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Abstract
Background The tumor microenvironment (TME) is increasingly acknowledged as a determinant in the malignant 
transformation and progression of castration-resistant prostate cancer (CRPC). Cancer-associated fibroblasts (CAFs), as 
a pivotal stromal cellular component in TME, are implicated in tumor progression and immune escape. However, the 
molecular characteristics and biological functions of CRPC-CAFs in prostate cancer necessitate further investigation.

Methods We ascertained the differential transcriptomic profiles between CRPC-CAFs and PCa-CAFs through 
single-cell RNA-sequencing (scRNA-seq). Bulk RNA-seq data were employed to assess the prognostic implications of 
CRPC-CAFs in PCa. In addition, we examined the impact of CRPC-CAFs on the efficacy of immunotherapy and the 
composition of the tumor immune milieu. Furthermore, a subcutaneous PCa model was applied to determine the 
potential of TGF-β signaling blockade to augment the response to immunotherapeutic interventions.

Results We observed a pronounced increase in the proportion of CAFs in CRPC compared to those in primary PCa. 
The functional pathways implicated in TGF-β signaling and ECM remodeling were remarkably upregulated in CRPC-
CAFs. Moreover, gene regulatory network analysis uncovered substantial differences in the transcription factor activity 
profiles between CRPC-CAFs and PCa-CAFs. The elevated CRPC-CAFs abundance was associated with diminished 
recurrence-free survival and immunotherapy insensitivity. Substantially elevated infiltration of inhibitory immune cells 
and upregulated expression levels of immunosuppressive molecules were observed in patients with high CRPC-
CAFs abundance. Importantly, administration of anti-TGF-β therapy remarkably potentiated the efficacy of anti-PD-1 
immunotherapy through upregulating the anti-tumor immune response in the PCa model.

Conclusion Our results highlighted the impact of CRPC-CAFs on clinical prognosis and immunosuppressive tumor 
milieu, indicating that CRPC-CAFs may function as a promising therapeutic target for CRPC.
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Background
Based on the latest global cancer statistics, prostate can-
cer (PCa) is the second most frequently diagnosed malig-
nancy among men, with an estimated 1.47  million new 
cases and 396,792 deaths globally in 2022 [1]. Androgen 
deprivation therapy (ADT) is the standard and effective 
treatment for advanced PCa and biochemical recur-
rence following active local therapy [2, 3]. Nevertheless, 
a substantial number of PCa patients develop resistance 
to ADT within 2–3 years, leading to disease progression 
to castrate-resistant prostate cancer (CRPC) [4]. Despite 
significant advancements in therapeutic modalities, 
including next-generation androgen receptor antago-
nists, chemotherapeutic agents, and poly (ADP-ribose) 
polymerase (PARP) inhibitors, patients with CRPC fre-
quently encounter unfavorable clinical outcomes [5, 
6]. Therefore, a comprehensive understanding of the 
molecular mechanisms underlying CRPC is crucial for 
developing new strategies to prevent ADT resistance and 
improve prognosis.

Previously, CRPC was primarily attributed to the dys-
regulation of androgen receptor (AR) signaling pathways 
within tumor cells, including increased expression of AR 
splice variants, mutations, and genomic rearrangements 
[7, 8]. Recently, a burgeoning body of evidence has under-
scored the pivotal role of the tumor microenvironment 
(TME) remodeling in development and progression of 
CRPC [9–11]. Cancer-associated fibroblasts (CAFs) rep-
resent a paramount stromal cell subset within the TME. 
Previous studies have demonstrated that CAFs play an 
indispensable role in cancer progression, dissemination, 
and creation of an immunosuppressive TME [12–14]. In 
the context of PCa, CAFs have been reported to confer 
chemoresistance to cancer cells, mediated by upregula-
tion of glutathione synthesis and reduction in the pro-
duction of reactive oxygen species (ROS) [15]. It has been 
demonstrated that chemotherapy elicits the release of 
WNT16B from CAFs, consequently attenuating the sen-
sitivity of cancer cells to chemotherapeutic agents and 
accelerating the progression of PCa [16]. CAFs are also 
recognized as critical modulators in the progression of 
CRPC and neuroendocrine differentiation. For instance, 
neuregulin1 (NRG1), a ligand secreted by CAFs, has been 
found to compromise the efficacy of ADT through the 
activation of HER3 signaling. Elevated levels of NRG1 
activity in patients correlate with an unfavorable prog-
nosis [17]. Following castration treatment, CAFs exhibit 
diminished expression of SPARC and enhanced secretion 
of IL-6, which potentially fosters neuroendocrine differ-
entiation in CRPC [18]. Moreover, CAFs are reported 

to facilitate the expression of 3β-Hydroxysteroid dehy-
drogenase-1 (3βHSD1) in cancer cells through paracrine 
signaling mechanisms involving glucosamine, eventually 
contributing to ADT resistance [19]. Recent advances in 
scRNA-seq have provided insights into the phenotypic 
and functional diversity of distinct stromal and immune 
cells in PCa [20, 21]. However, the molecular and biologi-
cal characteristics of castration-resistant prostate cancer-
associated fibroblasts (CRPC-CAFs) and their impact on 
prognosis and immune TME in PCa remain to be fully 
elucidated.

In this research, we conducted a comprehensive 
scRNA-seq analysis to delineate the dynamic altera-
tions in biological functions between PCa-CAFs and 
CRPC-CAFs. Notably, CRPC-CAFs were characterized 
by remarkable upregulation of TGF-β signaling. Patients 
with higher CRPC-CAFs abundance exhibited unfavor-
able clinical outcomes in PCa and diminished respon-
siveness to immunotherapy. Furthermore, through a 
subcutaneous tumor-bearing mouse model, we demon-
strated that targeted inhibition of TGF-β signaling could 
augment the anti-PD-1 immunotherapy response and 
restrain tumor growth in vivo. Collectively, these results 
indicate that the combination of TGF-β signaling inhibi-
tion and immunotherapy represents a promising thera-
peutic strategy to improve clinical outcomes for patients 
with CRPC.

Methods
Data collection
The single-cell RNA-seq datasets GSE141445 (compris-
ing 13 primary PCa samples) and GSE210358 (compris-
ing 13 CRPC samples) were retrieved from the Gene 
Expression Omnibus (GEO) database  (   h t t p : / / w w w . n c 
b i . n l m . n i h . g o v /     ) [20, 22]. Bulk RNA-seq data from the 
TCGA-PRAD cohort were obtained from the UCSC 
Xena website (https://xenabrowser.net/). Microarray 
data from the GSE70769 and GSE21034 PCa cohorts 
were downloaded from the GEO database. Bulk RNA-
seq data from the IMvigor210 immunotherapy cohort 
were accessed by utilizing the “IMvigor210CoreBiolo-
gies” R package. In addition, microarray data from the 
GSE32269 and GSE70768 datasets were acquired to com-
pare CRPC-CAFs signature scores between primary PCa 
and metastatic CRPC tissues.

