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Abstract
Background The breast cancer recurrence and chemoresistance has increased over the years. A novel PKC, PKCε, 
may promote chemoresistance by causing hypoxia and cancer metabolic rewiring. A natural flavonoid, Zapotin, in 
colon cancer cells may modulate PKCε expression. Therefore, this study aimed to explore Zapotin impact on PKCε 
expression and the metabolic profile of breast cancer cells.

Methods Pharmacophore analysis of Zapotin was performed and molecular dynamics (MD) simulations were 
employed to study PKCε and Zapotin interaction stability. The effect of Zapotin treatment on PKCε expression and 
various aspects of cancer cell viability and metabolism was studied in MCF-7 and MDA-MB-231 breast cancer cell lines 
using real-time PCR, growth and death assays, and Gas Chromatography-Mass Spectrometry.

Results In silico analyses revealed good solubility and absorption of Zapotin with lower toxicity. Zapotin showed 
cancer cell-specific cytotoxicity (P < 0.0001). It’s treatment also reduced breast cancer cell viability, colony formation, 
and migratory potential by targeting PKCε and associated HIF-1ɑ and VEGF signaling (P < 0.01). Zapotin also impacted 
PKCε-mediated metabolic signaling by targeting glycolytic pathways.

Conclusion This study demonstrated the role of PKCε mediated HIF-1ɑ, VEGF, and glycolytic pathways in promoting 
breast carcinogenicity and demonstrated Zapotin as a potential treatment option for different types of breast tumors.
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Background
Recent data demonstrate a rise in breast cancer inci-
dence and associated mortality worldwide. Approxi-
mately 313,510 new breast cancer cases are estimated 
in the United States alone in 2024. Among these, 42,780 
lives are estimated to be claimed by breast carcinoma 
[1, 2]. Globally, breast cancer accounts for ~ 12% of can-
cers diagnosed in females. Worldwide statistics reported 
2 million newly diagnosed breast cancer cases in 2018 [3, 
4].

Increased knowledge of the molecular pathology of 
breast cancer and advancement in high-throughput 
technology contributed to increased five-year survival in 
breast cancer [5]. Despite improved strategies for early 
screening and better disease management, drug resis-
tance and cancer recurrence remain major obstacles in 
treating breast cancer [6, 7]. Identification of molecular 
markers is needed to overcome improved breast cancer 
prognosis, develop new treatments, and decrease breast 
cancer-related mortality [8–11].

Protein kinase C epsilon (PKCε) belongs to the novel 
protein kinase C family class. Its association with all can-
cer hallmarks including growth inhibitory signal evasion, 
apoptosis resistance, replicative immortality, angiogen-
esis, immune escape, and invasion and metastasis has 
been reported in different cancers [12–16]. Furthermore, 
aberrant PKCε expression is associated with the emer-
gence of drug resistance in cancers. Mechanistically, 
PKCε promotes the expression of a multidrug-resistant 
(MDR/ABCB1) gene that causes the efflux of therapeu-
tic agents from cancer cells, rendering them resistant to 
therapy [17, 18].

Literature has also indicated PKC family protein’s role 
in modulating the activity of Akt that also contributes to 
carcinogenicity [19]. Conventional PKC-beta is reported 
to activated Akt in response to glucose [20]. However, no 
experimental evidence ever demonstrated the contribu-
tion of PKCε in mediating breast carcinogenicity by mod-
ulating Akt pathway. Evidence also suggest PKCε’s role in 
modulating insulin metabolism and glucose metabolism 
[21, 22]. However, studies indicating PKCε contribution 
in promoting metabolic alteration in cancer are scarce.

Its role in modulating hypoxia in several cardiac anom-
alies has also been reported. PKCε has been reported to 
sooth hypobaric hypoxia in mouse by inhibiting GSK3β/
HIF-1α expression and regulating glucose utilization in 
cardiac mitochondria [23]. However, in another study, 
PKCε inhibition or gene silencing was found to lower 
hypoxia in pulmonary artery smooth muscle cell [24]. 
In cancer, PKCε’s contribution in hypoxia is not fully 
explored.

In vitro, inhibition of PKCε is demonstrated to block 
these cancer hallmark activities and restore sensitivity 
to chemo- and radio-therapies [13, 25–28]. The natural 

flavonoid 5,6,2’,6’- tetramethoxyflavone (Zapotin) is pres-
ent in zapote blanco (a tropical fruit) and is reported to 
have anti-cancer activity [29, 30]. It is studied for its anti-
depressant, anti-oxidative, anticonvulsant, anti-micro-
bial, and anti-fungal properties [31]. It is also evaluated 
for its anti-cancer properties in HeLa cell lines and skin 
cancer animal model [32, 33]. Studies in colon cancer 
cell lines and xenografted mice revealed that Zapotin 
treatment induces apoptosis and reduces colon carcino-
genicity [34]. In addition, Zapotin modulates PKCε sig-
naling to induce programmed cell death in HeLa cells 
[29]. However, anti-carcinogenic influence of Zapotin in 
breast cancer have never been explored. Studies also lack 
evidence on delineating PKCε’s role in metabolic altera-
tion in breast cancer. Therefore, in the present study, we 
coupled bioinformatics, molecular biology, and analyti-
cal techniques to determine the influence of Zapotin on 
PKCε expression and understand its impact on the meta-
bolic profile of breast cancer cells. This is the first study 
to delineate strong molecular interaction between PKCε 
and Zapotin and suggested Zapotin as a new potent 
therapeutic option for treating invasive breast cancer by 
targeting PKCε. Furthermore, this study also provided 
evidence for PKCε as a key contributor in metabolic 
rewiring in breast cancer.

Methods
The tertiary structure of PKCε was previously predicted 
[35] using a threading approach [36] and validated 
through ERRAT analysis, Ramachandran plot analysis, 
and alignment analysis [37]. The stability of the predicted 
structure was also evaluated through molecular dynam-
ics (MD) simulations [35]. The current study employed a 
similar structure to determine molecular interaction sta-
bility between Zapotin and PKCε. All methods were per-
formed in accordance with the relevant guidelines and 
regulations.

Localization prediction of PKCε
PKCε sub-cellular localization was predicted through 
deep learning tools DeepLoc1.0 ( h t t p  s : /  / s e r  v i  c e s  . h e  a l t h  t e  
c h .  d t u  . d k /  s e  r v i c e s / D e e p L o c - 1 . 0 / [38]), and TMHMM2.0 
( h t t p  s : /  / s e r  v i  c e s  . h e  a l t h  t e  c h .  d t u  . d k /  s e  r v i c e s / T M H M M - 
2 . 0 / [39]),. Further, the presence of signal sequences for 
secretion and organelle translocation (mitochondria/
endoplasmic reticulum/Golgi apparatus) was investi-
gated through SignalP-5.0 ( h t t p  s : /  / s e r  v i  c e s  . h e  a l t h  t e  c h .  d 
t u  . d k /  s e  r v i c e s / S i g n a l P - 5 . 0 / [40]),, SecretomeP 1.0 ( h t t p  
s : /  / s e r  v i  c e s  . h e  a l t h  t e  c h .  d t u  . d k /  s e  r v i  c e s  / S e c  r e  t o m e P - 1 . 0 / 
[41]),, and TargetP ( h t t p  s : /  / s e r  v i  c e s  . h e  a l t h  t e  c h .  d t u  . d k /  s 
e  r v i c e s / T a r g e t P - 2 . 0 / [42]),. The prediction was based on 
the likelihood score obtained from each tool.

https://services.healthtech.dtu.dk/services/DeepLoc-1.0/
https://services.healthtech.dtu.dk/services/DeepLoc-1.0/
https://services.healthtech.dtu.dk/services/TMHMM-2.0/
https://services.healthtech.dtu.dk/services/TMHMM-2.0/
https://services.healthtech.dtu.dk/services/SignalP-5.0/
https://services.healthtech.dtu.dk/services/SignalP-5.0/
https://services.healthtech.dtu.dk/services/SecretomeP-1.0/
https://services.healthtech.dtu.dk/services/SecretomeP-1.0/
https://services.healthtech.dtu.dk/services/TargetP-2.0/
https://services.healthtech.dtu.dk/services/TargetP-2.0/
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In silico pharmacophore analysis
LigandScout was employed to generate a pharmacophore 
model of Zapotin [43]. Web-based and standalone in-
silico pharmacokinetics tools were applied to estimate 
the absorption, metabolism, distribution, and toxic-
ity of 5,6,2’,6’-Zapotin. A canonical simplified molecular 
input line entry (SMILE) system was employed to submit 
chemical structures in each software.

