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Abstract
Background Identifying occult central lymph node metastasis (CLNM) is essential for guiding prophylactic lymph 
node dissection (PLND) in patients with cN0 stage papillary thyroid microcarcinoma (PTMC). This study aimed to 
identify molecular prognostic biomarkers associated with PTMC and develop a clinical-molecular prediction model for 
CLNM.

Methods Differentially expressed genes (DEGs) in PTMC were identified through bioinformatics analysis of the TCGA 
database. Prognostic DEGs were selected using Cox and LASSO regression analyses, and a risk-scoring model was 
constructed based on these genes. The prognostic value of the model was validated using Kaplan-Meier survival 
analysis and ROC curves. DEG expression levels were compared between patients with CLNM and those without 
(NCLNM). Clinical data and surgical specimens were collected from 404 patients with cN0 stage PTMC treated at 
the First Affiliated Hospital of Ningbo University in 2022. The cohort was randomly divided into a derivation cohort 
(n = 323) and a validation cohort (n = 81). DEG expression was quantified using RT-qPCR. Univariate and multivariate 
logistic regression analyses were conducted in the derivation cohort to identify predictors of CLNM and develop a 
predictive model. The model’s performance was evaluated using the Hosmer-Lemeshow test, ROC curves, calibration 
curves, and decision curve analysis (DCA).

Results In the TCGA database, FN1, MT-1 F, and TFF3 were identified as prognostic biomarkers. Risk scores based on 
these genes achieved AUCs of 0.789 (5 years) and 0.674 (10 years) for predicting disease-free survival. Furthermore, 
FN1, MT-1 F, and TFF3 expression levels were significantly higher in the CLNM group compared to the NCLNM 
group. Among the 404 PTMC patients, the incidence of CLNM was 42.6% (n = 172). RT-qPCR analysis demonstrated 
significantly elevated expression of FN1 in both PTMC tissues compared to normal tissues and in the CLNM 
group relative to the NCLNM group, while MT-1 F and TFF3 exhibited markedly reduced expression levels. In the 
derivation cohort, FN1, MT-1 F, TFF3, tumor size ≥5 mm, calcification, multifocality, and extrathyroidal extension were 
independent predictors of CLNM. The prediction model based on these factors showed AUCs of 0.736 (derivation 
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Introduction
The global incidence of thyroid cancer has increased sig-
nificantly in recent years [1]. According to the latest Chi-
nese cancer statistics, thyroid cancer is the fourth most 
common malignancy among women in China, with an 
annual growth rate of approximately 20% [2]. Papillary 
thyroid carcinoma (PTC) is the predominant histological 
subtype, accounting for 90% of all thyroid cancer cases 
[3]. The World Health Organization defines papillary thy-
roid microcarcinoma (PTMC) as PTC with a maximum 
diameter ≤1.0 cm [4]. Although PTMC generally follows 
an indolent course with a favorable prognosis, 20-50% 
of patients develop cervical lymph node metastasis, pri-
marily in the central compartment [5, 6]. As metastasis 
progresses, the 5-, 10-, and 15-year survival rates decline 
to 82.2%, 63.8%, and 23.9%, respectively [7]. Notably, 
60-80% of lymph node metastases in PTC are occult, and 
preoperative ultrasound sensitivity for detecting central 
lymph node metastases (CLNM) remains low at 20-30%, 
making most occult metastases difficult to identify [8, 9].

Guidelines regarding prophylactic lymph node dissec-
tion (PLND) in cN0 stage PTMC patients—those without 
evident signs of cervical lymph node metastasis prior to 
surgery—vary across regions. Several guidelines, includ-
ing Chinese guidelines, recommend active PLND [10]. 
While PLND reduces tumor recurrence and complica-
tions associated with reoperation, it carries risks such as 
permanent hypocalcemia and recurrent laryngeal nerve 
injury [11]. Therefore, accurately predicting CLNM 
before surgery is essential to optimize patient manage-
ment, minimize unnecessary surgical interventions, and 
reduce procedure-related complications.