Single-cell RNA-seq data processing and cell-type 
annotation
R software (version 4.2.0) and the “Seurat” package 
(version 4.1.1) were utilized to process and analyze the 
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scRNA-seq data. For filtering, cells with a mitochondrial 
gene proportion exceeding 10% or with an expressed gene 
count below 200 or above 5000 were excluded. Subse-
quently, the scRNA-seq data were normalized, and batch 
effects across different samples were corrected by using 
the “Harmony” method [23]. Principal component anal-
ysis (PCA) was conducted on the expression of the top 
2000 highly variable genes, and the top 30 principal com-
ponents were used for clustering analysis at a resolution 
of 0.5. The following canonical markers were employed 
to perform manual cell-type annotation: Epithelial cells 
(EPCAM, KRT19), Fibroblasts (DCN, COL1A1), Smooth 
muscle cells (MYH11, ACTA2, RGS5), Endothelial cells 
(VWF, PECAM1, CLDN5), T cells (CD2, CD3D, CD3E), 
B cells (CD79A, CD79B, CD19), Masts (TPSB2, TPSAB1, 
MS4A2), Myeloid cells (CD14, CD68, AIF1, CSF1R) [20, 
22, 24–26].

Differential expression analysis
Differential expression analysis was conducted using 
FindAllMarkers function (with parameters set to min.
pct = 0.25 and only.pos = TRUE) in “Seurat” package. 
Genes with avg_log2FC ≥ 1 and adjust p-value < 0.05 were 
identified as marker genes in PCa-CAFs and CRPC-CAFs 
subgroups.

Pathway enrichment analysis
We performed Gene Ontology (GO) enrichment analysis 
on marker genes of CRPC-CAFs by utilizing “ClusterPro-
filer” package [27]. Subsequently, Gene Set Enrichment 
Analysis (GSEA) was employed to further determine the 
markedly upregulated or downregulated signaling path-
ways in CRPC-CAFs, using gene sets from the Molecular 
Signature Database [28]. Furthermore, the AUCell analy-
sis was conducted to evaluate the activity levels of vari-
ous signaling pathways.

Gene regulatory network analysis
We applied pySCENIC (version 0.12.0) to assess the 
activity of transcription factor (TFs) in PCa-CAFs and 
CRPC-CAFs subgroups [29]. The GRNBoost algorithm 
was employed to establish co-expression networks for 
TFs and their target genes. Subsequently, we conducted 
cis-regulatory motif analysis and identified regulons by 
utilizing RcisTarget method. Additionally, the AUCell 
algorithm was employed to quantify the activity scores of 
regulons.

Single-cell trajectory analysis and cell–cell communication 
analysis
The Monocle (version 2.24) algorithm was utilized to 
develop pseudo-time trajectories of CAFs and decipher 
the dynamics of gene expression changes in CAFs dur-
ing the progression from primary PCa to CRPC [30]. 

CellChat (version 1.6.1) was applied to conduct a com-
prehensive analysis of intercellular communication 
between CAFs and other cell types in PCa and CRPC, 
using the CellChatDB.human reference database [31].

Definition and the prognostic significance of CRPC-CAFs 
signature scores
A set of marker genes of CRPC-CAFs were used to 
construct a novel signature. The CRPC-CAFs signa-
ture scores for TCGA, IMvigor210 and GEO cohorts 
were computed using the “ssGSEA” algorithm. Kaplan-
Meier analysis and the log-rank test were conducted to 
assess the difference in recurrence-free survival between 
patients with high versus low CRPC-CAFs signature 
scores.

Tumor microenvironment analysis
Stromal and immune scores were computed through 
ESTIMATE analysis [32]. Additionally, we employed 
CIBERSORT and ssGSEA to assess the infiltration of var-
ious immune cell types [33, 34]. Furthermore, the xCell 
algorithm was utilized to quantify the density of 64 stro-
mal and immune cell types [35].

Immunotherapy response prediction
The Tumor Immune Dysfunction and Exclusion (TIDE) 
score was employed to assess immune evasion status and 
predict efficacy of immunotherapy in cancer patients 
[36]. An elevated TIDE score is indicative of poorer 
response to immunotherapy.

Cell culture and treatment
The RM-1 murine prostate cancer cell line and the 
WPMY-1 human immortalized prostatic fibroblast cell 
line, both acquired from Pricella Biotechnology Co., 
Ltd. (Wuhan, China), were cultivated in DMEM (Gibco) 
supplemented with 10% FBS and 1% penicillin-strep-
tomycin solution under a 5% CO2 atmosphere at 37  °C. 
The recombinant human TGF-β1 protein was purchased 
from MedChemExpress.

Animal models
Eight-week-old male C57BL/6J mice were procured from 
Weitong Lihua Experiment Animal Technology Co., Ltd. 
(Beijing, China). All animal procedures were sanctioned 
by the Institutional Animal Care and Use Committee of 
Shenzhen University Medical School. RM-1 PCa cells 
(1 × 106) were subcutaneously implanted into the dorsal 
region of the mice. Upon reaching a tumor volume of 
approximately 100 mm3, the tumor-bearing mice were 
randomly assigned to four distinct treatment groups. 
In the monotherapy group, either anti-PD-1 (10  mg/kg, 
#BE0146, BioXcell) or anti-TGF-β (10  mg/kg, #BE0057, 
BioXcell) was administered intraperitoneally every three 
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days. In the combination therapy group, both anti-PD-1 
(10  mg/kg) and anti-TGF-β (10  mg/kg) were adminis-
tered intraperitoneally every three days. The control 
group received an equivalent volume of isotype IgG intra-
peritoneally. Tumor volume was determined by using the 
formula: volume = (tumor length) × (tumor width)2/2. At 
the end of the experiment protocol, mice were subjected 
to euthanasia in accordance with the American Vet-
erinary Medical Association (AVMA) Guidelines for the 
Euthanasia of Animals (2020 Edition), and tumor sam-
ples were harvested for further analysis (Supplementary 
File 2).

Immunohistochemistry (IHC) staining
PCa tumor tissues were fixed by utilizing a 4% solution 
of paraformaldehyde and embedded in paraffin. Sub-
sequently, antigen retrieval was executed and endog-
enous peroxidase activity was inhibited by using a 3% 
hydrogen peroxide solution. After blocking nonspecific 
antibody binding, the sections were incubated with pri-
mary antibodies overnight at 4  °C in a humidity cham-
ber. The following primary antibodies were utilized in 
this study: CD4 (1:3000, ab183685, abcam), CD8 (1:2000, 
ab209775, abcam), TGF-β1 (1:2000, 21898-1-AP, Pro-
teintech), α-SMA (1:2000, 19245  S, CST), PD-1 (1:500, 
ab214421, abcam), PD-L1 (1:50, 64988 S, CST). After the 
application of the secondary antibody, protein expres-
sion was detected by utilizing the chromogenic substrate 
3,3’-diaminobenzidine (DAB). For each section, five dis-
crete fields were randomly selected, and the number of 
CD4-positive or CD8-positive stained cells was quanti-
fied. The mean number of positive cells across these fields 
was calculated. The expression levels of TGF-β1, α-SMA, 
PD-1, and PD-L1 were assessed by calculating the per-
centage area (%Area) of positive staining in IHC images, 
as quantified by ImageJ software.