Algorithms on molinspiration ( h t t p  : / /  w w w .  m o  l i n  s p i  r a t 
i  o n  . c o m / [44]), admetSAR2.0 (http://www.admetexp.org 
[45]), OSIRIS property explorer ( w w w . o r g a n i c - c h e m i s t r y 
. o r g / p r o g . p r o [46]), VirtualRat  (   h t t p s : / / v i r t u a l r a t . c m d m . t 
w /     [47]), ADVERPred ( h t t p  : / /  w w w .  w a  y 2 d  r u g  . c o m  / a  d v e r 
p r e d / [48]), and swissADME ( h t t p  : / /  w w w .  s w  i s s  a d m  e . c h  / 
i  n d e x . p h p [49]), were performed. Physiochemical  p r o p e r 
t i e s of the drug based on Lipinski rule and drug likeliness 
were estimated through molinspiration, admetSAR, 2.0, 
organic chemistry portal, virtual rat, and swissADME. 
Scores from admetSAR2.0, molinspiration, VirtualRat, 
ADVERPred, and swissADME were employed to predict 
ADME parameters, pharmacokinetic and toxicological 
properties, including carcinogenicity, mutagenicity, and 
adverse effects. The bioactivity of the drug was estimated 
through molinspiration and admetSAR2.0.

Molecular docking
PubChem database was used to retrieve the structure of 
the ligand Zapotin (Compound CID: 629965). The energy 
of the downloaded structure was minimized through 
chemdraw 2016 (PerkinElmer, Inc, Waltham, MA 02451 
USA). CB-dock webserver was employed for the dock-
ing of PKCε with energy-minimized Zapotin. This web-
server uses a curvature-based cavity detection approach, 
and the Autodock Vina program was applied to predict 
the binding modes. Based on the Vina score and cavity 
size, the selection of binding mode is done ( h t t p  : / /  c l a b  . l  
a b s  h a r  e . c n  / c  b - d o c k / [50]),. Visualization and analysis of 
electrostatic and non-electrostatic interactions were per-
formed through LigPlot+ version 2.2 [51].

Molecular dynamics simulations (MD simulation)
The Zapotin-PKCε complex was simulated for 10ns 
using GROMACS on a Linux platform [52]. The ligand’s 
topology was generated using the CGenFF server, while 
the CHARMM26 force field was employed for the pro-
tein’s topology. The water box filled with TIP3P water 
molecules, complemented with sodium and chloride 
ions, was used for solvation. Following a 200 ps steep-
est descent energy minimization, the system underwent 
equilibration for volume, pressure, and temperature. The 
100ns MD production was then executed. The trajec-
tory was constructed using the gmx_ trjconv command 
for the post-simulation analysis. The built-in GROMACS 
commands: gmx rms, gmx rmsf, gmx area, and gmx cod, 

were used for calculating Root Mean Square Deviation 
(RMSD), Root Mean Square Fluctuation (RMSF), Solvent 
Accessible Surface Area (SASA), and the count of hydro-
gen bonds.

Cell culture and maintenance
Human breast cancer MDA-MB-231 and MCF-7 cell 
lines were obtained from ATCC and cultured in Roswell 
Park Memorial Institute Medium (RPMI) (Gibco, Life 
Technologies), supplemented with 10% fetal bovine 
serum (FBS) (Gibco, Life Technologies) and 1% penicil-
lin-streptomycin (Gibco, Life Technologies) in an incu-
bator provided with 5% carbon dioxide at 37  °C. Cell 
harvesting was performed with trypsin-EDTA.

Cytotoxicity assay
Zapotin was purchased from Sigma-Aldrich (LOT # 
65548-55-2). Assessment of Zapotin treatment on cell 
viability was performed using MTT (3-(4,5-dimethyl 
thiazol-2yl)-2,5-diphenyl tetrazolium bromide) assay 
(Mosmann, 1983). MDA-MB-231 and MCF-7 cells were 
plated in 96-well plates (7000 cells/well) in 200  µl of 
growth medium. Dose-dependent cytotoxic influence of 
Zapotin was studied by treating plated cells with varying 
drug concentrations (ranging from 0.15 to 0.35 µM). The 
dose range was selected by testing different dosages from 
0 µM to 0.35 µM (Supplementary file S Table  2). After 
48  h of incubation, media was aspirated, and cells were 
subjected to 1X PBS washing. Serum-free media diluted-
MTT (100  µl) was added in each well and, as a solubi-
lization solution, further incubated for 2 h at 37  °C in a 
humidified atmosphere. DMSO (100 µl) was added as a 
solubilization solution for formazan, and formazan con-
centration was measured at 550 wavelength. Percentage 
cell viability is calculated through.

 %Cell Viability = Absorbance of Control Wells
Absorbance of Treated Wells

× 100

The significance is determined through one-way ANOVA 
and each experiment was repeated in triplicates.

Wound healing assay
Breast cancer cells were seeded in cell culture plates and 
allowed to achieve 70–80% confluency. After 24  h of 
incubation, the medium was removed, and sterile 2-mm 
wide pipette tips were used to scrape and create a gap of 
constant width in the monolayer. The wounded mono-
layer was subjected to PBS washing to remove cell debris, 
and cells were subsequently exposed to various concen-
trations of drug or DMSO alone. Cell movement for the 
next 24  h was photographed at regular intervals using 
LSM 410 microscope (Zeiss, Germany).

http://www.molinspiration.com/
http://www.molinspiration.com/
http://www.admetexp.org
http://www.organic-chemistry.org/prog.pro
http://www.organic-chemistry.org/prog.pro
https://virtualrat.cmdm.tw/
https://virtualrat.cmdm.tw/
http://www.way2drug.com/adverpred/
http://www.way2drug.com/adverpred/
http://www.swissadme.ch/index.php
http://www.swissadme.ch/index.php
http://clab.labshare.cn/cb-dock/
http://clab.labshare.cn/cb-dock/
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Colony formation assay
Zapotin treatment effect on the colony formation poten-
tial of breast cancer cells was assessed through a clono-
genic assay. MDA-MB-231 and MCF-7 cells were seeded 
(density 1000 cells/well) in 12-well plates in triplicate. 
After 24 h, the medium was substituted with media con-
taining different drug concentrations. Media with float-
ing cells from wells was collected after 48  h, spun for 
3 min at 1500 x rpm, and the pellet was collected. Cells 
were resuspended in fresh medium, replating in a 12-well 
plate, and incubated in a 5% CO2-humidified atmosphere 
for 2 weeks. Fresh media was added every 4 days, and 
regular observation under the microscope was done for 
colony formation. After 2 weeks, media was removed, 
and cells stained with a staining solution (0.5% crystal 
violet prepared in glacial acetic acid, methanol, and dis-
tilled water) for 45 min. After PBS wash, pictures of the 
colonies were taken.

Cell staining and flow cytometry
The collection of cells was carried out by centrifuging 
them at 800  rpm and washed with 1X PBS. The super-
natant was removed, and 1X FBS (500  µl) and Annexin 
V binding buffer (100  µl) was utilized for resuspend-
ing ~ 1 × 106 cells. After incubation at room tempera-
ture for 5 min, centrifugation for 5 min at 400 rpm was 
performed.

Cells were subjected to suspension in dyes Annexin V 
(5 µl) and propidium iodide (5 µl), along with Annexin V 
binding buffer (1X, 100 µl), and spun gently for homoge-
neous mixing. The resultant mixture was incubated in the 
dark at room temperature for 20 min. After incubation, 
binding buffer (1X, 400 µl) was added, and unbound dye 
was removed by centrifugation in the tube. Stained cells 
were immediately assessed by flow cytometry. Healthy 
cells will be Annexin V and propidium iodide negative. 
Late apoptotic cells will be Annexin V and propidium 
iodide positive, whereas early apoptotic cells will be 
Annexin V positive and propidium iodide negative. The 
experiment was repeated twice.

