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Abstract
Objective  To evaluate the clinical utility of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)-
derived clinicoradiological characteristics and intratumoral/peritumoral radiomic features in predicting pathological 
upgrades (malignant transformation) in high-risk breast lesions.

Materials and methods  Retrospectively collected the data of 174 patients with high-risk breast lesions who 
underwent preoperative breast MRI examinations and were confirmed by biopsy pathology in Shenzhen People’s 
Hospital between January 1, 2019 and January 1, 2024. The dataset was randomly divided into a training set (n = 121) 
and a test set (n = 53) at a ratio of 7:3. Initially, during the second stage of DCE-MRI, the region of interest (ROI) was 
delineated along the maximum cross-section of the lesion, and then automatically expanded outward by 3 mm, 
5 mm, and 7 mm as the peritumoral ROIs. The intratumoral, each peritumoral, and the combined intratumoral 
and peritumoral radiomic models were established respectively. Independent risk factors predictive of malignant 
upgrades in high-risk lesions were identified through univariate and multivariable logistic regression analyses, which 
were subsequently incorporated as clinical and imaging characteristics. Finally, a combined model was established 
by integrating the intratumoral and peritumoral radiomic features with the clinical and imaging features. The 
performance of each model was analyzed using the receiver operating characteristic (ROC) curves, and the area 
under the curve (AUC) was calculated.

Results  The peritumoral 3 mm radiomics model achieved the highest diagnostic performance among all the 
peritumoral models, with the AUC values of 0.704 and 0.654 for the training and test sets, respectively. In the training 
set, the combined model showed the highest diagnostic performance (AUC = 0.883), which was superior to that 
of the clinical and imaging features model (AUC = 0.745, P = 0.003), the intratumoral radiomics model (AUC = 0.791, 
P = 0.027), the peritumoral 3 mm radiomics model (AUC = 0.704, P = 0.001), and the combined intratumoral and 
peritumoral  radiomic model (AUC = 0.830, P = 0.004). In the test set, the combined model also showed the highest 
diagnostic performance (AUC = 0.851). The combined model constructed by integrating the intratumoral and 
peritumoral radiomics features with the clinical and imaging features had the best diagnostic performance, with the 
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Introduction
According to the 2024 global cancer statistics released by 
the World Health Organization’s International Agency 
for Research on Cancer (IARC) [1], breast cancer cur-
rently ranks first in global female cancer incidence. Early 
precise diagnosis and risk stratification of breast cancer 
are crucial for improving patient outcomes. The Euro-
pean Quality Assurance Guidelines for Breast Cancer 
Screening and Diagnosis [2] classify breast biopsy pathol-
ogy into five categories (B1-B5) based on lesion type and 
risk level, where B3 denotes high-risk lesions. High-risk 
lesions include atypical ductal hyperplasia (ADH), papil-
lary lesions, complex sclerosing adenosis, mucinous neo-
plasms, and flat epithelial atypia.

High-risk breast lesions represent a biologically and 
clinically heterogeneous group with varying degrees of 
increased breast cancer risk. Literature statistics indi-
cate that approximately 9.9–35.1% of high-risk lesions 
may progress to ductal carcinoma in situ (DCIS) or inva-
sive ductal carcinoma (IDC) [3, 4]. Conventional breast 
magenetic resonance imaging (MRI) examinations dem-
onstrate limited efficacy in differentiating malignant 
upgrades of postoperative high-risk breast lesions, fre-
quently resulting in unnecessary biopsy procedures and 
therapeutic overtreatment. Therefore, there is an urgent 
need for non-invasive and high-precision prediction 
tools to optimize clinical decision-making pathways.

In recent years, radiomics has provided novel insights 
into deciphering the biological behavior of breast cancer 
through high-throughput extraction of quantitative fea-
tures from both intratumoral and peritumoral regions 
[5–9]. Conversely, peritumoral microenvironmental 
characteristics correlate strongly with tumor aggressive-
ness and metastatic potential [10]. For instance, L. YB’s 
team revealed that radiomic features from a 4-mm peri-
tumoral zone achieved superior predictive performance 
for axillary lymph node metastasis in breast cancer 
(AUC = 0.871) compared to conventional intratumoral 
models [11].

These findings suggest that integrating intratumoral 
and peritumoral MRI radiomic features could enable 
more comprehensive biological profiling of high-risk 
breast lesions, thereby enhancing predictive accuracy. 
While existing studies [12–15] typically define peri-
tumoral regions as those 2–10  mm beyond the tumor 

boundary, this study aims to develop a predictive model 
for high-risk lesion upgrading by synergizing optimal 
peritumoral MRI radiomics with intratumoral features 
and clinical-imaging biomarkers. Through deep mining 
of quantitative MRI signatures coupled with multimodal 
data integration, we seek to provide clinicians with an 
objective decision-support tool demonstrating improved 
diagnostic precision over conventional approaches.

Materials and methods
Study cohort
This study was conducted in accordance with the ethical 
principles of the Declaration of Helsinki and approved 
by the Institutional Review Board of  Shenzhen People’s 
Hospital (Approval No. LL-KY-2021624), with a waiver 
of informed consent due to its retrospective nature. We 
retrospectively reviewed the medical records of patients 
diagnosed with breast high-risk breast lesions (includ-
ing ADH, papillary lesions, complex sclerosing adenosis, 
mucinous neoplasms, and flat epithelial atypia) at Shen-
zhen People’s Hospital between January 1, 2019, and Jan-
uary 1, 2024.