RNA extraction and transcriptome sequencing
The WPMY-1 cell line was subjected to treatment with 
recombinant TGF-β1 protein at a concentration of 10 ng/
ml, with the phosphate-buffered saline (PBS) treatment 
functioning as the control. Total RNA was extracted from 
WPMY-1 cells using TRIzol reagent (Invitrogen), and the 
TruSeq RNA Library Prep Kit (Illumina) was employed 
to construct the RNA-Seq libraries. The Illumina Nova-
seq platform was applied to conduct RNA sequencing, 
yielding paired-end reads with a length of 150  bp. Sub-
sequently, we utilized Hisat2 software for the alignment 
of sequencing reads to the human reference genome 
(GRCh38). The “edgeR” package was employed to con-
duct differential expression analysis between WPMY-1 
cells treated with TGF-β1 and those in the control 
group. DEGs were discerned according to the follow-
ing criteria:|log2 fold change| exceeding 1.5 and a false 

discovery rate (FDR) below the threshold of 0.05. We 
leveraged “ClusterProfiler” to conduct GSEA and subse-
quently utilized the “GseaVis” package for the visualiza-
tion of the results. The “GSVA” package was applied to 
execute ssGSEA.

Quantitative real-time PCR (RT-qPCR)
Following the extraction of total RNA, reverse transcrip-
tion was performed with PrimeScript RT Master Mix 
(Takara, Otsu, Shiga, Japan) to synthesize cDNA. RT-
qPCR was achieved on QuantStudio 6 Real-Time PCR 
System (Applied Biosystems) by using SYBR Green mix 
(Takara). The primers used in this study were shown in 
Supplementary Table 1. The relative expression levels 
of genes were determined by using the 2− ΔΔCt method. 
GAPDH was utilized to normalize the expression levels 
of the genes.

Cell proliferation analysis
The proliferative capacity of prostatic fibroblasts was 
assessed by utilizing the Cell Counting Kit-8 (MedChe-
mExpress). WPMY-1 cells (5 × 103 cells) were seeded into 
96-well plates and incubated for 24 h prior to treatment. 
Then, the cells were treated with either 0 or 10 ng/ml 
TGF-β1 protein. Following incubation for 0 h, 24 h, 48 h, 
and 72 h, a 10% solution of CCK-8 reagent was added to 
each well, and the cells were incubated at 37 ℃ for 2 h. 
The absorbance at 450 nm was measured.

Wound healing assay
WPMY-1 cells were plated into 6-well plates. Upon 
reaching a cell confluence of approximately 90%, linear 
wounds were created by utilizing a 200-µL sterile pipette 
tip. After removing cellular debris through PBS washing, 
the cells were incubated in serum-free medium supple-
mented with either 0 or 10 ng/ml of TGF-β1 protein. 
The wound closure was documented by utilizing a ZEISS 
microscope at 100× magnification. The areas of scratch 
healing were quantified using ImageJ software.

Western blot analysis
WPMY-1 cells were lysed using RIPA buffer to extract 
total cellular protein. SDS/PAGE gel electrophoresis was 
utilized to separate the proteins, which subsequently 
were transferred to PVDF membranes (Millipore, Biller-
ica, MA, USA). Blocking of the membranes was achieved 
by utilizing a 5% no-fat milk solution, followed by incu-
bation with specific primary antibodies at 4  °C over-
night. Then, HRP-conjugated secondary antibodies were 
utilized to incubate the membranes, and ECL detection 
kit (ThermoFisher Scientific, Waltham, MA, USA) was 
employed to visualize the immunoblots. The primary 
antibodies utilized in this study are detailed as follows: 
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BGN (#16409-1-AP, Proteintech) and GAPDH (#60004-
1-Ig, Proteintech).

Statistical analysis
All statistical analyses and data visualizations were con-
ducted using R software (version 4.2.0) and GraphPad 
Prism (version 8.3.0). The correlation between two dis-
tinct continuous variables was assessed using Spearman’s 
rank correlation analysis. For comparing continuous 
variables between two groups, we employed either a 
parametric t-test or a nonparametric Wilcoxon test, 
depending on the data distribution. In this study, statisti-
cal significance was set at a p-value threshold of 0.05.

Results
Single-cell sequencing revealed an increased proportion 
of CAFs in CRPC, and CRPC-CAFs were correlated with 
unfavorable prognosis
Following preprocessing and filtering, a total of 71,560 
cells were selected and subjected to further analysis, 
comprising 36,424 cells from primary PCa and 35,136 
cells from CRPC. Principal component analysis (PCA) 
was employed to achieve data dimensionality reduction, 
and we obtained 33 different clusters (Supplementary 
Fig. 1A). Eight major cell types were annotated according 
to their distinct expression patterns of canonical marker 
genes (Fig.  1A-B). CAFs were specifically identified 
through notably elevated expression levels of DCN and 
COL1A1 (Fig.  1C-D). To precisely distinguish between 
epithelial cells and CAFs, we undertook a comparative 
analysis of the canonical epithelial markers. The dot plot 
showed that the expression of KRT8, KRT18, AR, and 
KLK3 was either absent or markedly diminished in the 
CAFs population compared to epithelial cells, confirming 
that the DCN/COL1A1-positive population is comprised 
of CAFs rather than epithelial cells (Supplementary 
Fig. 1B). Importantly, a substantially elevated proportion 
of CAFs was observed in CRPC compared to primary 
PCa, indicating a critical role of CAFs in the progres-
sion to CRPC (Fig. 1E-F). Subsequently, a total of 2,641 
CAFs were identified and classified into CRPC-CAFs 
and PCa-CAFs subgroups (Fig. 1G). Differential expres-
sion analysis was conducted, and we detected 62 marker 
genes significantly upregulated in CRPC-CAFs, including 
POSTN, COL1A1, COL1A2, FN1, COL3A1. In contrast, 
69 marker genes were significantly upregulated in PCa-
CAFs (Fig.  1H; Supplementary Table 2). To assess the 
abundance of CRPC-CAFs in PCa tissues, we employed 
ssGSEA to compute the CRPC-CAFs scores based on 
CRPC-CAFs marker genes. Notably, we observed sig-
nificantly increased CRPC-CAFs scores in metastatic 
CRPC compared to localized PCa tissues in two distinct 
datasets (GSE32269 and GSE70768) (Supplementary 
Fig.  1C-D). To explore the prognostic significance of 

CRPC-CAFs, we conducted Kaplan-Meier analysis and 
found that patients with higher CRPC-CAFs scores had 
a more unfavorable recurrence-free survival than those 
with lower CRPC-CAFs scores in the TCGA, GSE70769, 
and GSE21034 cohorts (Fig.  1I-K). In summary, these 
data demonstrated that CRPC-CAFs were intricately 
associated with progression to CRPC and unfavorable 
prognosis of patients with PCa. It is essential to elucidate 
the functional characteristics of CRPC-CAFs.