Real-time PCR
Pallets of MCF-7 and MDA-MB-231 cells were collected 
after 24 h of Zapotin treatment, and extraction of RNA 
was performed through the TriZol method as described 
[53], with few modifications. After adding TriZol and 
chloroform in cell pellet, the solution was hand mixed for 
1 min and centrifuges for 15 min. Rest of the protocol for 
followed as described in [53]. The complementary DNA 
(cDNA) was synthesized using > 1  µg of RNA template. 
Solice BioDyn cDNA synthesis kit (Tartu, Estonia) was 
used for cDNA synthesis, and the procedure was carried 
out per the manufacturer’s instructions. A reaction mix-
ture of 20 µl total volume was prepared by adding 10 µg 

cDNA, 1 µl forward and reverse primers, 10 µl PowerUp™ 
SYBR™ Green Master Mix (Thermofisher Scientific, 
United States), and nuclease-free water. Amplification 
and real-time conditions were: initial denaturation for 
2 min at 95ºC, then 40 cycles of denaturation at 95ºC for 
30 s, amplification at 61ºC for 15 s, and real-time analysis. 
The reaction was carried out on Applied Biosystems 7300 
Real-Time PCR System, and data analysis was performed 
through the system’s SDs software. Normalization was 
performed using beta-actin primers, and expression 
quantification was done through the double-CT (2^(-∆∆)
CT ) method [54]. The expression of PKCε was studied 
along with SOCS3, AKT, VEGF, and HIF-1ɑ to analyze 
the impact of Zapotin on its upstream and downstream 
targets. The primer sequences are:

PKCε
Forward 5’AGCCTCGTTCACGGTTCT3’.

Reverse 5’TGTCCAGCCATCATCTCG3’.

HIF1α
Forward 5’CAGATCTCGGCGAAGTAAAG3’.

Reverse 5’TCACAGAGGCCTTATCAAGATG3’.

SOC3
Forward 5’CACCTGGACTCCTATGAGAAAGTCA3.

Reverse 5’GGGGCATCGTACTGGTCCAGGAA3’.

VEGF
Forward 5’CGAGGGCCTGGAGTGTG3’.

Reverse 5’CCGCATAATCTGCATGGTGAT3’.

AKT
Forward 5’TTCTGCAGCTATGCGAATCTC3’.

Reverse 5’TGGCCAGCATACCATAGTGAGGTT3’.

Beta-actin
Forward 5’CACCATTGGCAATGAGCGGTTC3’.

Reverse 5’AGGTCTTTGCGGATGTCCACGT3’.

Statistical analysis
A double delta method was used for the calculation of 
fold change [55]. Experiment was repeated in triplicate 
and the association between target genes’ expression 
with Zapotin treatment was determined through One-
way ANOVA. All analysis was computed through Graph-
pad Prism 8.0.1 (GraphPad Software Inc., San Diego, CA, 
USA). P-value less than 0.05 depicted significance.

Gas chromatography coupled with mass spectrometry 
(GC-MS)
Breast cancer cell pellets representing Zapotin treated 
and untreated conditions in triplicate (MCF-7 and MDA-
MB-231) were suspended in PBS and collected in 2  ml 
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microcentrifuge vials. All samples were centrifuged at 
13000xg for 5 min at 4 °C, the supernatant was collected, 
and roughly 3  million cells were subjected to sample 
preparation for metabolome analysis. The protocol for 
GC-MS sample preparation and analysis was as described 
by Semreen et al., 2019 [56] with slight modifications.

Sample preparation
Methanol (0.1% v/v, Sigma Aldrich, Massachusetts, 
United States) was added to pellets and vortexed for 
5 min. Samples were incubated on ice for one hour, dur-
ing which each sample was subjected to brief vortex 
mixing every 10  min. Centrifugation was carried out 
for 10  min at 13,000  rpm to separate the cell insoluble 
matrix, and the supernatant was taken in GC vials. The 
supernatant was dried at 37  °C in Eppendorf Vacufuge® 
Vacuum Concentrator (Eppendorf, United Kingdoms) 
[56]. The dried samples were then dissolved in 50  µl of 
a solution (methoxyamine hydrochloride (Sigma Aldrich, 
Massachusetts, United States) in pyridine (20  mg/ml, 
Sigma Aldrich, Massachusetts, United States)). Then, 
a solution consisting of MSTFA (Sigma Aldrich, Mas-
sachusetts, United States) and 1% TMCS (25  µl, Sigma 
Aldrich, Massachusetts, United States) was added along 
with pyridine (100 µl). Samples were subjected to 30 min 
of incubation at 50 °C to ensure complete derivatization 
and were then immediately transferred to the instru-
ment’s microinserts.

GC-MS analysis
Metabolic analysis was performed in GC/MS-QP 2010 
Ultra System (Shimadzu, Kyoto, Japan) with LabSolutions 
GC-MS software (v1.20). The metabolite separation was 
performed through a Restek Rtx® − 5ms column (30.0 m 
× 0.25  mm, 0.25  μm), where Helium (99.9%) was used 
as the carrier gas (flow rate 1.0 ml/min). The oven’s ini-
tial temperature was at 60  °C, held for 2  min, raised to 
310  °C by 5  °C/min, and held during the analysis. The 
auxiliary temperatures: ionization and interface, were set 
at 250 °C. Metabolite analysis was carried out in full scan 
mode. Auto-injector AOC-20i (Shimadzu, Kyoto, Japan) 
was utilized for injecting 10  µl of sample in splitless 
mode. NIST/EPA/NIH Mass Spectral Library (NIST 14) 
was utilized to identify total ion chromatograms (TIC) 
and metabolites’ fragmentation patterns. For each sam-
ple, the run time opted was approximately 44 min.

GC-MS data analysis
The manual filtration technique opted for removing 
unidentified ions from the data table. As the experiment 
was conducted in triplicates, mean for each metabolite 
data was taken. The normalization of the data was based 
on the total peak height, and the signals belonging to 
the similar ion category were put in the same group. The 

resultant metabolic data table was then analyzed thor-
oughly [56].

Before commencing analysis, the KEGG IDs of the 
compounds were obtained from the KEGG compound 
database [57] and similar metabolites in treated and 
untreated groups were selected. Based on area and 
height, quantification of metabolites was performed, and 
fold change was measured [58]. Identifying significantly 
altered metabolites in response to drug treatment was 
performed through a student t-test where the significance 
threshold was less than 0.05. To reduce the probability of 
false positive identification, the false discovery rate (FDR) 
was set below 5% and calculated through the q-conver-
sion algorithm [59]. The PCA plot was constructed using 
the “prcomp” function from basic R-packages. The analy-
sis relied on the “stats” library for the prcomp function 
and the “ggplot2” package for PCA visualization.

Functional metabolomics analysis
Metabolic coverage between the treated and untreated 
samples was performed using network-based meta-
bolic pathway analysis (MPA) and MSEA [60]. Further-
more, the associated genes with these pathways were 
also obtained through the Cytoscape v3.8.2 program [61] 
and Ingenuity Pathway Analysis (IPA) tool. The genes 
were further distributed into different categories based 
on their molecular, biological, and functional properties 
by Protein Analysis Through Evolutionary Relationships 
(PANTHER; http://www.pantherdb.org/ [62]) and Gene 
Ontology database [63].

Cell pathway construction
Construction of cellular pathways depicting possible 
PKCε molecular interactions was performed through 
Ingenuity Pathway Analysis Software (QIAGEN Inc 
[64]). Information for protein-protein networks as well as 
canonical pathways, was gathered by providing metabo-
lites as inputs and utilizing log2 fold-change, FDR, and 
p-values.

Results
Localization of PKCε
Signal sequence analysis revealed that PKCε does not 
contain a signal peptide, secretion signal peptide, or 
mitochondrial transfer peptide, suggesting PKCε is not a 
secretory protein (Table 1). Subcellular localization anal-
ysis showed that PKCε does not localize to any organelle. 
Based on a cytoplasmic localization score of 0.9078 and 
a solubility score of 0.8, it is determined that PKCε is a 
soluble cytoplasmic protein (Fig. 1).