Inclusion and exclusion criteria
The inclusion criteria were as follows: (1) histopatho-
logical confirmation of high-risk breast lesions via core 
needle biopsy; (2) no prior biopsy performed before the 
MRI examination; (3) availability of complete clinical 
documentation and standardized preoperative breast 
MRI protocols; (4) definitive postoperative histopatho-
logical diagnosis or comprehensive follow-up data (≥ 12 
months). Cases were excluded if they met any of the fol-
lowing criteria: (1) technically inadequate MRI images 
precluding diagnostic analysis and ROI delineation; 
(2) non-enhancing lesions, lesions with indeterminate 
enhancement (defined as < 10% signal intensity increase 
on contrast-enhanced sequences), or lesions obscured 
by severe background parenchymal enhancement (BPE); 
(3) history of prior breast interventions, including biopsy, 
surgery, radiation therapy, chemotherapy, or hormonal 
therapy.

MRI imaging data acquisition
Breast MRI examinations were conducted using Sie-
mens Skyra 3.0T and Avanto 1.5T scanners (Siemens 

sensitivity, specificity, and accuracy of 79.4%, 82.7%, and 81.8% in the training set, and 72.7%, 85.7%, and 83.0% in the 
test set, respectively.

Conclusion  The combined predictive model, which integrates intratumoral and peritumoral radiomic features 
with clinical and imaging data, exhibited strong diagnostic performance and a clinically applicable nomogram was 
constructed to stratify individualized upgrade risk, assisting clinicians in making more precise decisions.
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Healthineers, Germany) equipped with dedicated breast 
coils, with patients positioned prone and breasts natu-
rally suspended. Non-contrast sequences included axial 
T1-weighted imaging (T1WI), T2-weighted imaging 
(T2WI) with fat suppression, and diffusion-weighted 
imaging (DWI) using the following parameters: 
TR = 5700 ms, TE = 59 ms, acquisition matrix = 192 × 96, 
FOV = 340  mm, slice thickness = 4  mm, interslice 
gap = 0.8 mm, 32 slices, and b-values of 50, 400, and 800 s/
mm². Dynamic contrast-enhanced MRI (DCE-MRI) 
employed a 3D FLASH gradient-echo sequence with 
parameters set to TR = 4.7 ms, TE = 1.7 ms, slice thick-
ness = 1.6  mm, no interslice gap, 72 slices, acquisition 
matrix = 448 × 372, FOV = 360  mm, and flip angle = 10°. 
The protocol initiated with a pre-contrast mask acquisi-
tion, followed by a 30-second pause during which gado-
pentetate dimeglumine (Gd-DTPA) was administered 
via power injector at 3 mL/s (dose: 0.1 mmol/kg body 
weight), followed by a 20 mL saline flush. Five consecu-
tive post-contrast acquisitions were then performed at 
1-minute intervals, yielding six total dynamic phases 
(including the mask) over a total scan duration of 6 min 
and 33  s. Patients were instructed to maintain strict 
immobility throughout the imaging session to minimize 
motion artifacts.

Radiomics analysis
Image ROI delineation
Prior studies indicate that the 60-120-second post-
contrast phase (peak enhancement window for malig-
nant lesions relative to the glandular background) is 
optimal for tumor characterization in breast MRI [16, 
17]. Accordingly, this study selected the second-phase 
DCE-MRI images acquired at 120  s post-injection for 

ROI delineation. All enrolled DCE-MRI datasets were 
retrieved from the Picture Archiving and Communica-
tion System (PACS) of Shenzhen People’s Hospital in 
DICOM format. The second-phase DCE-MRI images 
were imported into the Darwin Intelligent Research Plat-
form (Yizhun Intelligent Technology Co., Ltd., Beijing, 
China) for analysis.

Two senior radiologists (each with > 8 years of breast 
MRI diagnostic experience) independently performed 
blinded semi-automatic ROI delineation on the platform. 
All the ROIs were reviewed by a senior radiologist (15 
years’ experience). Key steps included: the identification 
of the maximal cross-sectional area of the lesion on axial 
images. Semi-automatic 3D ROI delineation along lesion 
margins. Generation of peritumoral regions via auto-
matic expansion algorithms at 3 mm, 5 mm, and 7 mm 
distances from the tumor boundary (Fig.  1). During 
ROI delineation, necrotic tumor regions were carefully 
avoided, and in cases where the predefined expansion 
distance exceeded the maximum anatomical clearance 
between the lesion periphery and adjacent structures 
(e.g., skin surface or chest wall), the peritumoral region 
was redefined as the spatial extent from the tumor 
boundary to the nearest anatomical boundary.

Radiomics feature extraction, preprocessing, and selection
Radiomic feature extraction was performed on the 
intratumoral and peritumoral ROIs using the Darwin 
Intelligent Research Platform (Yizhun Intelligent Tech-
nology Co., Ltd., Beijing, China). Extracted features 
encompassed three categories: morphological features, 
first-order statistical features, and texture features. Nor-
malization was implemented via maximum absolute 
value scaling to mitigate feature magnitude disparities. 