CRPC-CAFs exhibited distinct functional characteristics 
compared to those of PCa-CAFs
To elucidate the biological functions of CRPC-CAFs, we 
conducted KEGG and GO enrichment analyses based 
on upregulated marker genes of CRPC-CAFs. KEGG 
analysis results showed that CRPC-CAFs were mainly 
implicated in focal adhesion, proteoglycans in cancer, 
and ECM-receptor interaction (Fig. 2A). GO enrichment 
analysis demonstrated that CRPC-CAFs were mainly 
involved in the processes of extracellular matrix remod-
eling and collagen organization (Fig.  2B). Additionally, 
GSEA results suggested that extracellular matrix remod-
eling-related signaling pathways were remarkably acti-
vated in CRPC-CAFs, whereas androgen response was 
downregulated in CRPC-CAFs (Fig.  2C-F). To discern 
the key genes contributing to these biological pathways, 
we conducted leading edge analysis and revealed the core 
enriched genes involved in the ECM remodeling process, 
including COL1A1, COL1A2, FN1, COL3A1, and TIMP1 
(Supplementary Fig. 2A-C). These results suggested that 
the notable upregulation of these genes in CRPC-CAFs 
may play a paramount role in reshaping the tumor micro-
environment in CRPC. A specific set of genes, such 
as KLK3, KLK2, FKBP5, STEAP4, and TSC22D1, are 
predominantly responsible for the suppression of the 
androgen response pathway (Supplementary Fig.  2D). 
The downregulated expression of these genes indicates a 
reduced sensitivity to androgen signaling in CRPC-CAFs, 
which is consistent with the development of castration 
resistance. Furthermore, AUCell analysis results indi-
cated that the TGF-β signaling pathway was significantly 
activated in CRPC-CAFs compared with PCa-CAFs 
(Fig.  2G-H). Collectively, these findings demonstrated 
that CRPC-CAFs displayed a notable upregulation in 
TGF-β signaling and extracellular matrix remodeling.

Pseudotime trajectory analysis delineated the 
transcriptional transition from PCa-CAFs to CRPC-CAFs
To investigate the dynamic alteration between PCa-CAFs 
and CRPC-CAFs, we employed pseudotime analysis to 
construct the developmental trajectory of CAFs. The 
results demonstrated that PCa-CAFs were mainly located 
at the beginning of the developmental trajectory. As 
pseudotime increased, there was a progressive increase in 
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the population of CRPC-CAFs, indicating a phenotypic 
transformation from PCa-CAFs to CRPC-CAFs state 
(Fig.  3A-C). Furthermore, our pseudotime trajectory 
analysis discerned a pronounced upregulation of genes 
in CRPC-CAFs that are implicated in ECM remodeling 

and tumor progression, including COL1A1, COL1A2, 
COL3A1, FN1, POSTN, and TIMP1 (Fig. 3D-E). In con-
trast, RGS5, ADIRF, DNAJB1, and HSPA1B were highly 
expressed at the early stage of the trajectory and then 
gradually decreased with pseudotime (Fig.  3E). The 

Fig. 1 Integrated scRNA-seq and bulk RNA-seq analyses dissecting the proportion and clinical significance of CRPC-CAFs. (A) t-SNE plot of 71,560 single 
cells derived from 13 primary PCa and 13 CRPC samples color-coded based on the main cell type. (B) Dot plot illustrating average expression level of 
marker genes across distinct cell types. (C-D) t-SNE plot displaying the expression levels of DCN and COL1A1. (E) Stacked bar plot presenting the propor-
tions of eight distinct cell types in PCa and CRPC tissues. (F) Boxplot comparing the proportion of cancer-associated fibroblasts (CAFs) between PCa and 
CRPC tissues. Statistical significance was assessed using a two-tailed Wilcoxon test (*p < 0.05). (G) t-SNE plot displaying 2641 CAFs derived from PCa and 
CRPC samples. (H) Heatmap illustrating scaled average expression of top 10 marker genes in PCa-CAFs and CRPC-CAFs. (I-K) Kaplan–Meier curves pre-
senting a comparison of recurrence-free survival between patients with high versus low CRPC-CAFs scores in the TCGA (I), GSE70769 (J) and GSE21034 
(K) cohorts
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observations indicated that CAFs may play a substantial 
role in the reconfiguration of the TME, thereby poten-
tially facilitating the progression to CRPC. However, the 
underlying transcriptional regulatory mechanisms that 
govern the phenotypic transition of CAFs remain to be 
elucidated.

PySCENIC analysis revealed significant differences in TFs 
activity between CRPC-CAFs and PCa-CAFs
To elucidate the transcriptional regulatory network in 
CRPC-CAFs, pySCENIC analysis was conducted to 
comprehensively analyze the transcription factor (TF) 
profiles in PCa-CAFs and CRPC-CAFs (Supplementary 
Table 3). First, the regulon specificity scores were cal-
culated, and we found that POU3F3, PRRX2, GATA6, 
HOXB2, and PRDM6 were the most specific regulons in 
CAFs (Fig.  3F). Subsequently, we calculated TF activity 

Fig. 2 Comprehensive analysis of the functional pathways within CRPC-CAFs. (A) Bar plot displaying significant enrichment of KEGG pathways of upregu-
lated genes in CRPC-CAFs. (B) Dot plot displaying significant enrichment of GO pathways of upregulated genes in CRPC-CAFs. (C-F) GSEA results revealing 
upregulated and downregulated signaling pathways in CRPC-CAFs. (G) Lollipop Chart illustrating differential signaling pathways between CRPC-CAFs 
and PCa-CAFs. AUCell analysis was utilized to calculate activity scores of the signaling pathways. Comparison of AUCell scores between CRPC-CAFs and 
PCa-CAFs was achieved by Limma. t-values represent statistics computed by the fitting linear models. (H) Boxplot revealing a substantial upregulation of 
TGF-β-related signaling pathways. Statistical significance was assessed using a two-tailed Wilcoxon test. (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.)
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scores and employed limma to compare the differences in 
TF activity scores between PCa-CAFs and CRPC-CAFs 
(Supplementary Table 4). The top 10 most activated TFs 
in CRPC-CAFs and PCa-CAFs were shown in Fig.  3G. 
Notably, we observed that the transcriptional activity of 
PRRX2, HOXB2, GATA6, HIC1, PRDM6, NR2F1, ILF2, 
POU3F3, ZIC3, and RUNX1 was significantly elevated 
in CRPC-CAFs compared to PCa-CAFs (Fig.  3H). In 

summary, we discerned a specific set of TFs exhibiting 
markedly heightened transcriptional activity in CRPC-
CAFs. This discovery suggests that these CRPC-CAFs-
specific TFs may function as pivotal regulators in the 
malignant transformation of CAFs, and they may repre-
sent potential targets for preventing the progression to 
CRPC.

