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Abstract
Background This study aims to evaluate cytokines as a prognostic biomarker in patients with advanced non-small 
cell lung cancer (aNSCLC) undergoing immunotherapy.

Methods A comprehensive analysis was conducted to assess the prognostic significance of sCD14 and other 
cytokines in aNSCLC patients receiving immune checkpoint inhibitors (ICIs) using flow fluorescence. A discovery 
cohort (n = 42) was used to evaluate the differential expression of 41 cytokines between durable clinical benefit 
(DCB) and no durable benefit (NDB) groups in Cancer Hospital, Chinese Academy of Medical Sciences (CHCAMS). The 
prognostic value was further validated in multiple independent cohorts, including plasma protein measurements 
(n = 109), multiplex immunofluorescence (mIF) (n = 22), and messenger RNA datasets (n = 403) of NSCLC in CHCAMS.

Results In the discovery cohort, 7 cytokines (CD14, CCL27, IL-17 A, EGF, TNFR1, GFAP, CHI3L1) exhibited differential 
expression between the DCB and NDB groups. Among these, CD14, CCL27, IL-17 A, and TNFR1 were significantly 
elevated in the DCB group, while EGF, CHI3L1, and CCL5 were higher in the NDB group. CD14 showed a high area 
under the curve (AUC = 0.84) for predicting clinical benefit. Functional enrichment analysis indicated that these 
cytokines are involved in key immune pathways, including the inflammatory response and MAPK signaling. Univariate 
COX for progression-free survival (PFS) analysis demonstrated prognostic value for CD14 (p < 0.001, HR = 0.054 [0.014–
0.219]), CCL27 (p < 0.001, HR = 0.054 [0.015–0.196]), IL-17 A (p < 0.001, HR = 0.110 [0.041–0.298]), and CCL5 (p < 0.05, 
HR = 2.387 [1.023–5.570]). Validation in the CHCAMS cohort confirmed that CD14 expression, measured via mIF, was 
a predictor of PFS (p < 0.05). Furthermore, high CD14 expression was consistently associated with superior PFS across 
multiple external datasets (GSE126044, GSE135222, GSE136961, and GSE218989). CD14 expression was found to be 
elevated in various normal tissue types, particularly in lung adenocarcinoma and lung squamous cell carcinoma, 
compared to tumors, indicating its potential role in immune surveillance.

Conclusion sCD14 is a promising prognostic biomarker for aNSCLC patients undergoing immunotherapy. Elevated 
plasma sCD14 levels are associated with improved PFS and a favorable immune response.
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Introduction
Advanced non-small cell lung cancer (aNSCLC) is 
a leading cause of cancer-related mortality glob-
ally, with a significant portion of patients present-
ing with advanced or metastatic disease at diagnosis 
[1, 2]. Despite recent advances in treatment, particu-
larly with the advent of immune checkpoint inhibitors 
(ICIs), the response to immunotherapy in aNSCLC 
patients remains highly variable, with non-responders 
constituting three-quarters of NSCLC patients under 
immunotherapy [3, 4], necessitating the identifica-
tion of reliable prognostic biomarkers to guide clinical 
decisions and optimize therapeutic outcomes.

Combining ICIs with chemotherapy has demon-
strated synergistic effects, resulting in substantial 
improvements in overall response rates (ranging from 
28.4 to 63.5%) and survival outcomes [5]. However, 
currently available prognostic biomarkers such as pro-
grammed death ligand-1 (PD-L1) expression, tumor 
mutational burden, and microsatellite instability-high/
deficient mismatch repair show modest predictive 
power [6, 7]. In NSCLC treated with ICIs, previous 
studies have identified various biomarkers for moni-
toring, including peripheral blood circulating tumor 
DNA [8, 9], neutrophil-to-lymphocyte ratio [10], 
C-reactive protein [11], interleukin-6 (IL-6) [12], inter-
leukin-8 (IL-8) [13, 14], CXCL8, CXCL10 [15], and 
autoantibody (AAb) panels associated with autoim-
mune diseases (antinuclear, thyroglobulin, thyroid per-
oxidase AAbs) [16]. Additionally, specific AAbs (such 
as lgM-RF [17], NY-ESO-1, XAGE1 [18], p53, BRCA2, 
HUD, and TRIM21 AAbs [19]), homeobox protein 
SIX2 AAb [20], lgG4 AAb targeting programmed cell 
death protein 1 [21], and lgG AAb targeting myc asso-
ciated factor X [22] have also been investigated.

