curve analysis.

Results  Logistic regression analysis identified CA125 and tumour length as independent risk factors for LVSI in EC. 
Among the five models, the combined clinical + intratumoural + peritumoural radiomics model performed slightly 
better than the other four models, with area under the curve values of 0.870 (95% CI: 0.821–0.919) for the training set 
and 0.818 (95% CI: 0.731–0.905) for the validation set. The calibration curve showed good consistency, and decision 
curve analysis suggested that the model had good clinical benefits.
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Background
Endometrial cancer (EC) is one of the most common 
gynaecological cancers worldwide and the second most 
common gynaecological cancer in China, with both its 
incidence and mortality rates increasing annually [1–3]. 
The primary treatment for early stage EC involves the 
surgical removal of the uterus and its appendages, which 
has an overall survival rate of approximately 90% [4]. 
Therefore, early detection and timely treatment are cru-
cial for improving patient prognosis.

The presence of malignant tumours in the lymphatic or 
vascular areas of the myometrium is referred to as lym-
phovascular space invasion (LVSI) [5]. LVSI is a critical 
prognostic indicator closely associated with tumour inva-
siveness, lymph node metastasis risk, and recurrence 
rate, and has great significance in cancer staging, with 
the International Federation of Gynaecology and Obstet-
rics (FIGO) 2023 staging system using it as a key factor 
in classification [5, 6]. The presence of LVSI typically 
indicates a poor prognosis. Consequently, the accurate 
preoperative prediction of LVSI is essential for tailoring 
personalised surgical plans and adjusting treatment strat-
egies. However, LVSI can only be diagnosed via postop-
erative pathology, which poses significant challenges in 
clinical practice.

Magnetic resonance imaging (MRI) is a common pre-
operative examination modality for EC that accurately 
assesses the extent of local lesions and disseminated 
extrauterine malignancies [2, 7, 8]. However, the use of 
MRI to diagnose LVSI preoperatively remains challeng-
ing. Studies have reported that the prediction accuracy 
rate of MRI in the preoperative assessment of disease 
stage is only 47.2% [9], highlighting the urgent need for an 
effective tool to assess LVSI status preoperatively. In this 
regard, radiomics analysis can extract tumour features 
from high-throughput images that are difficult to observe 
with the naked eye, characterise tumour heterogeneity 
and microenvironment information, and thus, show great 
potential for tumour detection, diagnosis, and prognos-
tic evaluation [10–13]. Some studies have demonstrated 
that models established using MRI radiomics have good 
predictive performance for the assessment of LVSI and 
lymph node metastasis in EC [14–16]. However, these 
studies were limited to the intratumoural region and 
ignored the tumour microenvironment. Recent studies 

have suggested that the microenvironment surrounding 
tumours can help understand the clinical behaviour of 
tumour lesions [17–19].

Therefore, this study aimed to compare the clinical 
application value of clinical, intratumoural, and peritu-
moural MRI radiomics in predicting LVSI status using 
clinical indicators and imaging data from patients with 
EC, providing more effective guidance for clinical treat-
ment and improving patient prognosis.

Methods
Participants
The MRI images of 403 patients with EC who underwent 
surgical treatment at Shandong Second Medical Univer-
sity Affiliated Hospital (Centre A) and Shandong Second 
Medical University First Clinical Medical College (Cen-
tre B) between September 2021 and September 2024 
were collected. The inclusion criteria were as follows: 
(1) patients first diagnosed with EC via pathology who 
underwent radical hysterectomy; (2) routine pelvic MRI 
non-contrast examination performed within two weeks 
before surgery; and (3) clear MRI images and complete 
pathological information. The exclusion criteria were as 
follows: (1) incomplete clinical data; (2) other concurrent 
malignant diseases; (3) treatment before surgery; and (4) 
unclear MRI images. The pathological evaluation crite-
ria for LVSI status were as follows: infiltration of tumour 
cells in the lymphatic vessels or tumour cells invading the 
blood vessel wall, and formation of small cancer emboli 
within the blood vessel wall. The clinical data collected 
for each patient included age, tumour length, FIGO 
stage (obtained from the MRI diagnostic report), carbo-
hydrate antigen 125 (CA125) level, hypertension, dia-
betes, and body mass index (BMI). The framework and 
research pathways of this study are shown in Fig. 1 and 2, 
respectively.