Fig. 1  The radiomics analysis workflow
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The Least Absolute Shrinkage and Selection Operator 
(LASSO) regression algorithm was applied for multi-
step feature selection, effectively eliminating redundant 
features while preserving those with strong discrimina-
tive power (Fig.  1). Radiomic features were separately 
extracted from intratumoral and peritumoral regions, 
including morphological features, first-order features, 
gray-level co-occurrence matrix (GLCM) features, gray-
level size zone matrix (GLSZM) features, gray-level run-
length matrix (GLRLM) features, gray-level dependence 
matrix (GLDM) features, neighboring gray tone differ-
ence matrix (NGTDM) features, LoG Sigma features, 
Wavelet features, and Local Binary Pattern (LBP) fea-
tures. A total of 1,307 radiomic features were extracted 
in this study. Through LASSO regression analysis, 7 
radiomic features were ultimately selected.

Patient cohort stratification and randomized allocation
Stratification by Pathology Type: The entire patient 
cohort was first stratified based on pathological classifi-
cation. This preliminary stratification guaranteed pro-
portional representation of each lesion category in both 
training and test sets.

Randomized Allocation within Strata: Within each 
pathological stratum, patients were randomly assigned 
to either the training set (70%) or testing set (30%) using 
a computer-generated random number sequence. This 
process was programmatically implemented to eliminate 
human selection bias.

Model development and validation
Logistic regression analysis was employed to construct 
four radiomic models based on optimally selected fea-
tures: an intratumoral model, peritumoral models (3 mm, 
5 mm, and 7 mm expansions), and a combined intratu-
moral-peritumoral model. Radiomic scores (Rad-scores) 
were derived for each model using weighted coefficients 
of the selected features. A clinical and imaging model 
was additionally developed using independent risk fac-
tors identified from clinical and imaging characteris-
tics, with validation performed for independent cohort. 
ROC curves were plotted for the intratumoral model, 
individual peritumoral models, and the optimal com-
bined intratumoral-peritumoral model. Comparative 
analyses of the AUC, accuracy, sensitivity, and specific-
ity were conducted among the three peritumoral mod-
els. The peritumoral expansion radius demonstrating 
the highest predictive performance was integrated with 
intratumoral radiomic features to generate a combined 
radiomics model. Rad-scores from this model, along with 
univariate-selected clinical and imaging predictors, were 
subjected to multivariate logistic regression. Statistically 
significant variables were incorporated into a radiomic 
nomogram model. Calibration curves were generated 

to assess the nomogram’s predictive accuracy. We con-
firmed that the radiomics workflow strictly adhered to 
the Image Biomarker Standardization Initiative (IBSI) 
guidelines to ensure reproducibility across imaging 
platforms.

Statistical analysis
Statistical analyses were performed using SPSS 27.0 (IBM 
Corp., Armonk, NY) and R 4.3.2 (R Foundation for Sta-
tistical Computing, Vienna, Austria; ​h​t​t​p​s​:​/​/​w​w​w​.​r​-​p​r​o​j​
e​c​t​.​o​r​g​/​​​​​)​. Continuous variables were analyzed using the 
independent two-sample t-test (parametric) or Mann-
Whitney U test (non-parametric), while categorical vari-
ables were assessed via the chi-square test or Fisher’s 
exact test, as appropriate. Univariate logistic regression 
was first applied to screen potential predictors, followed 
by multivariable logistic regression to identify indepen-
dent risk factors. Receiver operating characteristic (ROC) 
curves and decision curve analysis (DCA) were generated 
using the “pROC” and “rmda” packages in R, respectively. 
The DeLong test was employed to compare the area 
under the curve (AUC) values across different models. 
A two-tailed P value < 0.05 was considered statistically 
significant.

Results
Clinical characteristics of patients
This study included a total of 174 patients, aged 28–83 
years (mean age: 48.1 ± 10.2 years). Among them, 44 
patients were diagnosed with ADH, 86 with intraductal 
papilloma, 5 with mucinous neoplasms, 4 with flat epi-
thelial atypia, and 35 with sclerosing adenosis. Postopera-
tive pathological examination revealed ductal carcinoma 
in situ (DCIS) or invasive ductal carcinoma (IDC) in 45 
patients, resulting in an upgrade rate of 25.9% (45/174). A 
total of 174 patients were randomly allocated into a train-
ing cohort (n = 121, 70%) and a test cohort (n = 53, 30%) at 
a 7:3 ratio. There was no statistically significant difference 
in clinical and imaging features between the training and 
test sets (P > 0.05) (Tables 1 and 2).