Plasma cytokines have emerged as promising predic-
tive biomarkers in patients receiving immunotherapy 
due to their critical role in modulating the immune 
response. Cytokine profiles can reflect the inflam-
matory and immunoregulatory environment, which 
is essential for determining the efficacy of ICIs. Sev-
eral studies [12, 13, 23–25] have demonstrated that 
elevated levels of specific cytokines, such as IL-6 
and IL-8, are associated with treatment response in 
patients undergoing ICIs therapy. Among them, IL-8 
exerts its effects by binding to chemokine receptors 
CXCR1 and CXCR2, thereby modulating inflamma-
tory responses, stimulating angiogenesis, and promot-
ing tumor cell proliferation [13, 23]. Changes in serum 
IL-8 levels before and after ICIs treatment have been 
shown to predict and monitor therapeutic efficacy in 
patients with aNSCLC, with higher IL-8 levels corre-
lating with poorer prognosis [13, 24, 25]. Furthermore, 
Keegan et al. [12] found that a dynamic decrease in 

IL-6 levels in NSCLC patients was positively associ-
ated with a longer median progression-free survival. 
However, prognostic biomarkers for immunotherapy 
remain to be further explored.

The present study aimed to investigate the cyto-
kines in pretreatment plasma samples from aNSCLC 
patients undergoing chemoimmunotherapy. Our com-
prehensive findings contribute to the identification 
of predictive cytokines and provide valuable insights 
into the underlying mechanisms of resistance to che-
moimmunotherapy. These results have the potential to 
improve patient stratification and guide personalized 
treatment decisions, ultimately enhancing outcomes 
for aNSCLC patients.

Methods
Study populations and sample collection
Between 2016 and 2022, a total of 151 pretreatment 
plasma samples and 22 formalin-fixed paraffin-embed-
ded (FFPE) samples were collected from 173 patients 
with aNSCLC who received ICIs therapy (nivolumab, 
pembrolizumab, sintilimab, triplimab, camrelizumab, 
or tirellizumab) at the Cancer Hospital, Chinese Acad-
emy of Medical Sciences (CHCAMS). Plasma sam-
ples were collected in the morning on the day before 
patients received their immunotherapy, using ethyl-
enediaminetetraacetic acid, centrifuged at 3000  rpm 
at 4 °C for 10 min, and stored in 2 ml conical tubes at 
-80  °C until the cytokine detection assays. FFPE sam-
ples were stored at room temperature. The personnel 
conducting cytokine detection were blinded to the 
patients’ immune response outcomes.

The inclusion criteria for patient selection were as 
follows: (1) biopsy-confirmed diagnosis of NSCLC 
with stage III or IV disease and complete clinical fol-
low-up data; (2) treatment with ICIs therapy; and (3) 
administration of ICIs as first-line or later-line ther-
apy for at least two cycles. Patients were excluded if 
they met any of the following conditions: (1) concur-
rent diagnosis of other cancers; (2) presence of non-
primary lung tumors; (3) diagnosis of concomitant 
autoimmune diseases (4) use of other immunosup-
pressive agents (e.g., steroid medication); or (5) pres-
ence of metabolic-related diseases such as diabetes, 
liver dysfunction, or kidney dysfunction. The efficacy 
of immunotherapy was evaluated using the Response 
Evaluation Criteria in Solid Tumours (RECIST) ver-
sion 1.1. Treatment response was initially assessed 
by clinicians from the CHCAMS and subsequently 
reviewed by Dr. Huang for consistency. Patients were 
categorized as having a durable clinical benefit (DCB) 
if they achieved complete remission (CR), partial 
remission (PR), or stable disease (SD) after six months 
of ICI treatment, and as having a non-durable clinical 
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benefit (NDB) if they experienced disease progression 
(PD). This study was approved by the Ethics Commit-
tee of the National Cancer Center/National Clinical 
Research Center for Cancer/Cancer Hospital, Chinese 
Academy of Medical Sciences & Peking Union Medical 
College (No. 23/262–4004 and No.22/486–3688) and 
was conducted in accordance with the principles of the 
Declaration of Helsinki. All clinical characteristics of 
the multiple immunofluorescence (mIF) cohort and 
cytokine cohorts were summarized in Table S1.