Although various predictive tools have been developed, 
most rely primarily on clinical features and radiomic sig-
natures derived from ultrasound or computed tomog-
raphy, with limited inclusion of molecular biomarkers 
[12, 13]. Previous studies by Lu et al. [14] and Xiao et 
al. [15] identified several metastasis-related genes in 
PTC through bioinformatics analysis, suggesting genetic 
alterations in lymph node metastasis. Integrating sensi-
tive molecular markers that accurately reflect tumor 
biological behavior into existing clinicopathological 
models could enhance personalized monitoring and risk 
stratification. While some researchers have developed 

prediction models incorporating risk factor genes associ-
ated with CLNM, these models are primarily limited to 
commonly tested mutations such as BRAF V600E and 
TERT promoter mutations [16–18]. Given that CLNM 
is a crucial prognostic factor for PTMC [19], we hypoth-
esized that differentially expressed genes (DEGs) associ-
ated with prognosis may serve as potential biomarkers 
for CLNM. Therefore, this study aimed to identify molec-
ular prognostic biomarkers in PTMC and investigate 
their application in constructing a clinical-molecular pre-
diction model for CLNM in PTMC patients.

Methods
Data source and RNA-seq data analysis
RNA-seq transcriptome data and prognostic information 
for 371 PTMC samples and 59 normal tissue samples 
were obtained from The Cancer Genome Atlas (TCGA) 
database ( h t t p  s : /  / c a n  c e  r g e n o m e . n i h . g o v /). The median 
follow-up time was 31 months (range: 2-169 months), 
with a missing data rate of 0.27%. Sample selection cri-
teria included a confirmed PTMC diagnosis and no evi-
dence of distant metastasis.

To identify differentially expressed mRNAs, we utilized 
the edgeR package, applying multiple testing corrections 
with the false discovery rate (FDR). The cut-off criteria 
were|log2 fold change (FC)| > 2 and FDR < 0.01.

Participants
This study included PTMC patients who underwent 
radical thyroidectomy at the First Affiliated Hospital of 
Ningbo University between January and December 2022. 
The inclusion criteria were as follows: (1) age ≥ 18 years; 
(2) diagnosis of clinically node-negative (cN0 stage) 
PTMC and treatment with radical thyroidectomy; and (3) 
availability of surgical specimens and postoperative path-
ological reports. The exclusion criteria were: (1) coexist-
ing malignancies or severe diseases, such as liver or renal 
dysfunction, that could affect prognosis; and (2) incom-
plete clinical data.

A total of 647 PTMC patients underwent radical thy-
roidectomy at our hospital from January to December 
2022. After excluding 132 patients with preoperative 
imaging indicating central or lateral neck lymph node 
metastasis, 105 patients with severe comorbidities, and 6 

cohort) and 0.813 (validation cohort). Moreover, calibration curves, the Hosmer-Lemeshow test (χ² = 2.411, P = 0.966), 
and DCA confirmed the model’s robust performance and clinical utility.

Conclusion FN1, MT-1 F, and TFF3 are valuable prognostic biomarkers for PTMC. The clinical-molecular prediction 
model incorporating these genes provides a basis for personalized PLND decision-making in cN0 stage PTMC 
patients.
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patients with incomplete data, the final cohort comprised 
404 patients. Among them, 287 (71.0%) were female and 
117 (29.0%) were male, with a median age of 48 years 
(range: 21–74 years). CLNM was identified in 172 cases 
(42.6%).