In silico pharmacokinetic evaluation of Zapotin
The Pharmacophore model of Zapotin was generated 
through LigandScout and revealed three aromatic rings, 

http://www.pantherdb.org/
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Table 1 Likelihood score for PRKCE extracellular and subcellular localization
Signal sequences SignalP-5.0 SecretomeP 1.0 TargetP

Likelihood Other Likelihood Other Likelihood Other
Mitochondrial transfer peptide 0.0682 0.9292 . . . .
Secretion signal Peptide . . 0.325 0.611 . .
Signal Peptide 0.0026 . . . 0.004 0.996
Subcellular localization DeepLoc1.0 TMHMM2 Type Score
Nucleus 0.0866 . Soluble 0.998
Cytoplasm 0.9078 . Membrane 0.002
Cell membrane 0.0011 0.00006
Endoplasmic reticulum 0.0002 .
Golgi apparatus 0.0002 .
Peroxisomes 0.0009 .
Extracellular 0.0005 .

Fig. 1 Subcellular localization of PKCε: DeepLoc score indicated a high probability of cytoplasmic localization of PKCε. Empty circles indicate a continued 
pathway. Black circles show the destination. The orange circle shows the final destination of the protein
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two hydrophobic regions, and six hydrogen bond accep-
tor sites. Two-dimensional and three-dimensional mod-
els of the ligand are represented in Fig. 2.

Lipinski’s rule of five estimates the permeation and 
absorption of the lead compound. Properties consisting 
of > 500 Da molecular mass, 10 hydrogen bond accep-
tor number, > 5 hydrogen bond donors number, and > 5 
CLogP (calculated LogP) value or > 4.15 MLogP repre-
sent a high probability of poor absorption and perme-
ation of the drug [65]. All tools predicted approximately 
342  g/mol molecular weight, 0 hydrogen bond donors, 
6 hydrogen bond acceptors, and < 3.6 MLogP and agree 
with Lipinski’s rules for small molecule therapeutics. 
Applied in silico pharmacokinetics tools (Molinspiration, 
admetSAR2.0, OSIRIS, VirtualRat, and SwissADME) esti-
mated zero violations of Lipinski’s rule (Table  2). LogP 

value estimated its moderate lipophilicity while LogS 
value (<-4) depicted its moderate aqueous solubility.

Total polar surface area (TPSA) and rotatable bonds 
less than 140 Å and 10, respectively, depict more prob-
ability of good drug bioavailability [66]. Analysis of the 
physicochemical properties of Zapotin indicated 5 rotat-
able bonds and TPSA less than 70 Å, estimating its good 
bioavailability (Table  2). SwissADME also predicted the 
synthetic accessibility (SA) of Zapotin. A higher SA score 
(10) represents greater difficulty in the mass synthesis of 
the lead compound. SA score of 3.42 estimated the ease 
of Zapotin synthesis at a large scale [67].

Drug pharmacokinetics include absorption, body dis-
tribution, metabolism, and excretion. admetSAR 2.0 
and swissADME predicted high intestinal absorption 
of Zapotin. Similarly, scores from admetSAR and swis-
sADME also indicated that the drug could penetrate 

Table 2 List of different properties of Zapotin and respective score predicted by molinspiration, admetsar, organic chemistry portal, 
virtual rat and SwissADME
Property Value

Molinspiration admetSAR 2.0 OSIRIS VirtualRat SwissADME
Sr no Lipinski rule of 5
1 Molecular weight (g/mol) 342.35 342.35 342 342.110 342.34
2 H-bond donor 0 0 - 0 0
3 H-bond acceptor 6 6 - 6 6
4 MLogP 3.57 3.49 3.09 3.49 3.39

Violations 0 0 - - 0
5 Rotatable bonds 5 5 - - 5
6 TPSA (Å) 67.15 - 63.22 67.130 67.13
7 Druglikeness - - -0.23 - Yes
8 Drug score - - 0.56 - -
9 LogS (solubility) - -3.867 -3.82 - -4.04
10 Synthetic accessibility - - - - 3.62

Fig. 2 Pharmacophore model of Zapotin: A) Three-dimensional representation of Zapotin ligand model. Red spheres depict hydrogen bond donors, yel-
low spheres indicate hydrophobic region, and purple spheres represent aromatic rings. B) Two-dimensional representations of the Zapotin ligand model 
and the same color theme with the same descriptors are used. Abbreviations: H: Hydrogen bonds, AR: Aromatic rings, HBA: Hydrogen bonds acceptor
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Caco-2 cells with high likelihood. Zapotin oral bioavail-
ability is also predicted. VirtualRat and admetSAR antici-
pated lower transport of Zapotin across the blood-brain 
barrier (Table 3). AdmetSAR results suggested less likely 
binding of Zapotin with plasma protein (0.8%), further 
strengthening its stability and bioavailability. In silico 
pharmacokinetics analysis further indicated that Zapotin 
inhibits a few isoforms of CYP450 that might hinder the 
metabolism of co-administered drugs and result in drug 
accumulation-induced toxicity [68, 69].

A molinspiration bioactivity score falling in the range 
of 0–0.5 indicates moderate activity, while a score below 
0.5 and above 0 depicts inactivity and high activity, 
respectively. These scores show lead compound likeliness 
properties. Molinspiration outcomes indicated Zapo-
tin’s high likeliness as an inhibitor of kinases (score 0.10) 
and enzymes (0.10) and as an interacting molecule for 
nuclear receptor ligand (0.15). AdmetSAR scores further 
elucidated the likeliness of Zapotin binding with nuclear 
receptors, including estrogen, androgen, thyroid, and 
glucocorticoid receptors. Zapotin is also estimated to 
have aromatase binding properties, a key enzyme in the 
estrogen synthesis pathway (Table 4).

Toxicity profiles obtained from admetSAR, OSIRIS, 
VirtualRat, and ADVERPred estimated lower toxicity of 
Zapotin. However, hepatic toxicity and arrhythmia (hERT 
inhibition) is predicted by admetSAR and ADVERPred. 
ADVERPred uses a PASS training set, and the estimation 
of drug toxicity is based on a comparison of values Pa 
(probability to be active) or Pi (probability to be inactive). 
Pa for hepatic toxicity and Human either-a-go-go (hERT) 
inhibition was more than Pi. The toxicity profile retrieved 
through in silico pharmacokinetics tools for Zapotin is 
listed in Table 5. The risk for mutagenesis and carcinoge-
nicity is also estimated to be lower. Its acute oral toxicity 
is predicted to be 2.584  kg/mol, indicating the safety of 
oral administration of Zapotin.

Computation pharmacokinetics analysis indicated 
good solubility characteristics and good absorption of 
Zapotin. AdmetSAR, swissADME, and VirtualRat further 
estimated the high bioavailability of Zapotin with less 
assumed toxicity. However, its high ingestion might bring 
about arrhythmia and hepatic toxicity.

Molecular interaction between PKCε and Zapotin
A rigid docking approach opted for the molecular dock-
ing of PKCε with Zapotin through the CB-dock server. 
Five different binding conformations of the ligand-recep-
tor interactions were obtained. Among these complexes, 
the selection for the best-docked model was based on 

Table 3 Pharmacokinetics of Zapotin predicted by 
molinspiration, admetsar and virtual rat and SwissADME
Bioactivity Score

Molinspiration admet-
SAR 2.0

VirtualRat Swis-
sAD-
ME

Absorption
Intestinal 
absorption

- 0.9928 - High

Blood brain 
barrier

- -0.2867 -0.02 Yes

Oral 
bioavailability

- 0.6857 - 0.55

Volume score* 302.18 - - -
Skin perme-
ation (cm/s)

- - - -6.21

Caco-2 
permeability

- 0.8836 High -

P-glycoprotein 
inhibitior

- 0.9397 Yes -

P-glycoprotein 
substrate

- -0.7987 No No

Distribution and Metabolism
Plasma protein binding 
(100%)

- 0.857 - -

CYP450 substrate
CYP3A4 
substrate

- -0.5097 - -

CYP2C9 
substrate

- -1.0000 - -

CYP2D6 
substrate

- -0.7654 - -

CYP450 inhibitor
CYP3A4 
inhibition

- 0.6138 No Yes

CYP2C9 
inhibition

- -0.7985 No Yes

CYP2C19 
inhibition

- 0.7445 Yes Yes

CYP2D6 
inhibition

- -0.9546 No Yes

CYP1A2 
inhibition

- 0.9694 Yes Yes

CYP inhibitory 
promiscuity

- 0.8123 - -

*Molecular volume score predicted by Molinspiration depicts human 
absorption of ligand in intestine and brain

Table 4 Bioactivity of Zapotin predicted by molinspiration and 
admetSAR
Bioactivity Score

Molinspiration admetSAR*

Kinase inhibitor 0.10 -
Nuclear receptor ligand 0.15 -
Enzyme inhibitor 0.10 -
Estrogen receptor binding - 0.9178
Androgen receptor binding - 0.8070
Thyroid receptor binding - 0.7336
Glucocorticoid receptor binding - 0.8812
Aromatase binding - 0.7377
*High likelihood of certain event in admetSAR is estimated if obtained score is 
positive and near 1
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vina score and cavity size, as both parameters are indica-
tors of stable protein and ligand binding. The model with 
the largest cavity size and lowest vina score was selected. 
Vina scores, as well as cavity size provided by the web-
based server CB-dock for each binding pore are given in 
supplementary File Table S1.