Cytokine detection and analysis
In the discovery cohort, the quantitative detection of 
41 cytokines in the plasma of aNSCLC patients was 
performed using flow fluorescence. The cytokines 
measured included CHI3L1, IFN-γ, IL-2, IL-5, IL-6, 
IL-8, IL-10, CD274, IL-17  A, IL-2R, B7-1, CCL11, 
CCL27, CCL5, CD105, CD14, FLT3L, GM-CSF, HE4, 
ICAM-1, IFN-α, IL-1β, IL-33, IL-7, IL-12P70, IL-15, 
LEPTIN, LGALS3, CCL7, CCL3, CCL4, CCL20, TNF-
α, IL-4, TNFR1, CD40, CD69, GFAP, IL-1α, EGF, and 
VEGF. The procedure involved preparing the samples 
and the concentrated wash solution (RM59404, ABplex 
Human 41) according to the protocol. Subsequently, 
50  µl/well of standards (220, 110, 55, 27.5, 13.75, and 
6.87 ng/mL) or samples and 5  µl/well of microsphere 
suspension (RM59557, ABplex Human 41) were added 
to the microplate. The plate was covered with sealing 
film, thoroughly mixed, and incubated at 37  °C in the 
dark for 60  min at 1200  rpm in a constant tempera-
ture incubator. After incubation, the reaction plate was 
placed on a magnetic plate for magnetic separation for 
2 min. The sealing film was removed, and while still on 
the magnetic plate, the supernatant was discarded, and 
any residual liquid was absorbed with blotting paper. 
Next, 100  µl/well of wash solution was added, mixed 
in a constant temperature incubator at 1200  rpm for 
1  min, placed on a magnetic plate for 2  min, and the 
supernatant discarded again with blotting paper used 
to remove any residual liquid. Then, 50 µl/well of bio-
tinylated antibody (RM59558, ABplex Human 41) was 
added, the plate was covered with sealing film, and 
incubated at 37 °C in the dark for 30 min at 1200 rpm 
in a constant temperature incubator. Following this, 
50  µl/well of streptavidin-conjugated phycoerythrin 
(RM59400, ABplex Human 41) was added, the plate 
was again covered with sealing film, and incubated at 
37 °C in the dark for 15 min at 1200 rpm in a constant 
temperature incubator. After incubation, the reaction 
plate was removed from the magnetic plate, 70  µl/
well of wash solution was added, mixed thoroughly, 
and the detection was performed. The detection of 
eight cytokines in the validation cohort, including 
CHI3L1, IL-17  A, CCL5, CD14, GFAP, EGF, CCL27, 

and TNFR1, followed the same protocol as described 
above.

Calculate the mean absorbance for each set of dupli-
cate standards, controls, and samples, and subtract the 
average optical density of the zero standard. Plot the 
standard curve on log-log graph paper, with standard 
concentration on the x-axis and absorbance on the 
y-axis, and draw the best-fit straight line through the 
standard points. For samples that have been diluted, 
multiply the concentration obtained from the standard 
curve by the dilution factor to determine the actual 
concentration of the target protein.

Multiple immunofluorescence
FFPE tissue sections, 4–5  μm in thickness, were pre-
pared and subjected to dewaxing and rehydration. 
Antigen retrieval was performed, followed by blocking 
of endogenous peroxidase activity with an antibody 
blocking solution. Sequential immunostaining was 
carried out for each target antigen, starting with pri-
mary antibodies: rabbit anti-human CD14 (ab133335, 
dilution 1:5000, Abcam) and mouse anti-human pan-
cytokeratin (GB122053, dilution 1:2000, Servicebio). 
This was followed by incubation with secondary anti-
bodies: HRP-labeled goat anti-rabbit IgG (GB23303, 
dilution 1:500, Servicebio) for CD14, and HRP-labeled 
goat anti-mouse IgG (GB23301, dilution 1:500, Ser-
vicebio) for pan-cytokeratin. Tyramide signal ampli-
fication (TSA) was used, with subsequent microwave 
treatment to remove the TSA-antibody complex, 
allowing for additional rounds of antibody label-
ing. iF440-Tyramide (G1250, dilution 1:500, Service-
bio) was used for CD14, and iF647-Tyramide (G1232, 
dilution 1:500, Servicebio) for pan-cytokeratin. After 
immunostaining, cell nuclei were counterstained with 
4’,6-diamidino-2-phenylindole (DAPI), and the slides 
were coverslipped for scanning. Microscopy (ECLIPSE 
C1, Nikon) and scanning (Pannoramic MIDI, 
3DHISTECH) were employed for result interpretation, 
while quantification of the number and percentage 
of positive cells was performed using CaseViewer 2.4 
(3DHISTECH) and ImageJ software. Two experienced 
pathologists independently reviewed all results.