This study adhered to the ethical guidelines of the Dec-
laration of Helsinki and was approved by the Medical 
Ethics Committee of Shandong Second Medical Univer-
sity (IRB number: SDSMU2025YX003).

Instruments and methods
A Philips 1.5 T (A centre)/3.0 T (B centre) MRI system 
and an abdominal 8-channel phased array coil were used 
for imaging. Prior to examination, the patients were 

Conclusion  The combined clinical + intratumoural + peritumoural radiomics model based on clinical indicators 
and intratumoural and peritumoural multi-parametric MRI radiomics features demonstrated good diagnostic efficacy. 
This model provides a theoretical basis for preoperative evaluation of LVSI in EC.
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instructed to empty their bladders. During the examina-
tion, patients were placed in the supine position, and the 
abdomen and pelvis were fixed with an abdominal band 
to reduce motion artefacts and calm breathing. The MRI 
sequences included pelvic axial T1-weighted imaging 
(T1 WI), axial T2-weighted imaging (T2 WI), axial fat-
suppressed T2-weighted imaging (FS-T2 WI), axial diffu-
sion-weighted imaging (DWI), and sagittal T2-weighted 
imaging (T2 WI). The scanning parameter settings were 
as follows: Repetition Time (TR), 3000–4000 ms; Echo 
Time (TE), 85–100 ms; layer thickness, 3–4 mm; layer 
spacing, 0.5 ~ 1 mm, maximum field of view (FOV), 315 
× 400 mm; and matrix, 256 × 256 or 512 × 512. If the 
lesion was large, the scan widens.

Image segmentation
Images from the axial DWI, axial fat-suppressed T2 WI, 
and sagittal T2 WI sequences were imported into the 
Deepwise Multimodal Research Platform version 2.5.1 
(https://​keyan.​deepw​ise.​com; Hangzhou Deepwise & 
League of PHD Technology Co., Ltd., Hangzhou, Zhe-
jiang, China) for each patient. A deputy chief physician 
from the Department of Imaging delineated regions 
of interest (ROIs) for the intratumoural regions in each 
of the three sequences to ensure the reliability and rep-
licability of the data. The ROI was drawn layer-by-layer 
to avoid tumour haemorrhage and necrosis. Another 
deputy chief physician randomly selected images 
from 30 patients to delineate the ROI for the intratu-
moural regions. The peritumoural ROI was automati-
cally generated by a 3-mm outward expansion from the 

intratumoural ROI. The intraclass correlation coefficient 
(ICC) was calculated to evaluate and ensure consistency.

Feature extraction and filtering
The Deepwise Multimodal Research Platform ver-
sion 2.5.1 was used to normalise and extract features 
from the intratumoural and peritumoural ROIs for 
each patient. The extracted features included shape, 
grey level run-length matrix, neighbourhood grey tone 
difference matrix, grey-level co-occurrence matrix, 
grey-level dependence matrix, grey-level size zone 
matrix, and first-order features. The radiomics fea-
tures extracted from the ROIs of 30 randomly selected 
patients were first subjected to ICC analysis to ensure 
data consistency and reliability. Features with an ICC 
value ≥ 0.9 were selected for subsequent analysis due to 
their stability. Subsequently, a correlation analysis was 
performed to filter out features with a correlation coef-
ficient ≤ 0.7. Finally, the Least Absolute Shrinkage and 
Selection Operator (LASSO) algorithm was employed 
to reduce dimensionality, and the most predictive radi-
omics features for the intratumoural and peritumoural 
regions were selected, followed by calculation of the 
radiomics score (Rad_Score).

Model establishment and evaluation
The clinical indicators were analysed using univariate 
logistic regression analysis. Indicators with statisti-
cal significance were subjected to multivariate logistic 
regression analysis to identify the independent risk fac-
tors. The significant independent risk factors identified 

Fig. 1  Study Framework

https://keyan.deepwise.com
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using logistic regression analysis, along with the intra-
tumoural and peritumoural imaging features selected 
by LASSO regression, were used to establish the clini-
cal, peritumoural radiomics, intratumoural radiomics, 
combined intratumoural + peritumoural radiomics, 
and combined clinical + intratumoural + peritumoural 
radiomics models. A nomogram was constructed based 
on the optimal model. Model performance was evalu-
ated, and their clinical values were analysed. Diag-
nostic efficacy of the models was assessed using the 
area under the receiver operating characteristic curve 

(AUC). Model accuracy was evaluated using calibra-
tion plots, and clinical effectiveness was assessed using 
decision curve analysis (DCA).