Clinical and imaging model construction
Univariate logistic regression analysis was performed 
incorporating clinical and imaging features, with a 
threshold of P < 0.1 for initial screening. Three risk factors 
were identified: age, maximum lesion diameter, and BPE 
(Table  3). Variables that showed statistically significant 
differences in the univariate analysis were then included 
in multivariate logistic regression analysis, with a thresh-
old set at P < 0.05. Ultimately, two independent risk fac-
tors were identified: age and BPE (Table 4). A clinical and 
imaging feature model was subsequently constructed 
based on these findings.

https://www.r-project.org/
https://www.r-project.org/
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Model performance evaluation and comparison
The performance of the radiomic models based on the 
intratumoral, peritumoral 3  mm, peritumoral 5  mm, 
and peritumoral 7  mm regions was compared (Fig.  2A-
B). The results demonstrated that the radiomic model 
incorporating intratumoral features exhibited superior 
diagnostic efficacy in predicting postoperative patho-
logical upgrading (malignant transformation) of high-
risk breast lesions, with AUC values of 0.791 and 0.781 
for the training and test sets, respectively. The radiomic 
models based on the 3  mm, 5  mm, and 7  mm peritu-
moral features achieved AUC values of 0.704, 0.633, and 
0.579, respectively, in the training set, and 0.654, 0.643, 
and 0.561 in the test set. Delong’s test revealed no statis-
tically significant differences in AUC among the peritu-
moral regions. However, the peritumoral 3  mm model 
showed higher AUC values compared to the peritumoral 
5  mm and 7  mm models. Consequently, the combined 
intratumoral-peritumoral model was developed by inte-
grating the optimal 3 mm peritumoral radiomic features 
with intratumoral characteristics. This integrated model 
demonstrated robust predictive performance, achieving 
AUC values of 0.830 in the training cohort and 0.818 in 
the test cohort.

A triple-feature integrated model was developed by 
synergistically combining clinical and imaging predic-
tors (selected through univariate and multivariate logis-
tic regression analyses) with radiomic features derived 
from both intratumoral regions and 3  mm peritumoral 
expansions. In the training set, the combined model 
demonstrated the highest diagnostic performance 
(AUC = 0.883), outperforming the clinical and imaging 
feature model (AUC = 0.745, P = 0.003), the intratumoral 
radiomic feature model (AUC = 0.791, P = 0.027), the peri-
tumoral radiomic feature model (AUC = 0.704, P = 0.001), 
and the combined intratumoral and peritumoral 
radiomic model (AUC = 0.830, P = 0.004). In the test set, 
the combined model also showed the highest diagnostic 
performance (AUC = 0.851). The specificity and accuracy 
of the combined model were higher than those of the 
other models in both the training and test sets (Fig. 2C-
D). The nomogram constructed based on the combined 
model, the combined intratumoral and peritumoral Rad 
scores with clinical and imaging features, is shown in 
Fig.  3. The nomogram integrated radiomics signature, 
age, and BPE, demonstrating excellent discrimination.

Calibration curve analysis of the combined model 
(Fig.  4) revealed that the calibration curves, with the 
X-axis representing predicted probabilities and the Y-axis 
representing actual probabilities, showed a good fit with 
the 45°ideal line for both the training and test sets. The 
predicted probabilities of postoperative upgrades of 
high-risk breast lesions were consistent with the actual 
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upgrade probabilities, with no significant deviation 
observed.

DCA (Fig. 5) demonstrated that the prediction model 
curves for both the training and test sets were superior 
to the two extreme lines. When the risk threshold was 
greater than 0.00, a net benefit could be achieved, facili-
tating clinical decision-making.

Discussion
The diagnosis of high-risk breast lesions currently relies 
predominantly on CNB, which serves as the clinical 
gold standard for histopathological assessment prior to 
surgical intervention. Due to variations in biopsy tech-
niques and the amount of tissue sampled, the upgrade 
rate of high-risk lesions can vary significantly. Accord-
ing to the literature, the upgrade rate of high-risk lesions 
after surgical excision ranges from 9.9 to 35.1%. There 
is a substantial difference in upgrade rates among vari-
ous histological subtypes: ADH has an upgrade rate of 
0–62%, lobular carcinoma in situ (LCIS) ranges from 
0 to 55%, and complex sclerosing adenosis ranges from 
0–18% [3, 4]. In this study, the overall upgrade rate of 
high-risk lesions reached 25.9%.

Given the varying degrees of risk associated with high-
risk lesions, corresponding clinical interventions and 
follow-up measures also differ. The development of treat-
ment plans relies on the collaboration of a multidisci-
plinary team of clinicians, pathologists, and radiologists. 
In recent years, there has been ongoing debate regarding 
whether high-risk lesions should be surgically excised. 
Some scholars [18] argue that breast cancer tissue may 
be present around the biopsy site, and high-risk lesions 
carry the risk of upgrading to malignant lesions; there-
fore, surgical excision should be performed for high-risk 
lesions. Emerging evidence challenges the traditional sur-
gical paradigm for high-risk breast lesions, as a signifi-
cant proportion (up to 30%) of these lesions ultimately 
prove benign on postoperative histopathology. Recent 
studies have advocated for more conservative manage-
ment strategies, such as vacuum-assisted biopsy/excision 
(VAB/E) or active surveillance protocols in select CNB-
diagnosed high-risk lesions, thereby reducing overtreat-
ment and avoiding unnecessary surgical interventions 
[16, 19].