Lymphocyte subsets and lymphocyte count detection
Laboratory tests were conducted to analyze the 
percentages and counts of CD3+ T (total T) cells, 
CD3+CD4+ T (Th) cells, CD3+CD8+ T (Ts) cells, 
CD3−CD16+CD56+ (NK) cells, and CD3−CD19+ (B) 
cells were analyzed by Flow Cytometry using the BD 
FACS Calibur. This analysis was performed on a sub-
group of 72 aNSCLC patients, including 29 patients in 
the discovery cohort and 43 in the validation cohort. 
For peripheral lymphocyte subset analysis, 3 mL of 
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whole blood was collected from each patient when 
available, and flow cytometry was conducted. The 
monoclonal antibodies used in the staining panel 
included CD3 FITC, CD4 PE, CD8 PE, CD19 APC, 
CD45RA FITC, and CD16+CD56 PE (BD FACS Cali-
bur). The percentage of each lymphocyte subset, 
including total T cells, helper T cells, cytotoxic T cells, 
NK cells, and B cells, was recorded for each individual.

Bulk-RNA sequencing by GEO datasets analysis
Immunotherapy datasets from Gene Expression 
Omnibus data base (GEO) ( h t t p  s : /  / w w w  . n  c b i  . n l  m . 
n i  h .  g o v / g e o /) database, including GSE126044 [26] 
(platform GPL16791, n = 16 NSCLC), GSE135222 
[27] (GPL16791, n = 27 NSCLC), and GSE218989 
[28] (n = 339 NSCLC) were annotated and utilized for 
immunotherapy prediction analysis. The raw data were 
subjected to rigorous quality control using the ‘Affy’ 

Fig. 1 Differential cytokines between NDB and DCB in the aNSCLC discovery cohort (n = 42). (A) Heatmap depicts the eight differential cytokines in NDB 
versus DCB patients with aNSCLC. (B) Functional enrichment analysis of the eight cytokines identified. (C) Protein-protein interaction network for the 
eight differential cytokines. (Abbreviation: NDB: non-durable clinical benefit; DCB: durable clinical benefit; aNSCLC: advanced non-small cell lung cancer; 
LUAD: lung adenocarcinoma; LUSC; lung squamous cell carcinoma)

 

https://www.ncbi.nlm.nih.gov/geo/
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Page 5 of 12Dai et al. BMC Cancer          (2025) 25:763 

Fig. 2 (See legend on next page.)
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package in R, which involved computing average val-
ues for multiple probes corresponding to a single gene. 
Clinical characteristics are summarized in Table S3. 
For the NSCLC immunotherapy datasets (GSE126044 
and GSE135222), batch effects were corrected using 
‘combat’ from the ‘sva’ package. The integrated data-
set was labeled as NSCLC_ICIs. For GSE136961 [29] 
dataset, Kaplan-Meier curve for progression free sur-
vival (PFS) based on CD14 expression was performed 
in the Biomarker Exploration of Solid Tumors (BEST) 
( h t t p  s : /  / r o o  k i  e u t  o p i  a . h i  p l  o t .  c o m  . c n /  a p  p _ d i r e c t / B E S T 
/) website.