Statistical analysis
Statistical analyses and plotting were conducted using 
R software (version 4.2.1). Categorical variables are 
expressed as frequencies and percentages and were com-
pared using the c2 test or Fisher’s exact test. Continuous 
variables are presented as mean ± standard deviation 
and were compared using the t-test or Mann–Whitney 

Fig. 2  Research pathway
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U test. Baseline description and difference analysis were 
performed using the"CBCgrps"package. LASSO regres-
sion was conducted using the"glmnet"package, while 
multivariate Logistic regression was performed using 
the"glm"package. The nomogram was created using 
the"rms"package, the ROC curve was plotted using the 
pROC package, and calibration curves were generated 
using both the"rms"and"riskregression"packages. The 
DCA was conducted using the"rmda"package. All statisti-
cal tests were two-sided, and P < 0.05 was considered sta-
tistically significant.

Results
Patient characteristics
Based on the inclusion and exclusion criteria, 310 
patients were included in this study. Among them, 217 
patients from Centre A were assigned to the training set 
(75 with positive LVSI and 142 with negative LVSI), and 
93 patients from Centre B were assigned to the validation 
set (26 with positive LVSI and 67 with negative LVSI). The 
basic patient characteristics are summarised in Table 1.

Radiomics feature selection results
In this study, 6455 features were extracted from the 
intratumoural and peritumoural regions. After internal 
consistency testing using the ICC, feature correlation 
analysis, and LASSO regression dimensionality reduc-
tion, 15 and 14 features were selected from the intra-
tumoral and peritumoural regions, respectively. The 
selected intratumoural and peritumoural radiomics 
features are shown in Tables 2 and 3, respectively. The 
variable shrinkage and cross-validation processes for 

the intratumoural region are illustrated in the LASSO 
regression plots shown in Figs.  3A and 3B. The 15 
selected intratumoural features and their correspond-
ing weights are shown in Fig.  3C, and a waterfall plot 
for all participants is shown in Fig.  3D. The variable 
shrinkage and cross-validation processes for the peritu-
moural region are illustrated in the LASSO regression 
plots shown in Figs. 4A and 4B. The 14 selected impor-
tant peritumoural features and their corresponding 
weights are shown in Fig. 4C, and a waterfall plot for all 
participants is shown in Fig. 4D. The intratumoural and 
peritumoural radiomics scores (Rad_Score) for each 
patient were calculated using the following formula: 
Rad_Score = Σ (feature value * feature coefficient) + b0 
(intercept).

Clinical Feature Selection Results
The clinical indicators age, CA125 level, tumour length, 
hypertension, diabetes, and BMI were first subjected 
to univariate logistic regression analysis. CA125 level, 
FIGO stage, tumour length, and BMI, were significant 
and included in a multivariate logistic regression analy-
sis using the backward selection method. Ultimately, 
CA125 levels and tumour length were found to be sta-
tistically significant, indicating that CA125 levels and 
tumour length are independent risk factors for LVSI in 
EC. Table 4 presents the results of the study.

Model Construction and Validation Results
The clinical model was established based on CA125 levels 
and tumour length; the intratumoural radiomics model 
was established based on Rad_Score1; the peritumoural 

Table 1  Basic patient characteristics

FIGO staging is derived from image reports, BMI Body Mass Index

Variables Total
(n = 310)

No LVSI
(n = 209)

LVSI
(n = 101)

P Test (n = 93) Train (n = 217) P

Age, year (Mean ± SD) 57.27 ± 9.29 56.78 ± 9.73 58.29 ± 8.26 0.156 58.59 ± 9.40 56.70 ± 9.21 0.104

CA125, u/ml (Mean ± SD) 37.08 ± 50.58 22.44 ± 23.65 67.38 ± 73.26  < 0.001 27.35 ± 41.62 41.25 ± 53.52 0.014

FIGO, n (%) 0.096 0.684

  I 273 (88) 180 (86) 93 (92) 84 (90) 189 (87)