Fig. 3 Pseudotime and transcription factor analyses of CRPC-CAFs and PCa-CAFs. (A-C) Graphs illustrating the trajectories of CAFs, color-coded based on 
subgroup (A), pseudotime (B), and state (C). (D) Scatter plots presenting dynamic alterations in expression levels of marker genes of CRPC-CAFs, including 
COL1A1, COL1A2, COL3A1, FN1, POSTN, and TIMP1. (E) Heatmap illustrating the dynamic changes in expression of the top 10 DEGs between CRPC-CAFs 
and PCa-CAFs along the pseudotime. (F) Scatter plot revealing the most specific regulons in CAFs, as determined by regulon specificity score (RSS). (G) 
Heatmap displaying the scaled average activity scores of the top 10 differential regulons between CRPC-CAFs and PCa-CAFs. (H) Violin plots depicting a 
comparative analysis of regulon activity scores between CRPC-CAFs and PCa-CAFs. Statistical significance was assessed using a two-tailed Wilcoxon test. 
(*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.)

 



Page 9 of 18Qiu et al. BMC Cancer          (2025) 25:813 

The differences in cell-cell interactions of CAFs with other 
cellular components between PCa and CRPC
To explore intercellular communication between CAFs 
and other cellular populations in the TME, CellChat 
was applied to establish a cell-cell interaction network 
and compare the differences between PCa and CRPC. 
We observed that the number and strength of intercel-
lular interactions were significantly increased in CRPC 
compared to PCa (Supplementary Fig. 3A-B). Addition-
ally, the differential interaction numbers and strengths of 
ligand-receptor signaling between CAFs and other cel-
lular populations were markedly upregulated in CRPC 
compared to PCa (Supplementary Fig.  3C-D). These 
results demonstrated that the TME in CRPC exhibited 
a heightened complexity in intercellular interactions 
compared to that in primary PCa. CRPC-CAFs showed 
significantly upregulated TGF-β, FN1, CXCL12, and 
ANGPTL2 signaling by interacting with myeloid cells 
than PCa-CAFs (Supplementary Fig. 3E). In addition, the 
expression of VEGF, JAG1, FN1, CXCL12, ANGPTL2, 
and ANGPTL4 ligand-receptor pairs interacting with 
endothelial cells was markedly increased in CRPC-CAFs 
(Supplementary Fig. 3E). These data suggested that CAFs 
may modulate the functionality of myeloid cells and 
endothelial cells through paracrine signaling or direct 
cellular contact, thereby facilitating disease progression. 
Meanwhile, other cellular populations in the TME recip-
rocally modulate the function and behavior of CAFs. 
Myeloid cells showed a significantly increased expression 
of VCAM1, TGF-β, SPP1, PDGFB ligand-receptor pairs 
interacting with CAFs in CRPC compared with primary 
PCa (Supplementary Fig.  3F). The expression of TGF-β 
ligand-receptor pairs was markedly elevated in T cells, 
B cells, and endothelial cells by interacting with CAFs in 
CRPC (Supplementary Fig. 3F). Notably, the FN1-CD44 
ligand-receptor interaction between CRPC-CAFs and T 
cells exhibited a significantly increased communication 
probability compared to other interactions. The probabil-
ity of intercellular communication was calculated based 
on the expression levels of the ligand-receptor pair genes. 
Therefore, we further explored the expression of FN1 and 
CD44 in scRNA-seq data. Our results revealed a signifi-
cant increase in the expression of FN1 in CRPC-CAFs 
compared to PCa-CAFs (Supplementary Fig.  4A-B). In 
contrast, the expression of CD44 in T cells did not exhibit 
a significant difference between CRPC and primary PCa 
(Supplementary Fig.  4C-D). These results indicated that 
the upregulated expression of FN1 in CRPC-CAFs con-
tributed to markedly enhanced FN1-CD44 interaction in 
CRPC. Collectively, our findings suggested that the inter-
actions between CAFs and other cellular components in 
the TME may contribute significantly to progression to 
CRPC.

TGF-β1 protein induced transcriptional and functional 
transformation of human prostatic fibroblasts
Our scRNA-seq analysis has uncovered a pronounced 
upregulation of the TGF-β signaling pathway within 
CRPC-CAFs. To validate these bioinformatics findings in 
vitro, we employed recombinant human TGF-β1 protein 
to treat the human prostatic fibroblast cell line WPMY-1. 
RT-qPCR analysis demonstrated that exogenous TGF-β1 
protein treatment significantly upregulated the expres-
sion of genes implicated in ECM remodeling and TGF-
β signaling, including FN1, TIMP1, COL1A1, TGFB1 
and TGFB2 (Fig.  4A). However, expression of the tran-
scription factor PRRX2 remained unchanged following 
TGF-β1 protein treatment, indicating that its elevated 
transcriptional activity in CRPC-CAFs may not corre-
late with expression levels. (Fig.  4A). The CCK-8 assay 
showed that TGF-β1 protein remarkably enhanced the 
proliferation capacity of WPMY-1 cells (Supplementary 
Fig.  5A). In addition, the wound healing assay showed 
that TGF-β1 treatment significantly facilitated the migra-
tion of WPMY-1 cells (Supplementary Fig. 5B). To com-
prehensively elucidate the impact of TGF-β1 on the 
biological functions of prostatic fibroblasts, RNA-seq was 
conducted on WPMY-1 cells. The principal component 
analysis (PCA) revealed a remarkable difference in the 
transcriptome profiles between WPMY-1 cells treated 
with TGF-β1 and those in the untreated group (Supple-
mentary Fig.  5C). A total of 760 DEGs were identified, 
among which 167 genes exhibited pronounced upregula-
tion in WPMY-1 cells treated with TGF-β1, whereas 593 
genes were substantially downregulated (Fig. 4B; Supple-
mentary Table 5). GSEA and ssGSEA results demon-
strated that the TGF-β, MYC targets V1, MYC targets V2 
and unfolded protein response signaling pathways were 
markedly activated in WPMY-1 cells treated with TGF-
β1, whereas IFNα response, IFNγ response, inflamma-
tion and IL-6/JAK/STAT3 signaling pathways exhibited 
notable suppression (Fig. 4C-D). Our enrichment analy-
ses revealed that the exogenous administration of TGF-
β1 significantly activated prostatic fibroblasts, leading 
to an upregulation of the TGF-β signaling pathway and 
concomitant downregulation of immune response-asso-
ciated pathways. Furthermore, we identified 6 genes that 
were commonly upregulated in both CRPC-CAFs and 
TGF-β1-treated prostatic fibroblasts, including TPM1, 
FN1, BGN, COL5A1, TNFAIP6 and CDH11 (Fig.  4E). 
The univariate Cox regression analysis of these 6 shared 
genes demonstrated that BGN is an independent risk fac-
tor intricately associated with RFS in PCa, as evidenced 
in both the TCGA and GSE21034 cohorts (Fig.  4F-G). 
Furthermore, Western blot analysis and RT-qPCR con-
firmed that the expression of BGN was significantly 
elevated in WPMY-1 cells treated with TGF-β1 (Fig. 4H; 
Supplementary Fig.  5D; Supplementary File 1). The 
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results suggested that BGN derived from activated CAFs 
may exert a pivotal effect on the progression of prostate 
cancer. In summary, exogenous administration of TGF-
β1 protein could notably drive phenotypic and functional 
alterations in human prostatic fibroblasts.