While breast MRI has become a critical tool in diag-
nosing high-risk breast lesions, limited evidence exists 

regarding its correlation with lesion upgrade outcomes 
[17]. Prior studies have established a link between BPE 
severity and estrogen-dependent fluctuations, particu-
larly across menstrual phases [17, 20]. Notably, BPE levels 
may serve as a potential biomarker for breast cancer risk 
stratification [17, 20]. Expanding on these insights, You et 
al. [21] integrated multimodal data (mammography, MRI, 
and clinical parameters) to demonstrate that moderate-
to-marked BPE on MRI independently predicts high-risk 
lesion upgrades in multivariate analyses. Consistent with 
these findings, our study further validated the prognostic 
significance of moderate-to-marked BPE as an indepen-
dent risk determinant for lesion upgrade.

Current evidence on predictors of malignant upgrades 
in high-risk breast lesions remains limited. Historically, 
breast radiomic research has predominantly focused on 
intratumoral heterogeneity, largely overlooking the bio-
logically rich and prognostically significant information 
embedded within the peritumoral microenvironment. 
The peritumoral region of breast tumors may contain 
important biological information that is difficult to detect 
through traditional imaging diagnosis, such as angiogen-
esis, lymphangiogenesis, peritumoral infiltration of blood 
vessels, and desmoplastic reactions [22].

The study [23] revealed that peritumoral imaging fea-
tures within 0–3  mm surrounding the primary breast 
cancer lesion on MRI correlate with tumor-infiltrating 
lymphocyte (TIL) density, suggesting that peritumoral 
radiomic features may characterize the tumor microen-
vironment in breast cancer. Zhou et al. [24] segmented 
the intratumoral regions on DCE-MRI images from 133 
patients with benign and malignant breast lesions. They 
expanded the intratumoral ROI by factors of 1.2, 1.5, 
and 2.0 to encompass peritumoral areas. Their findings 
demonstrated that the radiomics model incorporating 
small peritumoral regions (1.2×,1.5×,2.0× expansion) 
achieved the highest accuracy in distinguishing benign 
from malignant breast tumors. This highlights that com-
bining intratumoral and limited peritumoral radiomic 
features outperforms models relying solely on intratu-
moral features. Lee et al. found that radiomic models 
based on intratumoral and peritumoral features derived 
from DCE-MRI images demonstrated high performance 
in differentiating benign and malignant breast lesions, 
and were comparable to radiologists’ assessments [25]. 
Our prior investigation [26] was exclusively focused on 

Table 2  Comparison of MRI characteristics of high-risk lesion patients in the training and test sets
n TIC curve BPE Enhancement type

Palpable mass Nipple blood/fluid discharge Pain a/b c/d Mass Non-mass
Training set 121 19 87 15 73 48 58 63
Test set 53 12 38 3 33 20 23 30
t/x2 2.61 0.06 0.31
P-value 0.271 0.81 0.581
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radiomic feature extraction from a fixed 5  mm peritu-
moral margin, whereas emerging evidence suggests sig-
nificant spatial heterogeneity in biological processes (e.g., 
angiogenesis, immune infiltration) across differentially 
expanded peritumoral regions. This biological gradient 
may critically influence malignant transformation risk 
stratification, underscoring the necessity of systematic 
multi-margin analyses to decode microenvironmen-
tal dynamics. These findings suggest that the peritu-
moral region has potential diagnostic value. Therefore, 
in this study, we systematically evaluated peritumoral 
regions at incremental expansions of 3  mm, 5  mm, and 
7  mm from the tumor boundary to extract and analyze 
radiomic features, aiming to identify the optimal peritu-
moral margin for predicting malignant upgrades in high-
risk lesions. The results demonstrated that the radiomic 
model based on the 3  mm peritumoral region achieved 
superior diagnostic performance compared to mod-
els using larger peritumoral margins (5 mm and 7 mm), 
with an AUC of 0.704. Potential underlying mechanisms 
merit consideration. First, signal dilution may occur as 
radiomic features extracted from 5 to 7 mm perilesional 
margins incorporate non-specific signals from adjacent 
normal glandular tissue and vasculature, thereby com-
promising discriminative power for lesion characteriza-
tion. Second, excessive spatial smoothing introduced by 
wide-margin delineation increases volumetric averaging 
effects, which obscures fine-scale heterogeneity—a criti-
cal biomarker for risk stratification that reflects subvoxel 
architectural distortions associated with early malignant 
transformation.

Thus, we ultimately combined the intratumoral 
radiomic features with the highest-performing peri-
tumoral 3  mm radiomic features. The results demon-
strated that the integrated model combining intratumoral 
radiomic features, 3  mm peritumoral radiomic sig-
natures, along with clinical and imaging predictors 
achieved the highest diagnostic performance in the train-
ing cohort, with an AUC of 0.883. The combined model 
demonstrated superior performance compared to mod-
els based solely on clinical and imaging features, intra-
tumoral radiomics, peritumoral radiomics, or even the 
combination of intratumoral and peritumoral radiomics. 
In the test cohort, the integrated model achieved the 
highest diagnostic accuracy, with an AUC of 0.851. By 
synergistically incorporating intratumoral and peritu-
moral radiomic features derived from breast DCE-MRI 
with clinical and imaging predictors, this multimodal 
framework not only optimizes diagnostic precision but 
also provides actionable imaging-based evidence and 
establishes a nomogram to guide personalized clinical 
decisions. It addresses two clinical challenges: avoiding 
unnecessary biopsies in low-risk BI-RADS 4 lesions and 
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Table 4  Univariate and multivariate logistic regression analysis in the training set
Univariate Multivariate
β S.E Z OR(95%CI) P-value β S.E Z OR(95%CI) P-value