Statistical analysis
All statistical analyses were performed using the R ver-
sion 4.3.1 software, Sangerbox plot  (   h t t p : / / w w w . s a n g e r 
b o x . c o m     ) , and Hiplot website ( h t t p  s : /  / h i p  l o  t . c  o m .  c n / h  
o m  e / i n d e x . h t m l). Mann-Whitney U tests were used to 
compare the DCB and NDB groups. Sensitivity, speci-
ficity, and receiver operating characteristic (ROC) 
curves were calculated with the ‘pROC’ and ‘ROCR’ 
packages. The ‘maxstat’ package in R was employed to 
determine the optimal cutoff values for high- and low-
expression groups in both the training and validation 
phases. A significance level of p < 0.05 (two-tailed) was 
considered statistically significant for all analyses.

Results
Study design
The study consisted of two phases: discovery and vali-
dation. The clinical characteristics of the discovery 
and validation cohorts, including age, gender, his-
tological type, stage, and line of therapy, have been 
matched (P > 0.05) (Table S1). In addition, the clini-
cal characteristics of the NDB and GCB groups have 
also been matched (P > 0.05) (Table S2). In the discov-
ery phase, plasma samples from a cohort of aNSCLC 
patients (n = 42) were collected prior to immunother-
apy treatment. A total of 41 cytokines were analyzed 
to identify those with differential expression between 
patients with DCB and those with NDB. Eight cyto-
kines, including sCD14, were found to have different 
levels between the two groups. In the validation phase 
(n = 109), the prognostic value of these eight cyto-
kines was further assessed in an independent cohort. 
Given the critical role of the PD-L1 biomarker in lung 
cancer immunotherapy, we analyzed 21 patients with 

available PD-L1 data from both the discovery and vali-
dation cohorts to assess the independent predictive 
value of sCD14. The study utilized mIF (n = 22) and 
gene expression datasets (GSE126044, GSE135222, 
GSE136961, and GSE218989) to validate the findings. 
The correlation between sCD14 and lymphocyte sub-
sets was also analyzed. The study included both mes-
senger RNA (mRNA) and protein-level analyses to 
confirm the expression patterns of CD14 in normal 
versus tumor samples across various cancer types.

Discovery and validation cohorts of prognostic cytokines
Standard curve was shown in the Figure S1A. Among 
the 41 cytokines analyzed, 8 cytokines (CD14, CCL27, 
IL-17  A, EGF, TNFR1, GFAP, CHI3L1, CCL5) exhib-
ited differential expression between the DCB (n = 30) 
and NDB (n = 12) groups in the discovery cohort 
(Fig.  1A, Table S4). CD14, CCL27, IL-17  A, TNFR1, 
and GFAP were elevated in the DCB group, whereas 
EGF, CHI3L1, and CCL5 were higher in the NDB group 
(Figure S1B, Table S4). The AUCs for CCL27, IL-17 A, 
EGF, TNFR1, GFAP, CHI3L1, CCL5, and CD14 were 
0.875, 0.865, 0.755, 0.705, 0.726, 0.749, 0.749, and 0.84, 
respectively (Figure S1C, Table S5). Functional enrich-
ment analysis revealed that these eight cytokines are 
involved in inflammatory response, the SARS-CoV-2 
signaling pathway, the MAPK signaling pathway, and 
positive regulation of cytokine production (Fig.  1B). 
The protein-protein network analysis indicated strong 
interactions among these cytokines (Fig. 1C). Univari-
ate analysis of progression-free survival demonstrated 
that CCL27 (p < 0.001, HR = 0.054 [0.015–0.196]), 
IL-17  A (p < 0.001, HR = 0.110 [0.041–0.298]), CD14 
(p < 0.001, HR = 0.054 [0.014–0.219]), and CCL5 
(p < 0.05, HR = 2.387 [1.023–5.570]) have prognostic 
value (Figure S1D).

Based on the results from the discovery cohort, 
eight cytokines were selected for validation. The stan-
dard curve for these eight cytokines was shown in 
the Figure S1E. Among these cytokines, CD14 dem-
onstrated prognostic value for predicting PFS in 
aNSCLC patients receiving immunotherapy (Fig.  2A). 
Analysis of the correlation between these eight cyto-
kines and lymphocyte subsets (n = 70) revealed that 
CD14 was positively correlated with NK cell counts 
(p < 0.05, r = 0.24). Conversely, CHI3L1 and TNFR1 
were negatively correlated with both the percentage 