CRPC-CAFs were associated with immunotherapy response 
and immunosuppressive TME
To examine the impact of CRPC-CAFs on the immune 
microenvironment in prostate cancer, we comprehen-
sively analyzed the relationship between CRPC-CAFs 
abundance and immunotherapeutic response as well 

Fig. 4 TGF-β1 treatment exerting profound effects on human prostatic fibroblasts. (A) The RT-qPCR results for WPMY-1 cells treated with vehicle or 
TGF-β1. (B) Volcano plots displaying DEGs between WPMY-1 cells treated with vehicle or TGF-β1. (C) GSEA revealing significantly upregulated and down-
regulated signaling pathways in WPMY-1 cells treated with TGF-β1. (D) Heatmap displaying the activity levels of signaling pathways in WPMY-1 cells, as 
measured by ssGSEA. (E) Venn diagram illustrating the intersection of CRPC-CAFs marker genes and markedly upregulated genes in WPMY-1 cells treated 
with TGF-β1. (F-G) Forest plots displaying the results of univariate Cox regression analysis for the six genes in the TCGA (F) and GSE21034 (G) cohorts. (H) 
Immunoblotting analysis examining expression levels of BGN protein in WPMY-1 cells treated with vehicle or TGF-β1. Statistical significance was assessed 
using a two-tailed Student’s t test. (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.)
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as immune cells infiltration. In the IMvigor210 cohort, 
patients with higher CRPC-CAFs scores exhibited mark-
edly shorter overall survival and a poorer immunother-
apy response compared with those with lower scores 
(Fig.  5A-B). Notably, patients with higher CRPC-CAFs 
scores had significantly increased TIDE scores, indicating 

that CRPC-CAFs may promote immune evasion and 
resistance to immunotherapy (Fig. 5C). ESTIMATE anal-
ysis uncovered significantly increased immune scores 
and stromal scores in patients with higher CRPC-CAFs 
scores compared to those with lower scores (Supple-
mentary Fig.  6A). CIBERSORT analysis showed that 

Fig. 5 The abundance of CRPC-CAFs correlating with immunotherapy response and the composition of the immune microenvironment. (A) Kaplan–
Meier curves presenting a comparison of overall survival between patients with high versus low CRPC-CAFs scores in the IMvigor210 cohort. (B) Bar plot 
displaying a comparison of objective response rate of immunotherapy between patients with high versus low CRPC-CAFs scores in the IMvigor210 co-
hort. Statistical significance was assessed by utilizing a Chi-square test. (C) Boxplots illustrating a comparison of tumor immune dysfunction and exclusion 
(TIDE) score between patients with high versus low CRPC-CAFs scores. Statistical significance was assessed using a two-tailed Wilcoxon test. (*p < 0.05; 
**p < 0.01; ***p < 0.001; ****p < 0.0001.) (D) Boxplots presenting a comparative analysis of the proportion of intratumoral immune cells, as measured by 
CIBERSORT, between patients with high versus low CRPC-CAFs scores. (E) Boxplots presenting a comparative analysis of immune cell infiltration levels, as 
measured by ssGSEA, between patients with high versus low CRPC-CAFs scores. (F) Boxplots illustrating a comparison of the expression levels of immu-
nosuppressive molecules between patients with high versus low CRPC-CAFs scores. (G) Spearman correlation analysis revealing markedly positive cor-
relation between CRPC-CAFs scores and expression levels of immunosuppressive molecules, including PDCD1, CD274, CTLA4, LAG3, TIGIT, and HAVCR2

 



Page 12 of 18Qiu et al. BMC Cancer          (2025) 25:813 

patients with high CRPC-CAFs scores had a markedly 
elevated proportion of memory CD4+ T cells, Tregs, and 
M2 macrophages (Fig.  5D). Conversely, patients with 
low CRPC-CAFs scores displayed a notably increased 
relative abundance of plasma cells and follicular helper 
T cells (Fig.  5D). In addition, ssGSEA analysis revealed 
that the infiltration levels of macrophages, MDSCs, and 
regulatory T cells (Tregs) were significantly increased in 
patients with high CRPC-CAFs scores (Fig. 5E). To fur-
ther decipher the relationship between CRPC-CAFs and 
other stromal cell densities in the TME, xCell analysis 
was conducted. The results revealed that patients with 
high CRPC-CAFs scores exhibited significantly higher 
densities of endothelial cells, fibroblasts, and pericytes 
compared to those with lower scores (Supplementary 
Fig.  6B). Our findings demonstrated that patients with 
high CRPC-CAFs scores exhibited remarkably increased 
infiltration of inhibitory immune cells and diminished 
efficacy of immunotherapy. Furthermore, we analyzed 
the correlation between CRPC-CAFs scores and expres-
sion of immunosuppressive molecules. Significantly 
increased expression of PDCD1, CD274, CTLA4, LAG3, 
TIGIT, and HAVCR2 was observed in patients with high 
CRPC-CAFs scores compared to those with lower scores 
(Fig. 5F). CRPC-CAFs scores showed a significantly posi-
tive correlation with the expression of PDCD1, CD274, 
CTLA4, LAG3, TIGIT, and HAVCR2 (Fig. 5G). In sum-
mary, these observations suggested that CRPC-CAFs 
may play a paramount role in establishing an immuno-
suppressive microenvironment, thereby contributing to 
resistance to immunotherapy in prostate cancer.