The protein-ligand complex with a vina score of -7.7 kJ/
mol was considered the most stable. Molecular docking 
results showed strong binding of Zapotin with PKCε. 
Visualization through ligplot+ indicated hydrophobic 
interactions between Zapotin and PKCε (Fig.  3a and 
b). Nine hydrophobic interactions were generated with 
Ile128, Arg282, Tyr126, Val127, Glu677, Lys663, Met521, 
Trp673 and Glu525 of PKCε. Among these residues, 
five fall in the C-terminal kinase domain and four in the 
N-terminal regulatory domain.

Dynamics of Zapotin binding to PKCε
To further ascertain the binding affinity of PKCε and 
Zapotin, a molecular dynamics simulation of 10 ns was 
performed that provided structural and mechanistic 
insight into PKCε and Zapotin interaction. RMSD and 
RMSF analysis revealed the stability of the structural 
binding of Zapotin and PKCε (Fig.  3c and d). RMSD 
values were below 1 A° in the 10 ns simulation, indicat-
ing that the interaction of Zapotin is within the binding 
pocket of PKCε. Calculations for RMSF indicated major 
fluctuations in residues 24–86, 195–252, and 314–378. 
Comparison of RMSF values with docked structure 
revealed that Zapotin did not interact with these residues 
of PKCε, and regions that had hydrophobic interactions 
with the drug showed comparatively fewer fluctuations. 

Furthermore, residues 24–86, 195–252, and 314–378 fall 
under the regulatory domain and hinge region of PKCε 
and have loop structure, which might also contribute to 
increased fluctuation in these regions during simulation.

The number of hydrogen bonds increased with the 
passage of simulation, indicating enhanced stability of 
Zapotin and PKCε binding over time (Fig.  3e). At the 
beginning of the simulation, the max hydrogen bond 
number was 2 and increased to 4 at 7 ns. PKCε and Zapo-
tin binding mainly include hydrophobic interactions. The 
formation of a hydrophobic interaction results in the 
release of water molecules. Released water molecules cre-
ate an aqueous pocket near the docked complexes where 
directional or nondirectional water molecules eventually 
form hydrogen bonds and contribute to atypical entropic 
and enthalpic penalties of hydration [70]. This presents 
possible reasons behind the increased rate of hydrogen 
bond formation over time.

Binding energies Coul-SR and LJ-SR were the main 
contributors to the interaction between PKCε and Zapo-
tin. The average energy parameters obtained through 
MD simulation are − 8.10978 KJ/mol for coul-SR and 
− 115.328 KJ/mol for LJ-SR (Fig.  3f ). LJ-SR represents 
repulsive energies and is dominant compared to coul-
SR, which depicts attractive energy. Both short-range 
energy forms decreased with increased simulation time, 
supporting the enhanced stability of the bound PKCε-
Zapotin complex with time.

Cytotoxic potential of Zapotin
The cytotoxicity potential of Zapotin was first evaluated 
through an MTT assay in a non-transformed Vero cell 
line to exclude the possibility of its toxic and non-spe-
cific influence. Zapotin treatment to Vero cells was given 
at concentrations ranging from 0.15µM to 0.32µM. The 
outcomes showed that Zapotin was non-toxic for nor-
mal cells at these concentrations (Fig.  4a). Breast can-
cer cells MCF-7 and MDA-MB-231 were treated with 
Zapotin at concentrations ranging from 0.15µM to 0.32 
µM. The assay revealed that Zapotin treatment reduced 
the viability of the breast cancer cells and suppressed 
cell proliferation in a dose-dependent manner. The half 
maximal inhibitory concentration (IC50) determined for 
MCF-7 was 0.18µM and for MDA-MB-231 was 0.17µM 
(Fig. 4b and c). Furthermore, in both cell lines, a decrease 
in cancer cell growth in a dose-dependent manner was 
found (Fig.  4d). The growth of MCF-7 was significantly 
decreased at a dosage of 0.18µM, whereas MDA-MB-231 
was highly sensitive to Zapotin at 0.17µM dosage.

Zapotin influence on breast cancer cell colony formation 
ability and migration
The effect of Zapotin on colony formation and migratory 
potential was also assessed in breast cancer cells. MCF-7 

Table 5 Toxicity and adverse effects prediction of Zapotin by 
admetsar
Toxicity Score

admetSAR OSIRIS VirtualRat ADVERPred
(Pa > Pi)

Acute oral 
toxicity

2.584 kg/mol - - -

Hepatotoxicity 0.8750 - - 0.413 > 0.249
Mutagenesis 0.5300 0 0 -
Carcinogenicity -0.9173 0 0 -
Irritant - 0 - -
Eye irritation 0.7238 - -
Eye corrosion -0.9682
Reproductive 
effect

- 0 - -

Human either-
a-go-go (hERT) 
inhibition

0.7091 - Yes 0.324 > 0.265

Tetrahymena 
pyriformis 
toxicity

0.447 ug/L - - -

Genotoxicity 0.7759 - - -
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and MDA-MB-231 cell lines were treated with Zapotin 
at different concentrations and the results revealed that 
the migratory potential of both breast cancer cell lines 
was remarkably reduced by Zapotin treatment (Fig. 4e). 
Similarly, a dose-dependent decrease in the colony-form-
ing ability of both MCF-7 and MDA-MB-231 cells was 
observed. Zapotin treatment brought about a reduction 
in the colony size and in the total number of colonies 
compared to the control (Fig. 4f ).

Zapotin pro-apoptotic potential in breast cancer cells
Zapotin’s effect on the apoptosis of breast cancer cells 
was examined through flow cytometry, showing reduced 
cell viability and increased cell death in MCF-7 and 
MDA-MB-231 cells. In MCF-7 cells, Zapotin (0.18 µM) 
increased early apoptotic cells to 9.47% and raised late 
apoptotic cells to 73.56%. In MDA-MB-231 cells, early 
apoptotic cells increased to 2.41%, while late apoptotic 
cells rose to 73.02%. Total cell death was significantly 
higher in treated cells compared to controls (Fig. 4g).

Influence of Zapotin on PKCε expression in breast cancer 
cells
The effect of Zapotin treatment on the expression of 
PKCε at the mRNA level was evaluated in both breast 
cancer cell lines. The analysis revealed that the expres-
sion of PKCε was reduced significantly after 24  h of 
Zapotin treatment in both cell lines. In MDA-MB-231 
cells, the expression of PKCε was reduced 100-Folds 
after treatment, whereas the expression of PKCε was 
down-regulated by 30-Folds in MCF-7 cells (Fig. 5a and 
b). Expression of PKCε was significantly more downregu-
lated in MDA-MB-231 cells than in MCF-7 cells.

The expression of AKT, HIF-1ɑ, SOCS3, and VEGF 
was also reduced after Zapotin treatment compared to 
untreated cells. Similar to PKCε, the expression of HIF-
1ɑ was significantly more down-regulated in MCF-7 
cells than in MDA-MB-231 cells after 24  h of Zapotin 
treatment.