(See figure on previous page.)
Fig. 2 Validation of the prognostic value of eight cytokines in the aNSCLC validation cohort (n = 109) and performance of CD14 in predicting PFS in the 
dynamic cohort and mIF cohort (n = 21). (A) Kaplan-Meier curve for PFS based on CD14 expression. (B-C) Correlation between the eight cytokines and 
lymphocyte subsets, including CD3+ T (total T) cells, CD3+CD4+ T (Th) cells, CD3+CD8+ T (Ts) cells, CD3−CD16+CD56+ (NK) cells, and CD3−CD19+ (B) cells. 
(D) Kaplan-Meier analysis of PFS based on CD14 intensity. (E) Representative mIF staining of DAPI, CD14, and pan Cytokeratin in patient #1 with short 
PFS (106 days) and patient #2 with long PFS (511 days). (Abbreviation: aNSCLC: advanced non-small cell lung cancer; PFS: progression free survival; mIF: 
multiple immunofluorescence; Mann-Whitney test was performed between groups)

https://rookieutopia.hiplot.com.cn/app_direct/BEST/
https://rookieutopia.hiplot.com.cn/app_direct/BEST/
http://www.sangerbox.com
http://www.sangerbox.com
https://hiplot.com.cn/home/index.html
https://hiplot.com.cn/home/index.html
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Fig. 3 (See legend on next page.)
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(p < 0.05, r = -0.26 and p < 0.05, r = -0.29) and counts 
of B cells (p < 0.05, r = -0.27 and p < 0.05, r = -0.31). 
Additionally, IL-17  A was positively correlated with 
the percentage of T cells (p < 0.05, r = 0.25) (Fig.  2B, 
C). sCD14 demonstrated prognostic predictive value 
in 21 patients with PD-L1 expression (P < 0.05) (Fig-
ure S2A). However, PD-L1 expression did not predict 
PFS, regardless of grouping method—whether dichot-
omized (TPS < 50% vs. TPS ≥ 50%) or categorized into 
three groups (TPS < 1%, TPS = 1–50%, and TPS ≥ 50%) 
(P > 0.05) (Figure S2B).

mIF and mRNA validation of CD14 in aNSCLC cohorts 
receiving immunotherapy
To validate the prognostic value of CD14 in predicting 
the efficacy of ICI therapy in NSCLC patients, we con-
ducted mIF analysis in the CHCAMS cohort (n = 22) 
(Table S1). The analysis demonstrated that CD14 
intensity was a predictor of PFS (p < 0.05) (Fig.  2D). 
Representative mIF staining of DAPI, CD14, and pan-
Cytokeratin in patients with short PFS (106 days) and 
long PFS (511 days) was shown in Fig. 2E.

CD14 demonstrated prognostic value in both the 
GSE126044 (p = 0.0048) and GSE135222 (p = 0.029) 
datasets, patients with higher CD14 expression asso-
ciated with superior PFS and a lower percentage of 
patients experiencing disease progression (p < 0.001) 
(Fig. 3A, B). Differential gene analysis of the DCB and 
NDB groups in the GSE126044 dataset revealed that 
genes upregulated in the DCB group were predomi-
nantly associated with T cell activation, neutrophil 
activation involved in immune responses, neutrophil 
degranulation, leukocyte proliferation, and mono-
nuclear cell proliferation (Fig.  3C). Combining the 
GSE126044 and GSE135222 datasets, CD14 continued 
to show prognostic value for PFS (p = 0.0065) and was 
elevated in NDB patients (p = 0.0073) (Fig.  3D), the 
same results were also found in GSE136961 (p < 0.05) 
(Fig.  3D). Additionally, in the GSE218989 dataset, 
higher CD14 expression correlated with improved PFS 
(p = 0.038) (Fig. 3E), too.

To investigate CD14 expression at both mRNA 
and protein levels in normal versus tumor samples, 
we found that CD14 mRNA levels were higher in 
normal samples not only in lung adenocarcinoma 
(LUAD) and lung squamous cell carcinoma (LUSC) 
but also in breast invasive carcinoma (BRCA), 

cholangiocarcinoma (CHOL), colon adenocarcinoma 
(COAD), kidney chromophobe (KICH), liver hepato-
cellular carcinoma (LIHC), pheochromocytoma and 
paraganglioma (PCPG), and rectum adenocarcinoma 
(READ) (Fig. 4A). In LUAD and LUSC, CD14 expres-
sion was highest in the C6 (TGF-β dominant) sub-
type and lowest in the C1 (wound healing) subtype 
(Fig.  4B). CD14 protein levels were elevated in breast 
cancer, colon cancer, ovarian cancer, uterine cor-
pus endometrial carcinoma (UCEC), and liver cancer 
(Fig.  4C). Additionally, CD14 protein expression was 
higher in normal samples of LUAD (p = 5.61e-16) and 
LUSC (p = 5.25e-15) (Fig. 4D).