Age 0.05 0.02 2.41 1.05(1.01~1.09) 0.016 0.05 0.03 2.05 1.06(1.01~1.11) 0.040
Maximum lesion diameter 0.05 0.02 3.23 1.05(1.02~1.08) 0.001 0.03 0.02 1.43 1.03(0.99~1.07) 0.154
BPE 1.28 0.42 3.03 3.59(1.57~8.21) 0.002 1.45 0.56 2.62 4.28(1.44~12.74) 0.009
Rad score 1.00 0.21 4.68 2.72(1.79-4.13) <0.001 1.01 0.24 4.19 2.75(1.71~4.41) <0.001
Abbreviations: OR: odds ratio; CI: confidence interval; Rad scores: radiomcis score; S.E: standard deviation

Note: β: regression coefficient

Key findings: Age, BPE, and Rad score demonstrated statistically significant associations in multivariate analyses, establishing them as core independent predictors. 
BPE exhibited the highest odds ratio, suggesting its clinical relevance may surpass that of the radiomics score. Furthermore, Rad score retained statistical significance 
in both univariate and multivariate models, reinforcing its validity as a robust quantitative biomarker for breast cancer risk stratification

Fig. 2  ROC curves of intratumoral and peritumoral radiomics models in the training set (A, C) and test set (B, D)

 



Page 9 of 11Yang et al. BMC Cancer          (2025) 25:828 

prioritizing high-risk cases for immediate intervention, 
effectively reducing healthcare costs and patient anxiety.

This study has several limitations. First, its mono-
centric retrospective design may limit generalizability 

to diverse populations and imaging protocols. Second, 
radiomic features are sensitive to MRI scanner vari-
ability and acquisition parameters. Although intensity 
normalization was applied, future multi-center studies 

Fig. 5  Decision curve analysis of the combined prediction model in the training and test sets

 

Fig. 4  Calibration curves of the combined model (Clinical, intratumoral, and peritumoral features) in the training and test sets

 

Fig. 3  Nomogram constructed from clinical and radiomics features combined with intratumoral and peritumoral radiomics features
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should adopt ComBat harmonization or deep learning-
based image synthesis to mitigate scanner effects. Third, 
manual tumor segmentation, particularly for peritumoral 
regions, may introduce inter-observer variability.

Conclusion
This combination prediction model combines intratu-
moral and peritumoral radiomic features with clinical 
and imaging data, demonstrating strong diagnostic per-
formance in predicting the pathological progression of 
high-risk breast lesions. This approach can better stratify 
and treat high-risk lesions.

Acknowledgements
The authors would like to thank all those involved in the study for dedicating 
their time and skills to the completion of this study. This paper is supported by 
Shenzhen Science and Technology Research and Development Fund [Grant 
Number GJHZ20220913142613025], which was critical to the successful 
completion of this study.

Author contributions
All authors contributed to the conception and design of the study. Yuting 
Yang and Tingting Liao wrote the first draft of the manuscript, and all 
authors commented on the manuscript’s early versions. Xiaohui Lin and 
Rushan Ouyang provided major critical reviews of the intellectual content 
of the article. Yuting Yang, Tingting Liao and Qiu Chen conducted material 
preparation and data analysis. All authors read and approved the final 
manuscript, and Jie Ma provided administrative and financial support.

Funding
This study was supported by the Shenzhen Science and Technology Research 
and Development Fund (GHSZ20210705142208024).

Data availability
The datasets generated during and/or analyzed during the current study are 
not publicly available due to the privacy of hospital data. However, they are 
available from the corresponding author upon reasonable request.

Declarations

Ethics approval and consent to participate
This study was approved by the Ethics Committee of Shenzhen Hospital (LL.
KY-2021624). This study was conducted under the Declaration of Helsinki.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Clinical trial number
Not applicable.

Author details
1Department of Radiology, Shenzhen People’s Hospital, The Second 
Clinical Medical College of Jinan University, Shenzhen 518020, China
2Department of Radiology, The Eighth Affiliated Hospital of Sun Yat-sen 
University, Shenzhen 528406, China
3Department of Ultrasound, The Second Affiliated Hospital of Guangzhou 
Medical University, Guangzhou, China

Received: 19 February 2025 / Accepted: 15 April 2025

References
1.	 Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I et al. Global 

cancer statistics 2022: GLOBOCAN estimates of incidence and mortality 
worldwide for 36 cancers in 185 countries [J]. CA: A Cancer Journal for Clini-
cians, 2024, 74(3): 229– 63.DOI.10.3322/caac.21834.

2.	 Rubio IT, Wyld L, Marotti L, Athanasiou A, Regitnig P, Catanuto G et al. 
European guidelines for the diagnosis, treatment and follow-up of breast 
lesions with uncertain malignant potential (B3 lesions) developed jointly 
by EUSOMA, EUSOBI, ESP (BWG) and ESSO [J]. Eur J Surg Oncol, 2024, 50(1): 
107292.DOI.10.1016/j.ejso.2023.107292.