Fig. 3 Molecular interaction between Zapotin and PKCε. A) LigPlus+ two-dimensional diagram of molecular docking. Nine hydrophobic interactions are 
observed between PKCε and Zapotin. Hydrophobic interactions are indicated with red spikes. B) Three-dimensional representation of non-electrostatic 
interactions between PKCε and Zapotin. Oxygen atoms in ligands are depicted in red, while double-bonded oxygen in protein is shown in blue. Trajec-
tories of Zapotin and PKCε MD simulations are calculated through C) Root mean square deviation (RMSD), D) Root mean square fluctuations (RMSF), (E) 
number of hydrogen bonds, and (F) energy parameters
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Effect of Zapotin on the metabolic profile of human breast 
cancer cells
The MTT assay IC50s determined for MCF-7 and MDA-
MB-231 were 0.18µM and 0.17µM, respectively. There-
fore, these concentrations were used for studying the 
metabolic profile of breast cancer cells following Zapotin 
treatment using Gas Chromatography-Mass Spectrome-
try (GC-MS). The compounds obtained through GC-MS 

were identified using the NIST library, and their KEGG 
compound IDs were retrieved. Only metabolites mutu-
ally present in triplicate runs were considered for further 
analysis. In MCF-7, 337 metabolites were identified in 
untreated cells, whereas 836 metabolites were identified 
in Zapotin treated cells. Among these, 30 metabolites 
were present in both treated and untreated cells. The 

Fig. 4 Anti-cancer potential of Zapotin in breast cancer cells. Cell viability analysis of A) Vero, B) MCF-7, and C) MDA-MB-231 cells after 24 h treatment 
with Zapotin. In Vero cells, constant cell viability is observed between treated and control cells. The inhibitory effect of Zapotin is found in breast cancer 
cell lines. D) Zapotin-treated MCF-7 and MDA-MB-231 cells depicting treatment influence on cell growth. E) Zapotin influence on MCF-7 and MDA-
MB-231 cells’ migratory potential. F) Zapotin treatment induced colony formation ability inhibition in MCF-7 and MDA-MB-231 cells. Untreated MCF-7 and 
MDA-MBA-231 cells showed cell growth, migration, and colony formation, whereas treated breast cancer cells showed dose-dependent cell growth in-
hibition, migration suppression, and decreased colony formation. G) Flow cytometry analysis for Zapotin-treated breast cancer cells. MCF-7: a) Untreated 
MCF-7 cells displaying a high percentage of viable cells in the lower left quadrant; b) treated cells displaying a high percentage of late apoptotic cells in 
the upper right quadrant; c) control (untreated cells) second replicate displaying a high percentage of viable cells; d) treated cells displaying an increased 
number of late apoptotic and dead cells. MDA-MB-231: a) Control (untreated) MDA-MB-231 cells showing a high number of viable cells in the lower left 
quadrant; b) Zapotin-treated cells showing a high percentage of dead cells in the upper left quadrant; c) Control (untreated) second replicate with a high 
percentage of viable cells; d) Zapotin treated cells second replicate showing an increased number of late apoptotic and dead cells
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overlap of their chromatograms based on relative inten-
sity indicated considerable differences in their metabolic 
profile (Fig. 6a and b). In MDA-MB-231, 167 metabolites 
were identified in Zapotin treated cells and 178 metabo-
lites were identified in untreated cells; only four metab-
olites were mutually present. Chromatogram overlap 
between the MDA-MB-231 treatment groups indicated 
minor differences in metabolic profiles (Fig.  6a and b). 
Metabolites identified in MCF-7 cells and MDA-MB-231 
after GC-MS chromatogram superimposition were then 
subjected to fold change analysis and ranked based on 
significance. The list of metabolites and their fold change 
are in Tables  6 and 7. In MCF-7 cells, the concentra-
tions of 14 compounds decreased and 19 increased com-
pared to untreated cells. Relative to MCF-7, all identified 
metabolites in MDA-MB-231 were down-regulated. The 
metabolites in both cell lines were also evaluated through 
principal component analysis (PCA) that revealed the 
distinct clustering of metabolites in Zapotin-treated 
as well as untreated breast cancer MDA-MB-231 and 
MCF-7 cells. PCA analysis depicted the variability in 
the metabolite profile after the treatment of Zapotin. 
The metabolic profile of Zapotin-treated MCF-7 and 
MDA-MB-231 cells is shown in Fig. 6c. The PCA analysis 

showed that metabolite 1,3-dimethylbenzene is present 
in MCF-7 and MDA-MB-231 cells. The concentration 
of 1,3-dimethylbenzene decreased after the treatment 
of Zapotin in both MCF-7 and MDA-MB-231 cells. The 
PCA plot for 1,3-dimethylbenzene is shown in Fig. 6d.

Gene ontology analysis of metabolic pathways
The metabolite data in both breast cancer cell lines were 
then processed to obtain information regarding the genes 
associated with these metabolites. The tool “metascape” 
allowed the initial identification of pathways and genes 
linked with metabolites. PANTHER-based gene ontology 
analysis was employed to determine these genes’ biologi-
cal, molecular, and protein functions, and the summary 
of the analysis outcome is provided in supplementary file 
figure S1. The overall analysis revealed that Zapotin mod-
ulates metabolites mostly associated with the proteins, 
belonging to the enzyme class “metabolite interconver-
sion enzymes” in MDA-MB-231 and MCF-7 cells. It also 
regulates the function of transporter proteins, immune 
system proteins, and proteins associated with the trans-
lation process in MCF-7 cells. The molecular function 
of these proteins related to their catalytic activity, pro-
tein binding ability, transporter activity, ATP-associated 

Fig. 5 Zapotin-mediated regulation of PKCε and its target expression in breast cancer. mRNA Expression of PKCε, AKT, HIF-1alpha, SOCS3, and VEGF in A) 
MCF-7 cells B) MDA-MB-231 cells after 24 h of Zapotin treatment. The experiments were repeated in triplicates. A P-value below 0.01 is represented as “**”, 
below 0.005 as “***”, and below 0.0001 as “****”. C) Zapotin impact on the protein expression of PKCε, AKT, HIF-1ɑ, and PARP in breast cancer cell lines. The 
protein expression of PKCε and HIF-1ɑ reduced with an increased dosage of Zapotin in MCF-7 and MDA-MB-231 cells. The concentration of cleaved PARP 
after Zapotin treatment increased with increased dosage of Zapotin in MCF-7 and MDA-MB-231 cells. The protein expression of P-AKT was reduced with 
an increased dosage of Zapotin in MCF-7 and MDA-MB-231 cells. The immune blots presented are representative of three independent experiments with 
similar results. Abbreviations: HIF-1α (Hypoxia-inducible factor 1-alpha), PARP (poly(ADP-ribose) polymerase), SOCS3 (Suppressor of Cytokine Signaling 
3), VEGF (vascular endothelial growth factor)
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Fig. 6 Metabolic profile of Zapotin-treated and Zapotin-untreated breast cancer cell lines. A) Venn diagram indicating overlapping metabolites in breast 
cancer treated and untreated cells. B) Superimposed GC-MS chromatogram of treated and untreated cells. C) Principle component analysis (PCA) of 
metabolic profile of Zapotin-treated breast cancer cells. Zapotin dose 1.8µM was used for treatment. The blue plot indicates metabolites from untreated 
cells, and the red plot shows treated cells. (Plot created using R-Studio. D) PCA of metabolic 1,3-dimethylbenzene in Zapotin treated and untreated breast 
cancer cells. Zapotin dose 1.8µM was used for treatment. The experiment was conducted in triplicate
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activity, and translation regulation properties were indi-
cated by GO-annotation analysis. Overall, the analysis 
indicated that Zapotin targets metabolic processes as 
well as other integral processes that might be involved in 
promoting therapeutic resistance in breast cancer.

Metabolic pathways influenced by Zapotin treatment in 
MCF-7 cells
Enrichment analysis to determine Zapotin-influenced 
pathways in MCF-7 cells was performed. Based on 
enrichment ratio, significance value, and fold change, the 
results showed that Zapotin targets pathways associated 
with amino acid metabolism (Supplementary file figure 
S1). MSEA analysis indicated that Alanine, methionine, 
glutamate, glutathione, serine, glycine, and selenoamino 
acid metabolism was significantly influenced by Zapotin 
treatment (Fig.  7a). IPA pathway analysis revealed that 
the methionine degradation pathway was also active in 
Zapotin-treated cells (Fig.  7b). Other affected pathways 
corresponded to macromolecule catabolism as well as 
anabolism, such as purine metabolism, urea metabolism, 
fatty acid biosynthesis, and vitamin K metabolism. MSEA 
further indicated modulation of cell energy pathways and 
the metabolic alterations in breast MCF-7 cells.