  II 27 (9) 23 (11) 4 (4) 6 (6) 21 (10)

  III 10 (3) 6 (3) 4 (4) 3 (3) 7 (3)

Tumor length, mm (Mean ± SD) 34.11 ± 18.88 30.45 ± 16.62 41.7 ± 21  < 0.001 29.01 ± 17.58 36.3 ± 19.03 0.001

Hypertension, n (%) 0.951 0.080

  No 188 (61) 126 (60) 62 (61) 49 (53) 139 (64)

  Yes 122 (39) 83 (40) 39 (39) 44 (47) 78 (36)

Diabetes, n (%) 0.482 0.487

  No 251 (81) 172 (82) 79 (78) 78 (84) 173 (80)

  Yes 59 (19) 37 (18) 22 (22) 15 (16) 44 (20)

BMI, kg/m2 (Mean ± SD) 26.71 ± 3.91 26.97 ± 3.92 26.18 ± 3.87 0.096 26.65 ± 3.7 26.74 ± 4.01 0.849
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radiomics model was established based on Rad_Score2; 
the intratumoural + peritumoural radiomics combined 
model was established based on Rad_Score1 and Rad_
Score2; and the clinical + intratumoural + peritumoural 
radiomics combined model was established based on 
CA125, tumour length, Rad_Score1, and Rad_Score2. 
The performances of the five models on the training and 
validation sets are presented in Tables  5 and 6, respec-
tively. Among them, the clinical + intratumoural + peri-
tumoural radiomics combined model performed slightly 
better than the other four models, with an AUC of 0.870 

(95% CI: 0.821–0.919) in the training set and 0.818 (95% 
CI: 0.731–0.905) in the validation set. The DeLong test 
for the AUC values of the optimal model and other mod-
els are presented in Table 7. The ROC curves of the five 
models in the training and validation sets are shown in 
Fig.  5A and Fig.  5B, respectively. Calibration curves 
showed good consistency between the predicted and 
actual probabilities of the models (Fig. 5C and 5D). Deci-
sion curve analysis suggested that the combined clinical 
+ intratumoural + peritumoural radiomics model could 
achieve a greater benefit in clinical decision-making 