3.	 El-Sayed ME, Rakha EA, Reed J, Lee AH, Evans AJ, Ellis IO. Predictive value of 
needle core biopsy diagnoses of lesions of uncertain malignant potential (B3) 
in abnormalities detected by mammographic screening [J]. Histopathology, 
2008, 53(6): 650-7.DOI.10.1111/j.1365-2559.2008.03158.x.

4.	 Mooney KL, Bassett LW, Apple SK. Upgrade rates of high-risk breast 
lesions diagnosed on core needle biopsy: a single-institution experience 
and literature review [J]. Mod Pathol, 2016, 29(12): 1471-84.DOI.10.1038/
modpathol.2016.127.

5.	 Elkenawy EM, Alhussan AA, Khafaga DS, Tarek Z, Elshewey AM. Greylag goose 
optimization and multilayer perceptron for enhancing lung cancer classifica-
tion [J]. Sci Rep, 2024, 14(1): 23784.DOI.10.1038/s41598-024-72013-x.

6.	 Zhang H, Zhao T, Ding J, Wang Z, Cao N, Zhang S et al. Differentiation 
between invasive ductal carcinoma and ductal carcinoma in situ by combin-
ing intratumoral and peritumoral ultrasound radiomics [J]. Biomed Eng 
Online, 2024, 23(1): 117.DOI.10.1186/s12938-024-01315-y.

7.	 Wang X, Wei M, Chen Y, Jia J, Zhang Y, Dai Y et al. Intratumoral and peritu-
moral MRI-based radiomics for predicting extrapelvic peritoneal metastasis in 
epithelial ovarian cancer [J]. Insights Imaging, 2024, 15(1): 281.DOI.10.1186/
s13244-024-01855-w.

8.	 Urso L, Manco L, Cittanti C, Adamantiadis S, Szilagyi KE, Scribano G et al. (18)
F-FDG PET/CT radiomic analysis and artificial intelligence to predict patho-
logical complete response after neoadjuvant chemotherapy in breast cancer 
patients [J]. Radiol Med, 2025.DOI.10.1007/s11547-025-01958-4.

9.	 Urso L, Quartuccio N, Caracciolo M, Evangelista L, Schirone A, Frassoldati A et 
al. Impact on the long-term prognosis of FDG PET/CT in luminal-A and lumi-
nal-B breast cancer [J]. Nucl Med Commun, 2022, 43(2): 212-9.DOI.10.1097/
mnm.0000000000001500.

10.	 Kettunen T, Okuma H, Auvinen P, Sudah M, Tiainen S, Sutela A et al. Peritu-
moral ADC values in breast cancer: region of interest selection, associations 
with hyaluronan intensity, and prognostic significance [J]. Eur Radiol, 2020, 
30(1): 38–46.DOI.10.1007/s00330-019-06361-y.

11.	 Wu PQ, Guo FL, Wang J, Gao Y, Feng ST, Chen SL et al. Development and vali-
dation of a dynamic contrast-enhanced magnetic resonance imaging-based 
habitat and peritumoral radiomic model to predict axillary lymph node 
metastasis in patients with breast cancer: a retrospective study [J]. Quant 
Imaging Med Surg, 2024, 14(12): 8211-26.DOI.10.21037/qims-24-558.

12.	 Wang F, Cheng M, Du B, Li J, Li L, Huang W et al. Predicting microvascular 
invasion in small (≤ 5 cm) hepatocellular carcinomas using radiomics-based 
peritumoral analysis [J]. Insights Imaging, 2024, 15(1): 90.DOI.10.1186/
s13244-024-01649-0.

13.	 Yang J, Liu Y, Liu X, Wang Y, Wang X, Ai C et al. MRI-based intratumoral and 
peritumoral radiomics for assessing deep myometrial invasion in patients 
with early-stage endometrioid adenocarcinoma [J]. Front Oncol, 2024, 14: 
1474427.DOI.10.3389/fonc.2024.1474427.

14.	 Mo S, Luo H, Wang M, Li G, Kong Y, Tian H et al. Machine learning radiomics 
based on intra and peri tumor PA/US images distinguish between luminal 
and non-luminal tumors in breast cancers [J]. Photoacoustics, 2024, 40: 
100653.DOI.10.1016/j.pacs.2024.100653.

15.	 Liu Z, Hong M, Li X, Lin L, Tan X, Liu Y. Predicting axillary lymph node metas-
tasis in breast cancer patients: A radiomics-based multicenter approach with 
interpretability analysis [J]. Eur J Radiol, 2024, 176: 111522.DOI.10.1016/j.
ejrad.2024.111522.

16.	 Giannotti E, James JJ, Chen Y, Sun R, Karuppiah A, Yemm J et al. Correc-
tion to: Effectiveness of percutaneous vacuum-assisted excision (VAE) of 
breast lesions of uncertain malignant potential (B3 lesions) as an alterna-
tive to open surgical biopsy [J]. Eur Radiol, 2022, 32(1): 742.DOI.10.1007/
s00330-021-08157-5.

17.	 Hu N, Zhao J, Li Y, Fu Q, Zhao L, Chen H et al. Breast cancer and background 
parenchymal enhancement at breast magnetic resonance imaging: 
a meta-analysis [J]. BMC Med Imaging, 2021, 21(1): 32.DOI.10.1186/
s12880-021-00566-8.