Metabolites identified through the above enrichment 
analyses were subjected to network analysis to identify 
canonical pathways and networks through IPA. The 30 
identified metabolites were fed into the software and core 
analysis highlighted the significant contribution of the 
HIF-1 pathway targeted by Zapotin treatment. Network 
analysis also indicated the involvement of metabolic 
proteins in inducing hypoxia. Proteins and metabolites 
associated with glycolysis, pentose phosphate pathway 
(PPP), and TCA cycle role also dominated. These path-
ways contribute to metabolic rewiring in several cancers 
that, by altering the energy consumption of the cell, also 
contribute to chemotherapy resistance. PKCε, meantime, 
is shown to directly activate 6-Phosphofructo-2-Kinase 
(PFKFB4), an integral enzyme in glycolysis. The analy-
sis also indicated the contribution of the insulin signal-
ing pathway. The network generated for Zapotin-treated 
MCF-7 cells is illustrated in Fig.  7c. Multiple central 
nodes were generated in response to the protein-protein 
network, including HSF1, EP300, and DPH5.

Metabolic pathways influenced by Zapotin treatment in 
MDA-MB-231 cells
The results of our enrichment analysis showed that Zapo-
tin regulates the metabolism of amino acids, as well as 
the synthesis of biological precursors involved in cell 
metabolism. In breast MDA-MB-231 cells, substantial 
impacts on cell energy pathways such as the TCA cycle 
and pentose phosphate pathway were also observed. 
According to the study outcomes, Zapotin seems to play 
a part in regulating the metabolic pathways in MDA-
MB-231 cells. IPA analysis indicated Zapotin’s influence 
on the modulation of phenylalanine catabolism (Fig.  8a 
and b).

IPA-based network evaluation furthered the insight 
related to the phenylalanine metabolism interaction 

Table 6 GC-MS-identified metabolites in breast cancer MCF-7 
cells along with their fold change
Compound name KEGG 

ID
Fold 
Change

Significance FDR

Cycloserine C08057 0.068784303 2E-08 5.98E-08
Propanoic acid C00163 0.150437285 2.37E-08 5.98E-08
Succinic acid C00042 0.113196821 7.18E-08 1.21E-07
Propanedioic acid C04025 17.48514635 9.77E-08 1.23E-07
Acetamide C06244 35.29356061 3.65E-07 3.69E-07
Benzamide C09815 0.058111531 7.28E-07 6.13E-07
Benzoic acid C00539 0.385668265 9.09E-07 6.56E-07
Ethylbenzene C07111 2.24653126 4.04E-06 0.000002
N6,N6-Dimethyl-
adenosine

C00212 3.148195114 7.69E-06 0.000004

Cystathionine C02291 0.299249222 2.23E-05 0.00001
D-Galactose C00984 3.527019651 2.74E-05 0.00001
Carbamic acid C01563 0.197520403 2.84E-05 0.00001
Benzenamine C00292 0.431721124 3.41E-05 0.00001
Alanine C00041 1.620756709 5.98E-05 0.00002
Imidazole C01589 6.046602633 7.97E-05 0.00002
Diimidotricarbonic 
diamide

C01353 2.533978398 9.34E-05 0.00002

Piperazine C07973 0.570111311 0.0001 0.00004
Benzene C01407 3.736116878 0.0002 0.00006
Chloroacetic acid C06755 1.948563193 0.0002 0.00006
Guanosine C00387 1.929991974 0.0002 0.00006
Phosphonoacetic 
acid

C05682 0.11365396 0.0003 0.00007

Glutaric acid C01601 0.512416555 0.0009 0.0002
Acetic acid C00033 2.963418119 0.003 0.0007
3-(Ethyl-
hydrazono)-butan-
2-one

C02845 1.295240184 0.003 0.0007

octyl phthalate C14227 0.016227183 0.003 0.0007
Piperidine C01746 1.111316148 0.01 0.002
Phenol C15584 13.28257524 0.03 0.005
Glycine C00037 0.677608712 0.13 0.02
Cyclohexane C11249 1.04981557 0.26 0.04
Phosphinic acid C05339 0.965450982 0.27 0.04

Table 7 GC-MS-identified metabolites in breast cancer 
MDA-MB-231 cells along with their fold change
Compound name KEGG ID Fold Change Significance FDR
Benzeneacetaldehyde C00601 0.143773723 0.001 0.00303
Octane C01387 0.190148064 0.04 0.06015
Benzene C01407 0.039160252 0.26 0.20391
Carbamic acid C01563 0.847387447 0.059 0.06015
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with malignant breast cell growth. The phenylalanine 
metabolism produces phenylacetaldehyde, a precursor 
for several metabolites of the TCA cycle. Phenylacetal-
dehyde may lead to the production of fumaric acid and 
acetyl-CoA, which are the main pathway drivers of the 
TCA cycle. PKCε also contributes to metabolic rewiring 
by activating the PPP pathway. It also induces the pro-
duction of succinate (TCA cycle molecule) via pyruvate 
(Fig. 8c and Supplementary Figure S2).

Discussion
Research has identified the contribution of numer-
ous molecular components in breast cancer develop-
ment. Several biomarkers such as HER2, CEA, TPA, 
and the ABC transporter protein family, has specifically 
been [71]. Investigations further revealed the role of 
over-expressed PKCε in cancer cells in promoting these 
proteins’ expression and surface availability through 
modulating PI3K/Akt signaling and MAPK/ERK pathway 
[17, 72]. Targeting PKCε through naturally-occurring 
compounds has shown a reversal of cancer hallmarks 
and induction of apoptosis [17, 73]. Zapotin, an isoflavo-
noid, has been reported to target the expression of PKCε 

in HeLa cells, which reduces the migratory potential of 
cancer cells and induces apoptosis [29, 74]. However, 
the influence of Zapotin on the expression and activ-
ity of PKCε in breast cancer is not reported. The current 
study aimed to analyze the binding efficacy of PKCε with 
Zapotin through in silico analysis as well as the effects of 
Zapotin-induced PKCε inhibition on breast cancer cell 
viability, growth, and invasiveness.

In silico pharmacokinetic analysis of Zapotin indicated 
its high intestinal absorption and oral bioavailability, sug-
gesting oral ingestion as its possible route of administra-
tion. Its skin permeation value was also in the favorable 
range. Skin permeability (LogK) co-efficient value mainly 
depends on the membrane of the skin. Skin membrane 
with epidermis and dermis requires more hydrophilicity 
for penetration while skin membrane consisting of stra-
tum corneum governs more lipophilic properties in drug 
for absorption [75]. Zapotin has been estimated to have 
lipophilic and hydrophilic properties that indicate skin as 
it’s another possible route of administration.

Drugs or xenobiotics are metabolized by the action 
of the CYP450 enzyme system in hepatic cells. Zapotin 
was predicted to act as the inhibitor for some CYP450 

Fig. 7 Metabolite Set Enrichment Analysis (MSEA) and pathway analysis of the identified metabolites in MCF-7 cells. A) Enrichment analysis as per a) 
enrichment ratio. b) P-value Red indicates high significance, whereas yellow represents low significance. The size of the circle indicates the enrichment 
ratio. (Graphs were generated through MetaboAnalyst [94]). B) Number of metabolites participating in different pathways in MCF-7 cells. Most genes 
participated in the methionine degradation pathway. Fisher’s exact test p-value determined bar length. C) Ingenuity Pathway Analysis (IPA) of metabolites 
associated with cellular proteins and associated pathways in Zapotin-treated MCF-7 cells. Orange lines indicate the activation of predicted relations. Blue 
lines indicate the inhibition of predicted relations. The cyan color indicates the potential cellular localization of the proteins. PKCε-mediated cellular altera-
tions may be associated with metabolic rewiring in breast cancer cells
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enzymes that might influence the proper metabolism 
of co-administered compounds, leading to drug accu-
mulation and cytotoxicity [68, 69]. Further, the efficacy 
of CYP450 enzymes in metabolizing particular drugs 
strongly depends on genetic polymorphism [76]. There-
fore, studies delineating the influence of polymorphism 
in CYP450 enzymes on Zapotin metabolism will be 
advantageous in understanding its pharmacokinetics. 
In silico pharmacokinetics analysis in the current study 
further estimated the safety of its ingestion without any 
possible adverse toxic effect. However, at higher doses, 
Zapotin might bring about liver toxicity and arrhythmia.