Table 2  Results of intratumoral radiomics feature screening

Numbering Feature Coefficient

1 squareroot_firstorder_Skewness_T2 sag 0.14729117

2 log_sigma_5_0_mm_3D_gldm_DependenceVariance_T2 sag 0.12502147

3 log_sigma_2_0_mm_3D_firstorder_Skewness_T2ax 0.11919266

4 log_sigma_1_0_mm_3D_glcm_InverseVariance_T2 sag 0.11878343

5 log_sigma_1_0_mm_3D_glrlm_RunLengthNonUniformityNormalized_T2 sag 0.11249461

6 log_sigma_3_0_mm_3D_gldm_LargeDependenceHighGrayLevelEmphasis_T2ax 0.09116579

7 wavelet_LHH_ngtdm_Busyness_T2ax 0.09110913

8 wavelet_HLL_glcm_MCC_T2ax 0.06597751

9 log_sigma_5_0_mm_3D_glcm_DifferenceEntropy_T2 sag 0.05677993

10 square_glcm_InverseVariance_DWI 0.04846720

11 squareroot_firstorder_Kurtosis_T2 sag 0.04035398

12 lbp_2D_glszm_SizeZoneNonUniformityNormalized_T2ax 0.02790663

13 lbp_2D_glszm_SmallAreaHighGrayLevelEmphasis_T2ax 0.01992961

14 log_sigma_1_0_mm_3D_glcm_Idm_T2 sag 0.01208342

15 lbp_3D_m2_firstorder_Maximum_T2ax 0.01089080

Table 3  Results of peritumoral radiomics feature screening

Numbering Feature Coefficient

1 wavelet_LLH_glcm_InverseVariance_T2 sag 0.2905970542

2 wavelet_HHL_ngtdm_Contrast_T2ax 0.2315941418

3 log_sigma_4_0_mm_3D_glcm_Imc1_T2 sag 0.2112325945

4 wavelet_HLL_glcm_Imc2_T2ax 0.1544878177

5 wavelet_HHH_firstorder_Kurtosis_T2 sag 0.1369438683

6 lbp_3D_k_glcm_ClusterProminence_T2ax 0.1027404286

7 original_firstorder_10Percentile_T2ax 0.0892277062

8 exponential_glszm_SizeZoneNonUniformity_T2ax 0.0796758980

9 lbp_3D_k_glcm_Imc1_T2 sag 0.0687273533

10 wavelet_LHH_glcm_Imc1_T2 sag 0.0669025532

11 logarithm_firstorder_Minimum_T2 sag 0.0573108126

12 wavelet_HLL_glcm_ClusterProminence_T2 sag 0.0319443867

13 logarithm_gldm_DependenceEntropy_T2ax 0.0264802463

14 wavelet_HHH_firstorder_Minimum_DWI 0.0001748998
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(Fig.  6A and Fig.  6B). Subsequently, a nomogram was 
constructed for the combined clinical, intratumoural, and 
peritumoural radiomics model (Fig.  7). The nomogram 
intuitively predicted the risk of developing LVSI in EC 
by locating the corresponding points on the nomogram 
based on the specific values of CA125, tumour length, 
Rad_Score1, and Rad_Score2 for each patient and sum-
ming the points for each indicator.

Discussion
In this study, five prediction models (ModA, ModB, 
ModC, ModD, and ModE) were established by combin-
ing clinical data with intratumoural and peritumoural 
factors to predict the occurrence of LVSI in EC. All mod-
els achieved good prediction performance; however the 
AUC of ModE was slightly higher than that of the other 
four models. The results of this study indicated that 
ModE can improve the prediction accuracy of the LVSI. 
Additionally, the nomogram established based on ModE 
provides a visual tool to enhance the readability of the 
prediction model and is beneficial for clinicians to evalu-
ate the LVSI in patients before surgery and formulate the 
best decision-making plan [20, 21].

In our study, the AUC of ModD in the training and 
validation sets were 0.817 and 0.788, respectively, which 
were higher than those of ModB and ModC. Our results 
are consistent with the findings of a previous study, which 
explored the predictive performance of different radiom-
ics models in predicting LVSI, deep myometrial invasion 
(DMI) and disease staging of endometrial cancer found 
that the radiomics models using intratumoral and peritu-
moral features significantly outperformed the radiomics 
models using only intratumoral features in terms of pre-
dictive performance [22]. Our study also indicated that 
peritumoural radiomics features possess crucial value in 
predicting the occurrence of LVSI in EC. This was likely 
because a transition zone was observed between the 
tumour and normal tissues, and tumour cells tended to 
migrate from the primary tumour to the peritumoural 
area, leading to morphological changes on MRI. There-
fore, the peritumoural area contains key information 
regarding LVSI status [23]. A study predicting lympho-
vascular invasion in early stage cervical cancer based on 
the peritumoural radiomics of multiparameter MRI com-
pared the predictive efficacies of peritumoural radiomic 
features within different scopes. The results showed that 

Fig. 3  Intratumorial Radiomics feature selection using Lasso Regression. A The LASSO regression path diagram; B The plot of the important features 
screened by the ten-fold cross validation method. The important features were selected using lambda.min as the criterion. C The 15 important 
features selected by LASSO regression and their weight chart. D The waterfall chart for all participants
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the features selected from the peritumoural area with 
an expansion distance of 3  mm outside the tumour led 
to the establishment of a model with the best predictive 
performance [24]. Similarly, in our study, 14 features 
were extracted from an area with an expansion of 3 mm 
outside the tumour to establish ModB, and the results 
demonstrated good predictive performance.

Logistic regression analysis showed that CA125 lev-
els and tumour length were independent clinical risk 
factors for LVSI in patients with EC. Therefore, a clini-
cal prediction model was established based on the 
CA125 levels and tumour length. The AUC values of 
the training and validation sets were 0.805 and 0.766, 
respectively, indicating that CA125 and tumour length 

Fig. 4  Peritumoral Radiomics feature selection using Lasso Regression. A The LASSO regression path diagram; B The plot of the important features 
screened by the ten-fold cross validation method. The important features were selected using lambda.min as the criterion. C The 14 important 
features selected by LASSO regression and their weight chart. D The waterfall chart for all participants

Table 4  Results of univariate and multivariate logistic regression analyses of clinical indicators