Page 11 of 11Yang et al. BMC Cancer          (2025) 25:828 

18.	 Ring NY, Diflorio-Alexander RM, Bond JS, Rosenkranz KM, Cervantes E, Sohn 
JH et al. Papillary and sclerosing lesions of the breast detected and biopsied 
by MRI: Clinical management, upgrade rate, and association with apocrine 
metaplasia [J]. Breast J, 2019, 25(3): 393–400.DOI.10.1111/tbj.13238.

19.	 Pinder P S E, Shaaban A, Deb R, Desai A, Gandhi A, Lee L A H S, et al. NHS 
breast screening multidisciplinary working group guidelines for the diagnosis 
and management of breast lesions of uncertain malignant potential on core 
biopsy (B3 lesions). Clin Radiol. 2018;73(8):682–92. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​0​1​6​​/​j​​.​c​r​
a​d​.​2​0​1​8​.​0​4​.​0​0​4.

20.	 Liu K, Liu Q, Xu F, Zhang CX, Zhang YL. The clinical value of X-ray and 
background enhanced features by MRI in prediction of diagnosis upgrade in 
breast High-Risk benign lesions [J]. Med Theory Pract. 2023;36(6):919–2128. ​h​
t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​9​3​8​​1​/​​j​.​i​​s​s​n​​.​1​0​0​​1​-​​7​5​8​5​.​2​0​2​3​.​0​6​.​0​0​6.

21.	 You C, Peng WJ, Gu YJ, Chen S, Liu XH, Jiang TT et al. The diagnostic value 
of both mammography and MRI in combination with clinical features in 
Highrisk breast lesions [J]. Chin J Radiol, 020, 54(03): 203–8.​h​t​t​p​s​:​​​/​​/​d​o​​i​.​​o​r​​g​​/​​1​0​​.​
3​7​​​6​0​​/​​c​​m​​a​.​​j​.​​i​​s​s​​n​.​​1​0​0​5​​-​1​2​0​1​​.​2​​0​2​0​.​0​3​.​0​0​6

22.	 Yu H, Meng X, Chen H, Han X, Fan J, Gao W et al. Correlation Between Mam-
mographic Radiomics Features and the Level of Tumor-Infiltrating Lympho-
cytes in Patients With Triple-Negative Breast Cancer [J]. Front Oncol, 2020, 10: 
412.DOI.10.3389/fonc.2020.00412.

23.	 Braman N, Prasanna P, Whitney J, Singh S, Beig N, Etesami M et al. Asso-
ciation of Peritumoral Radiomics With Tumor Biology and Pathologic 

Response to Preoperative Targeted Therapy for HER2 (ERBB2)-Positive 
Breast Cancer [J]. JAMA Netw Open, 2019, 2(4): e192561.DOI.10.1001/
jamanetworkopen.2019.2561.

24.	 Zhou J, Zhang Y, Chang KT, Lee KE, Wang O, Li J et al. Diagnosis of Benign and 
Malignant Breast Lesions on DCE-MRI by Using Radiomics and Deep Learning 
With Consideration of Peritumor Tissue [J]. J Magn Reson Imaging, 2020, 
51(3): 798–809.DOI.10.1002/jmri.26981.

25.	 Lee HJ, Nguyen AT, Ki SY, Lee JE, Do LN, Park MH et al. Classification of MR-
Detected Additional Lesions in Patients With Breast Cancer Using a Combina-
tion of Radiomics Analysis and Machine Learning [J]. Front Oncol, 2021, 11: 
744460.DOI.10.3389/fonc.2021.744460.

26.	 Liao T, Yang Y, Lin X, Ouyang R, Deng Y, Ma J. High-risk breast lesions: a com-
bined intratumoral and peritumoral radiomics nomogram model to predict 
pathologic upgrade and reduce unnecessary surgical excision [J]. Front 
Oncol, 2024, 14: 1479565.DOI.10.3389/fonc.2024.1479565.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

https://doi.org/10.1016/j.crad.2018.04.004
https://doi.org/10.1016/j.crad.2018.04.004
https://doi.org/10.19381/j.issn.1001-7585.2023.06.006
https://doi.org/10.19381/j.issn.1001-7585.2023.06.006
https://doi.org/10.3760/cma.j.issn.1005-1201.2020.03.006
https://doi.org/10.3760/cma.j.issn.1005-1201.2020.03.006

	﻿Dual-region MRI radiomic analysis indicates increased risk in high-risk breast lesions: bridging intratumoral and peritumoral radiomics for precision decision-making
	﻿Abstract
	﻿Introduction
	﻿Materials and methods
	﻿Study cohort
	﻿Inclusion and exclusion criteria
	﻿MRI imaging data acquisition
	﻿Radiomics analysis
	﻿Image ROI delineation
	﻿Radiomics feature extraction, preprocessing, and selection
	﻿Patient cohort stratification and randomized allocation
	﻿Model development and validation


	﻿Statistical analysis
	﻿Results
	﻿Clinical characteristics of patients
	﻿Clinical and imaging model construction
	﻿Model performance evaluation and comparison

	﻿Discussion
	﻿Conclusion
	﻿References