In silico pharmacokinetics analysis of Zapotin revealed 
its possible interaction and resultant inhibition of 
kinases. PKCε is a serine/threonine kinase that has been 
demonstrated to play a chief role in numerous cancers, 
including breast cancer. Molecular docking and MD sim-
ulation analysis showed strong and stable interaction of 
Zapotin with PKCε. The major bonding interaction esti-
mated between PKCε and Zapotin was non-electrostatic 
hydrophobic interaction. Formation of hydrophobic 
interactions between ligand’s lipophilic groups and pro-
tein’s non-polar side chains results in gaining free binding 
energy. It changes the thermodynamics of ligand binding 
with protein, leading to enhanced binding affinity [77]. A 
study demonstrated that integrating functional groups in 
the ligand that favor hydrophobic interactions enhances 

drug-protein interaction stability and binding affinity 
[78]. MD simulation analysis revealed that the interac-
tion of PKCε and Zapotin stabilizes over time. Molecular 
docking and MD simulation outcomes further revealed 
that Zapotin makes hydrophobic interactions at the 
kinase domain of PKCε. The N-terminal kinase domain 
of PKCε has two essential regions, ATP-binding site 
and active site, that play a key role in the phosphoryla-
tion of its substrate [79, 80]. Zapotin binding with these 
regions impairs its phosphorylation capacity. Further, 
Zapotin interacts with the regulatory domain and retards 
PKC activation through DAG by binding the C1A-C1B 
domain [81, 82]. Thus, in silico approaches have revealed 
that Zapotin has great potential in inhibiting PKCε activ-
ity and estimated administration safety.

Investigation of Zapotin’s influence on the growth, pro-
liferation, and invasiveness of breast cancer MCF-7 and 
MDA-MB-231 cells showed the dose-dependent inhibi-
tion of cells growth and migratory potential. Moreover, 
Zapotin induced programmed cell death of breast cancer 
cells in a concentration-dependent manner. Expression 
analysis revealed that PKCε expression was down-regu-
lated by Zapotin treatment in MCF7 and MDA-MB-231 
cells. Zapotin treatment also down-regulated HIF-1ɑ 
and Akt expression at transcriptional as well as transla-
tional levels. Previously, Zapotin-mediated inhibition 
of PKCε was studied in HeLa cell lines, demonstrating 

Fig. 8 Metabolite Set Enrichment Analysis (MSEA) and pathway analysis of the identified metabolites in MDA-MB-231 cells. A) Enrichment analysis as 
per a) enrichment ratio. b) P-value Red indicates high significance, whereas yellow represents low significance. The size of the circle indicates the enrich-
ment ratio. (Graphs were generated through MetaboAnalyst [94]). B) Number of metabolites participating in different pathways in MDA-MB-231 cells. 
Most genes participated in the methionine degradation pathway. Fisher’s exact test p-value determined bar length. C) Ingenuity Pathway Analysis (IPA) 
of metabolites associated with cellular proteins and associated pathways in Zapotin-treated MDA-MB-231 cells. Orange lines indicate the activation of 
predicted relations. Blue lines indicate the inhibition of predicted relations. The cyan color indicates the potential cellular localization of the proteins. 
PKCε-mediated cellular alterations may be associated with metabolic rewiring in breast cancer cells
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dose-dependent inhibition of cell migration and 
increased apoptotic cell fraction [74]. Zapotin treatment 
in HeLa cells also modulated the autophagy pathway by 
decreasing the protein concentration of microtubule-
associated protein 1 light chain 3 and hindering autopha-
gosome formation. Autophagy inhibition leads to the 
induction of cell death in HeLa cells [29]. PKCε-mediated 
autophagy has been involved in promoting the survival 
of glioma cells by enhancing tolerance to stress and the 
emergence of resistance against anti-cancer cells [83]. 
PKCε interacts with MDR1 leading to gemcitabine resis-
tance and the development of colony-forming potential 
in cancer cells [84, 85].

Cancer cells alter their metabolic signaling to promote 
cancer survival, leading to the development of mecha-
nisms within cancer cells that also facilitate resistance 
to cancer treatment [86–88]. Therefore, in the present 
study, metabolic profiling and network analyses of breast 
cancer cell lines MCF7 and MDA-MB-271 were per-
formed to analyze the impact of Zapotin treatment. The 
gene ontology analysis depicted Zapotin influences meta-
bolic pathways and metabolite interconversion enzymes 
in MCF-7 and MDA-MB-231 cell lines. In MCF-7, the 
network layout depicted the contribution of HIF1 sig-
naling in metabolic rewiring. HIF1 promotes glucose 
metabolism through the aerobic pathway [87]. HIF1 and 
PKCε role in the metabolic alteration of breast cancer 
cells was also observed in the present study. PFKBP3 is a 
glycolytic pathway enzyme, and PKCε was found to acti-
vate PFKBP3 in breast cancer directly. Overexpression 
of PKCε meantime may increase the activation rate of 
PFKBP3, resulting in enhanced pyruvate production. The 
enhanced glycolysis rate supports the metabolic altera-
tion in cancer cells, allowing them to accumulate biopre-
cursors for cancer cell proliferation and division [89]. As 
hypoxia is a state of lower oxygen, these metabolic altera-
tions also allows cancer cells to produce energy without 
oxygen by converting pyruvate into lactate [90]. Studies 
also indicated that regulation od ROS, glycolysis, and 
ERS pathways also promote sensitization in cancer cells 
[91–93]. The present study depicted the key involvement 
of PKCε in promoting metabolic alteration in breast can-
cer. These metabolic alterations might also contribute to 
Warburg effect that is a key event in therapy resistance 
in cancers including breast cancer. Our study clearly 
indicated the role of PRKCE in modulating glycolytic 
pathway. Glycolytic pathway is among the initial events 
in Warburg effect in which cancer cells start producing 
lactate as glycolysis end-product that enhances oxidative 
stress and further modulate other metabolic pathways to 
support cancer growth [90].

The comparison of Zapotin’s influence on MCF-7 vs. 
MDA-MB-231 indicate that Zapotin influenced cell pro-
liferation, migratory potential, hypoxia markers’ gene 

expression, and metabolom of both cell lines. However, 
MDA-MB-231 appeared to be more sensitive to Zapo-
tin’s treatment. Firstly, its IC50 was lower (0.17µM) than 
MCF-7 (0.18µM). The expression of molecular markers 
PRKCE, AKT, and VEGF was suppressed several folds 
(0.01 (p < 0.001), 0.015 (p < 0.001), and 0.2 (p < 0.05)) in 
MDA-MB-231 in comparison to MCF-7. Flow cytometry 
results also indicated more pronounced number of cells 
in the late apoptotic and dead stage in MDA-MB-231 cell.

Conclusion
Zapotin has the potential to bind and inhibit the activ-
ity of PKCε and hence, curb breast cancer carcinogenic-
ity. Metabolic profile analysis further revealed that PKCε 
promotes hypoxia in breast cancer that may contribute to 
metabolic rewiring. Lastly, in silico evaluation of Zapotin 
estimated its safe clinical implementation, good bioavail-
ability, and low toxicity. Considering Zapotin’s potential 
in targeting metabolic pathways of breast cancer cells, 
further studies are warranted to understand its role in 
curbing cancer resistance. To determine its safety, studies 
in animal models are required. As Zapotin was found to 
target PKCε in breast cancer cell lines; its further novel 
molecular targets should be studied. The study outcomes 
provide essential insight into the mechanism of PKCε 
mediated cell signaling and suggested PKCε as a potent 
maker to be translated and explored at animal as well as 
human level. Future studies delineating its role and safety 
profile in rodent or dogs animal models will be a step for-
ward in translating this study at clinical level.

Limitations
The study outcomes offer information about the anti-
cancer properties of Zapotin against breast cancer cells 
MCF-7 and MDA-MB-231. However, the study is lim-
ited to in vitro model and the lack of in vivo validation 
may limit its translations to clinical relevance. Likewise, 
metabolomic analysis provided valuable insight on its 
mechanism of actions, the manual infiltration method 
along with limited sample size may have vailed further 
biologically relevant metabolites. Future investigations 
involving animal studies and broader metabolite profiling 
may expand upon these results.
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