Variables Univariate logistic analysis Multivariate logistic analysis

B SE OR (95%CI) P B SE OR (95%CI) P

Age (year) 0.028 0.016 1.028 (0.997–1.062) 0.083

Ca125 (µ/mL) 0.032 0.007 1.032 (1.020–1.047)  < 0.001 0.028 0.006 1.028 (1.016–1.042)  < 0.001

FIGO II −2.488 1.036 0.083 (0.005–0.412) 0.016 −1.803 1.047 0.164 (0.008–0.847) 0.085

FIGO III 0.220 0.778 1.246 (0.240–5.810) 0.777 −0.420 1.201 0.657 (0.035–5.456) 0.727

Tumor length (mm) 0.027 0.008 1.027 (1.012–1.044) 0.001 0.019 0.009 1.018 (1.001–1.038) 0.039

Hypertension −0.085 0.299 0.918 (0.508–1.642) 0.776

Diabetes 0.343 0.347 1.409 (0.706–2.768) 0.323

BMI (kg/m2) −0.098 0.040 0.906 (0.836–0.977) 0.013 −0.051 0.044 0.949 (0.869–1.032) 0.237



Page 9 of 12Ma et al. BMC Cancer          (2025) 25:796 	

had good predictive values for the presence of LVSI in 
patients with EC. These findings are consistent with 
previous studies which have reported that the larger the 
tumour length, the greater the risk of LVSI in patients 
[25], while others have shown that elevated CA125 lev-
els can predict positive LVSI in patients with endome-
trial cancer [26–28].

Notably, the AUC of ModE was 0.870 in the training set, 
which was higher than AUCs of the other four models (P 
< 0.05). Similarly, the AUC of ModE in the validation set 
was 0.818, which was higher than those of the other four 
models (P > 0.05). However, this study has some limita-
tions that require consideration. First, the high AUC values 

of ModE may have been influenced by the relatively small 
sample size and imbalance in the baseline data between the 
training and validation sets [29]. Additionally, the limited 
sample size may have affected the extraction of imaging 
features. Therefore, future studies with larger sample sizes 
are required to validate the results of this study. Second, the 
intratumoural lesions in our study were delineated manu-
ally and were limited by the experience of different physi-
cians in delineating the lesions, which may have led to 
differences in feature extraction and screening. Subsequent 
studies are required wherein deep learning is applied to 
automatically delineate the ROI and improve the generali-
sation ability of the model.

Fig. 5  Discriminative power and accuracy of the prediction model. (A) and (B) show the receiver operating curves of the model in the training 
and validation sets, respectively, and (C) and (D) show the calibration curves of the model in the training and validation sets, respectively
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Fig. 6  Discriminative power and accuracy of the prediction model. (A) and (B) show the clinical decision curves of the model for the training 
and validation sets, respectively

Fig. 7  Nomogram of ModE

Table 5  Comparison of five models in the training set

ACC​ Accuracy, SEN Sensitivity, SPE Specificity, PPV Positive Predictive Value, NPV Negative Predictive Value

Model AUC(95%CI) ACC(95%CI) SEN SPE PPV NPV

Clinical model (ModA) 0.805 (0.740–0.870) 0.779 (0.777–0.780) 0.693 0.824 0.675 0.836

Peritumoral radiomics model (ModB) 0.791 (0.729–0.853) 0.737 (0.736–0.739) 0.707 0.754 0.602 0.829

Intratumoral radiomics model (ModC) 0.809 (0.748–0.869) 0.724 (0.722–0.725) 0.773 0.697 0.574 0.853

Intratumoral + peritumoral radiomics model (ModD) 0.817 (0.759–0.875) 0.793 (0.791–0.794) 0.587 0.901 0.759 0.805

Clinical + intratumoral + peritumoral radiomics model (ModE) 0.870 (0.821–0.919) 0.829 (0.828–0.831) 0.707 0.894 0.779 0.852
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Conclusions
This study utilised intratumoural and peritumoural MRI 
radiomic features combined with clinical indicators to 
construct a combined clinical + intratumoural + peri-
tumoural radiomic model and nomogram, providing a 
novel method for accurately predicting the presence of 
LVSI in patients with EC. This model provides valuable 
theoretical guidance for preoperative clinical assessments 
and holds promise for improving patient outcomes.
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