Discussion
This study identifies pretreatment plasma sCD14 as 
a promising prognostic biomarker in patients with 
aNSCLC undergoing immunotherapy. The analysis 
demonstrated that sCD14, among other cytokines, 
shows differential expression between patients with 
DCB and those with NDB. Notably, sCD14 was ele-
vated in the DCB group, indicating its potential role 
in predicting better responses to immunotherapy. 
The prognostic value of sCD14 was validated through 
various methods, including mIF and analysis of pub-
licly available gene expression datasets. The consis-
tent finding that higher sCD14 levels correlate with 
improved PFS across multiple datasets and cohorts 
underscores its robustness as a prognostic marker. This 
is further supported by the univariate analysis show-
ing associations between sCD14 and PFS (HR = 0.054, 
p < 0.001), suggesting that patients with higher sCD14 
levels before treatment are more likely to benefit from 
immunotherapy. While PD-L1 expression is a well-
established biomarker in lung cancer immunotherapy, 
our study revealed that it did not significantly predict 
PFS in our cohort (P > 0.05), regardless of the group-
ing method. This finding suggests that sCD14 may 
serve as an independent prognostic biomarker beyond 
PD-L1 status. However, given the limited number of 
patients with available PD-L1 data (n = 21), selection 
bias cannot be entirely ruled out. Further validation in 
larger, well-balanced cohorts is warranted to confirm 
these findings. In conclusion, this study establishes 
sCD14 as a valuable prognostic biomarker for aNSCLC 
patients undergoing immunotherapy. Its predictive 
capacity, coupled with its associations with immune 

(See figure on previous page.)
Fig. 3 Performance of CD14 in predicting survival in GEO immunotherapy cohorts (n = 16, 27, and 339). (A-B) Kaplan-Meier curves for PFS based on CD14 
gene expression in NSCLC immunotherapy cohorts (GSE126044 and GSE135222) and comparison of PD and non-PD ratios between CD14 high and low 
groups. (C) Differential gene analysis and functional enrichment for genes upregulated in the DCB group. (D) Kaplan-Meier curves for PFS based on CD14 
gene expression and comparison of CD14 expression between DCB and NDB groups in combined and GSE136961 datasets. (E) Kaplan-Meier curves for 
PFS based on CD14 gene expression in GSE218989 and GSE136961. (Abbreviation: GEO: Gene Expression Omnibus data base; NSCLC: non-small cell lung 
cancer; PFS: progression free survival; PD: progression disease; DCB: durable clinical benefit; NDB: non-durable clinical benefit. Mann-Whitney test was 
performed between groups)
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cell populations and involvement in inflammatory sig-
naling, supports its potential use in guiding therapeu-
tic decisions and tailoring immunotherapy strategies.