Blockade of TGF-β signaling augments the efficacy of 
immunotherapy in a murine model of PCa
Our aforementioned findings indicated that CRPC-
CAFs, characterized by notable upregulation of TGF-β 
signaling, were intricately associated with resistance to 
immunotherapy. Additionally, ssGSEA analysis results 
demonstrated that the TGF-β signaling pathway was 
markedly activated in patients with high CRPC-CAFs 
scores (Fig.  6A). In addition to CRPC-CAFs, several 
other cell populations also exhibited pronounced upreg-
ulation of TGF-β signaling pathway in CRPC compared 
to primary PCa (Supplementary Fig.  7). Therefore, we 
hypothesized that blockade of TGF-β signaling could 
enhance the efficacy of immunotherapy in prostate can-
cer. To validate our hypothesis, we constructed a murine 
model of PCa with subcutaneously implanted RM-1 
cells and treated with vehicle, anti-PD-1, anti-TGF-β or 
combination of anti-PD-1 and anti-TGF-β (Fig. 6B). We 
observed that, compared to the control group, mice in 
the anti-PD-1 or anti-TGF-β monotherapy group dis-
played significantly inhibited tumor growth (Fig.  6C-E). 
Moreover, the combination therapy of anti-PD-1 and 

anti-TGF-β exhibited remarkably synergistic inhibition 
of tumor growth (Fig. 6C-E). IHC staining demonstrated 
that the number of CD4+ T cells and CD8+ T cells was 
significantly increased in the combination therapy group 
compared with the anti-PD-1 or anti-TGF-β monother-
apy group (Fig. 6F-H). To further investigate the effect of 
anti-TGF-β therapy on the TME of prostate cancer, we 
employed immunohistochemical staining to assess the 
expression levels of TGF-β1, α-SMA, PD-1, and PD-L1. 
Our results revealed a significant reduction in the expres-
sion of both TGF-β1 and α-SMA in the mice receiving 
anti-TGF-β monotherapy and combination therapy, as 
compared to the control group (Supplementary Fig. 8A-
B). These results suggest that anti-TGF-β treatment 
markedly suppresses TGF-β signaling and the expression 
of TGF-β target genes in PCa mice. However, the expres-
sion levels of PD-1 and PD-L1 did not exhibit significant 
differences across the four experimental groups (Supple-
mentary Fig. 8C-D). This observation suggests that anti-
TGF-β therapy does not directly modulate the expression 
of PD-1 and PD-L1. Instead, anti-TGF-β treatment may 
exert an alternative influence on the TME, potentially 
facilitating the recruitment of immune cells and thereby 
augmenting the anti-tumor immune response. Collec-
tively, these observations indicated that the inhibition of 
TGF-β signaling in CRPC-CAFs could enhance the effi-
cacy of immunotherapeutic intervention through ampli-
fying immune response in prostate cancer.

Discussion
Recent investigations have highlighted the profound 
influence of CAFs on cancer progression, metasta-
sis, and drug resistance, which is exerted through both 
direct effects on tumor cells and indirect promotion of 
the immunosuppressive TME [37–40]. Nonetheless, the 
precise biological functions CAFs serve in the tumor 
milieu of CRPC have yet to be fully understood. Herein, 
we have delineated the tumor-promoting properties of 
CRPC-CAFs and validated their prognostic implications 
for clinical outcomes and responses to immunotherapy in 
prostate cancer.

With the rapid advancement and increasing application 
of sc-RNA-seq technology, we have a novel opportunity 
to decipher the heterogeneity in phenotypes and func-
tions of distinct CAF subpopulations across a spectrum 
of cancer types [41]. For instance, a recent study uncov-
ered a novel CAF subpopulation marked by elevated 
expression of PDGFRα and ITGA11, which plays a piv-
otal role in lymph node dissemination in early bladder 
cancer [42]. A subset of CAFs overexpressing SLC14A1 
has been reported to confer chemoresistance and aug-
ment the stem-like characteristics of bladder cancer cells 
via the activation of WNT5A/β-catenin paracrine sig-
naling [37]. Moreover, a recent single-cell analysis has 
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revealed a TSPAN8-positive CAF subtype that contrib-
utes to resistance to chemotherapeutic agents in breast 
cancer by eliciting the degradation of SIRT6 and increas-
ing the release of IL-6 and IL-8 [43]. Our scRNA-seq 
results uncovered significantly distinct transcriptomic 

profiles of CRPC-CAFs compared to those from primary 
PCa. Notably, CRPC-CAFs exhibited significant upregu-
lation of the TGF-β signaling pathway and enhanced 
extracellular matrix remodeling. In line with our find-
ings, a study also demonstrated that ADT can augment 

Fig. 6 Blockade of TGF-β signaling potentiating the efficacy of immunotherapeutic intervention. (A) Bar plot illustrating substantially upregulated sig-
naling pathways in patients with high and low CRPC-CAFs abundance. Activity of signaling pathways was measured by ssGSEA. Comparison of ssGSEA 
activity scores between high and low CRPC-CAFs abundance groups was achieved by Limma. t-values represent statistics computed by the fitting linear 
models. (B) Schematic diagram illustrating experimental procedures and therapeutic administration strategy. (C) Gross appearance of the RM-1 tumors. 
(D) Tumor growth curves for mice bearing subcutaneous RM-1 implants following the administration of isotype IgG (n = 5), anti-PD-1 (n = 5), anti-TGF-β 
(n = 5), and combination therapy of anti-PD-1 and anti-TGF-β (n = 5). (E) Tumor weight of mice with subcutaneously implanted RM-1 tumors in distinct 
therapeutic groups. (F) Representative images of IHC staining of CD4 and CD8 in distinct therapeutic groups. Scale bars: 100 μm. (G-H) Quantitative analy-
ses of the densities of CD4+ T cells (G) and CD8+ T cells (H) in distinct therapeutic groups. Statistical significance was assessed using a two-tailed Student’s 
t test. (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.)
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activity of the TGF-β signaling pathway to facilitate the 
phenotypic transition of inflammatory CAFs to CRPC-
CAFs, which accelerates resistance to ADT through 
increased paracrine secretion of SPP1 [44].