In our study, we found that higher pretreatment 
plasma sCD14 levels were associated with better 
prognosis in advanced NSCLC patients undergoing 
immunotherapy, suggesting a potential role of sCD14 
in enhancing antitumor immune responses. sCD14, a 
soluble co-receptor for LPS, can activate immune sig-
naling through the TLR4 pathway, leading to increased 
cytokine production and immune cell activation 
[30–32]. As a key component of the innate immune 
Toll-like receptor system, the soluble form of CD14 is 
elevated in the serum of cancer patients, which may be 
associated with immune tolerance and cancer progres-
sion [33]. Previous studies have indicated that CD14 
expression is linked to heightened immune infiltration 
and inflammatory responses in various cancers, sup-
porting its role in shaping the tumor immune micro-
environment [34]. In NSCLC, high expression of CD14 
is related to increased infiltration of NK cells, classi-
cal monocytes, and intermediate monocytes, effec-
tively predicting disease progression in IA-IB NSCLC 
[35, 36]. The increased tumor infiltration of CD14+ 
cells is associated with higher staging and a greater 
number of positive lymph nodes at the time of sur-
gery, serving as a biomarker for poor prognosis in 
early lung adenocarcinoma [37]. In NSCLC treated 
with immune checkpoint inhibitors, the frequency of 
CD14+ monocytes is associated with prolonged PFS 
[38]. Responders to immunotherapy demonstrate 
higher percentages of PD-L1(+) neutrophils, PD-L1(+) 
CD14(+) cells, and PD-L1(+) platelets compared to 
pre-treatment levels [39]. Patients with a higher per-
centage of PD-L1 + CD14 + show shorter overall sur-
vival [40, 41]. In colorectal cancer, CD14 is associated 
with high immune and stromal infiltration, and it 
interacts with immune checkpoints, potentially pre-
dicting the prognosis of immunotherapy [42]. In breast 
cancer, rectal cancer, and ovarian cancer patients, 
pre-treatment serum levels of sCD14 are related to 
the risk of recurrence and prognosis [43–46]. These 
results indicate that CD14 and its soluble form play 
an important role in immune responses and progno-
sis across various cancers. The correlation of sCD14 
with immune cell populations, such as NK cells, adds 
a layer of complexity to its role in the tumor micro-
environment. sCD14’s positive correlation with NK 
cell counts (p < 0.05, r = 0.24) suggests it may enhance 
anti-tumor immune responses, potentially explain-
ing the improved outcomes in patients with elevated 
sCD14 levels. Moreover, the observed interactions 
among cytokines in the protein-protein network anal-
ysis indicate a coordinated inflammatory response, 

with sCD14 potentially acting as a central mediator. Its 
involvement in key pathways, such as the MAPK sig-
naling and cytokine production regulation, provides a 
mechanistic basis for its role in modulating immune 
responses to tumors. One possible explanation for our 
findings is that elevated sCD14 levels reflect a more 
active immune state, enhancing antigen presentation 
and T cell priming, which could improve response to 
ICIs. Additionally, sCD14 has been reported to mod-
ulate macrophage polarization and monocyte dif-
ferentiation [32, 47], which may contribute to a more 
favorable immune landscape for ICIs. Although our 
study establishes a clinical association between sCD14 
and immunotherapy outcomes, further in vitro and 
in vivo functional studies are warranted to elucidate 
the precise mechanisms through which sCD14 influ-
ences tumor-immune interactions. Future investiga-
tions should explore the role of sCD14 in immune cell 
recruitment, checkpoint regulation, and inflammatory 
signaling, which could provide valuable insights into 
its potential as a predictive biomarker for immuno-
therapy efficacy.

This study have several limitations. First, the retro-
spective design may introduce biases due to reliance 
on historical patient data, necessitating prospective 
studies to confirm sCD14’s prognostic value in larger, 
more diverse cohorts. And we acknowledge the impor-
tance of independent prospective validation. Relevant 
clinical samples are currently being collected and will 
be incorporated into future studies to further vali-
date our findings. Second, further research is needed 
to explore how sCD14 influences immune responses 
and treatment outcomes. Additionally, further valida-
tion in independent cohorts is necessary to ensure the 
generalizability of sCD14 as a prognostic biomarker. 
These limitations highlight the need for continued 
research to refine our understanding of sCD14’s role 
in aNSCLC and its potential applications in tailoring 
immunotherapy strategies.

Conclusion
This study demonstrates that pretreatment plasma 
sCD14 level may be a prognostic indicator for aNSCLC 
patients undergoing immunotherapy. Elevated sCD14 
levels were associated with improved PFS.



Page 10 of 12Dai et al. BMC Cancer          (2025) 25:763 

Fig. 4 CD14 gene and protein expression in the pan-cancer cohort. (A) Comparison of CD14 mRNA expression between normal and tumor samples 
across the pan-cancer cohort. (B) Comparison of CD14 expression in LUAD and LUSC subtypes. (C) Comparison of CD14 protein expression between nor-
mal and tumor samples in the pan-cancer cohort. (D) Comparison of CD14 protein expression in LUAD, LUSC, and normal samples. (Abbreviation: mRNA: 
messenger RNA; LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma. Mann-Whitney test was performed between groups)
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