Through differential expression analysis and pseudo-
time trajectory analysis, we found a set of ECM-remod-
eling-associated genes was significantly upregulated in 
CRPC-CAFs compared to PCa-CAFs, including POSTN, 
FN1, COL1A1, and TIMP1. Consistent with our results, 
a previous report demonstrated that the expression level 
of POSTN was markedly elevated in metastatic CRPC 
(mCRPC) tissues compared to that in primary PCa tissues 
[45]. Additionally, elevated plasma levels of POSTN were 
positively correlated with unfavorable clinical outcomes 
in patients with mCRPC. Recently, POSTN-positive 
CAFs have been reported to be intricately implicated in T 
cell functional exhaustion in the TME, eventually leading 
to a more unfavorable clinical prognosis in patients with 
non-small cell lung cancer [46]. Similarly, a separate study 
identified a CAF subpopulation with elevated POSTN 
expression that facilitates tumor progression and confers 
resistance to immunotherapy in hepatocellular cancer 
[47]. Our in vitro experimental findings confirm that the 
expression levels of ECM-remodeling-related genes, such 
as FN1, COL1A1, and TIMP1, are markedly elevated in 
human prostatic fibroblasts following exposure to TGF-
β1 protein. It has been reported that FN1 is implicated 
in tumor progression and poor clinical prognosis in vari-
ous cancers including breast cancer, thyroid cancer, and 
esophageal squamous cell carcinoma [48–50]. COL1A1 
and TIMP1, as pivotal components of the extracellular 
matrix, also play important roles in the process of cancer 
progression and metastasis [51–54]. Therefore, targeted 
inhibition of CRPC-CAFs could represent a promising 
therapeutic strategy to prevent progression of prostate 
cancer. Notably, the gene BGN, which is markedly upreg-
ulated in TGF-β1-treated prostatic fibroblasts, has been 
found to be positively associated with unfavorable clini-
cal outcomes in prostate cancer. In line with our findings, 
a recent study has uncovered that BGN, as a secre-
tory proteoglycan predominantly derived from CAFs, 
is implicated in unfavorable prognosis and resistance to 
immunotherapeutic interventions across a spectrum of 
malignancies [55]. In breast cancer, CAF-derived BGN is 
reported to be closely correlated with adverse prognosis 
and the immunosuppressive tumor milieu, particularly 
characterized by a diminished infiltration of CD8+ T cells 
[56]. Employing proteomic analysis, a recent investiga-
tion has disclosed that the BGN protein serves as a pre-
dictive biomarker for the transition from HSPC to CRPC 
[57].

Transcription factors have been recognized as critical 
modulators of molecular and functional heterogeneity 
among distinct CAF subpopulations [58]. Our findings 

indicate that PRRX2 may hold an indispensable role 
in driving the transition of PCa-CAFs to CRPC-CAFs. 
PRRX2, as a transcription factor intricately implicated in 
cellular differentiation and oncogenic processes, exhibits 
remarkable upregulation in response to TGF-β signaling, 
subsequently facilitating breast cancer progression and 
EMT [59]. Recently, PRRX2 has been reported to func-
tion as a critical factor eliciting resistance to androgen-
receptor inhibitors, mediated by marked upregulation of 
RB1/E2F and BCL2 signaling [60]. In light of the afore-
mentioned results, further experimental investigation is 
warranted to elucidate the regulatory function of PRRX2 
in CRPC-CAFs.

Utilizing CellChat analysis, we observed remarkably 
enhanced interaction of the FN1-CD44 ligand-receptor 
pair between CRPC-CAFs and T cells. Consistent with 
our findings, a recent study has revealed that CAFs exhib-
ited markedly enhanced interactions with T cells and 
myeloid cells via the FN1-CD44 signaling axis, thereby 
facilitating invasion and metastasis in colorectal cancer 
[61]. FN1, a critical glycoprotein component of the extra-
cellular matrix in the TME, exerts profound effects on 
tumor cell proliferation, invasion, and ECM remodeling 
[62–64]. The expression of FN1 is intricately correlated 
with clinical prognosis and immune cell infiltration in 
various cancers [65, 66]. CD44 is widely recognized as a 
marker of cancer stem cells in human malignancies and 
has been reported to be implicated in unfavorable prog-
nosis, drug resistance, and immune evasion [67, 68]. 
Recent research has uncovered that CD44 is capable of 
upregulating the expression of PD-L1 in breast and lung 
cancers [69]. Given these findings, it is essential to assess 
the strength of the FN1-CD44 interaction between CAFs 
and T cells in CRPC and to determine the effect of this 
interaction on tumor progression in transgenic models of 
spontaneous prostate cancer in the future.

Importantly, our data uncovered that patients with high 
CRPC-CAFs abundance exhibited diminished sensitiv-
ity to immune checkpoint inhibitors. Recently, mounting 
evidence has demonstrated that CAFs can interact with 
diverse immune cell populations in the TME, exerting 
a profound influence on anti-tumor immune response 
[70]. WNT2, derived from CAFs, has emerged as a piv-
otal modulator of the phenotype and biological functions 
of dendritic cells (DCs) within the TME [71]. In addition, 
the blockade of WNT2 signaling dramatically potentiates 
the efficacy of immunotherapeutic interventions through 
augmenting anti-tumor immune response. In the context 
of breast cancer (BC), CAFs are significantly implicated 
in the diminished frequency of CD8+ T cells and unre-
sponsiveness to immunotherapy [72]. In alignment with 
their findings, our research indicates that CRPC-CAFs 
are intricately associated with the creation of an immu-
nosuppressive tumor milieu, characterized by elevated 
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abundance of inhibitory immune cells and upregulated 
expression of immunosuppressive molecules.

A burgeoning body of evidence sheds light on the para-
mount role of TGF-β signaling in modulating the func-
tions of diverse immune cell populations and affecting 
responsiveness to immunotherapy [73, 74]. Herein, we 
discerned a marked activation of TGF-β and immune 
evasion-related signaling pathways in patients with high 
abundance of CRPC-CAFs. Leveraging a subcutaneous 
PCa tumor-bearing model, our study demonstrated that 
blockade of TGF-β signaling significantly potentiated the 
efficacy of anti-PD-1 immunotherapy and elicited a sub-
stantial increase in the density of both CD4+ and CD8+ 
T cells. Consistent with our data, recent studies have 
revealed that the combination of immunotherapeutic 
interventions and specific inhibition of TGF-β signaling 
substantially restrains tumor progression and metasta-
sis, mediated by an increase in the frequency of T cells 
and activation of their biological functions [75–77]. Fur-
thermore, interrupting the TGF-β signaling cascade can 
augment cytotoxic potential of NK cells, subsequently 
facilitating the regression of bladder cancer [78].

There exist several limitations in our present study that 
warrant further improvement. Genetically engineered 
mice with fibroblast-specific conditional gene manipula-
tion allow for a more precise elucidation of the impact of 
CRPC-CAFs on the tumor immune milieu and immuno-
therapy response. Furthermore, large-scale, multi-center 
cohorts are warranted to validate the prognostic impli-
cations of the abundance of CRPC-CAFs. Finally, there 
is a need to isolate primary CAFs from CRPC tissues 
to explore the molecular mechanisms by which CRPC-
CAFs interact with immune cells.

Taken together, we uncover a subpopulation of CRPC-
CAFs intricately associated with unfavorable clinical out-
comes and insensitivity to immunotherapeutic agents. 
Moreover, the elevated abundance of CRPC-CAFs is 
involved in the upregulation of TGF-β signaling and 
immunosuppression in PCa. Our findings propose that 
targeting CRPC-CAFs may represent a promising thera-
peutic strategy for improving prognosis and the efficacy 
of immunotherapy in patients with CRPC.
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