RNA extraction and gene expression analysis
Surgical specimens, including tumor and normal tissues 
from 404 PTMC patients, were stored at -80°C post-
excision. Tissue samples were pretreated, and RNA was 
extracted using Trizol (15596-026, Invitrogen Company). 
Reverse transcription quantitative PCR (RT-qPCR) was 
performed using 2×ChamQ Universal SYBR qPCR Mas-
ter Mix (Q711, Vazyme) following standard protocols. 
Primer sequences, designed using data from the National 
Center for Biotechnology Information website ( h t t p  s : /  / w 
w w  . n  c b i . n l m . n i h . g o v /), are listed in Supplementary Table 
S1 [20]. Gene expression levels were analyzed using the 
2^(−∆∆Ct) method.

Data collection
Clinical and pathological data from the 404 patients were 
collected from medical records, including sex, age, tumor 
size, multifocality, tumor boundary, aspect ratio, blood 
flow, calcification, extrathyroidal extension, and Hashi-
moto’s thyroiditis (HT).

Statistical analysis
Statistical analyses were performed using SPSS 26.0 
and R 4.1.3 software. In the TCGA dataset, univariate 
Cox regression analysis was used to identify DEGs sig-
nificantly associated with disease-free survival (DFS) 
in PTMC patients. Feature selection was conducted 
using the least absolute shrinkage and selection opera-
tor (LASSO) method, followed by stepwise multivariate 
Cox regression analysis to construct a prognostic risk 
score model. Patients were stratified based on risk scores, 
and Kaplan-Meier survival curves and receiver operating 
characteristic (ROC) curves were generated. One-way 
ANOVA was used to compare DEG expression levels 
across different groups.

In the 404-patient dataset, the Wilcoxon rank-sum test 
was applied to compare gene expression levels across dif-
ferent tissue types. Patients were randomly assigned to 
derivation and validation cohorts in a 4:1 ratio [21, 22]. In 
the derivation cohort, univariate and multivariate logistic 
regression analyses were performed to identify indepen-
dent factors associated with CLNM. A clinical-molecular 
prediction model incorporating these factors was devel-
oped and visualized as a nomogram. Model performance 
was assessed using ROC curves, calibration curves, deci-
sion curve analysis (DCA), and the Hosmer-Lemeshow 
test in both cohorts. Statistical significance was set at 
P < 0.05.

Ethics consideration
This study was conducted in accordance with the Dec-
laration of Helsinki and was approved by the Ethics 
Committee of the First Affiliated Hospital of Ningbo Uni-
versity (Approval No. 2021-R140). The TCGA data used 
in this study are publicly accessible through the National 
Cancer Institute’s Genomic Data Commons portal ( h t t p  s 
: /  / p o r  t a  l . g  d c .  c a n c  e r  . g o v /). Written informed consent was 
obtained from all participants.

Results
Differentially expressed mRNAs associated with the 
prognosis of PTMC
We retrieved genetic and clinical data from 371 PTMC 
patients in the TCGA database. Differential expression 
analysis identified 1510 differentially expressed mRNAs 
between tumor and normal tissues, including 704 up-
regulated and 806 down-regulated genes (Fig.  1A-B). 
Univariate Cox analysis revealed that 212 of these genes 
were significantly associated with DFS (P < 0.05). Subse-
quently, LASSO regression identified three differentially 
expressed mRNAs with prognostic significance: FN1, 
MT-1  F, and TFF3 (Fig.  1C). Among these, higher FN1 
expression correlated with poorer prognosis, while lower 
expression of MT-1 F and TFF3 was also associated with 
worse outcomes (Fig. 1D-F).

A prognostic model was developed using stepwise mul-
tivariate Cox regression analysis based on these three 
genes. The risk score formula was defined as follows: Risk 
Score = 0.1297 × FN1 + (-0.1511) × MT-1  F + (-0.0052) 
× TFF3. Based on the risk scores, PTMC patients were 
stratified into high-risk and low-risk groups (Fig.  2A). 
Survival analysis demonstrated that the low-risk group 
exhibited significantly better DFS compared to the high-
risk group (P = 0.015, Fig.  2B). Additionally, the time-
dependent ROC curves for 5- and 10-year DFS yielded 
AUCs of 0.789 and 0.674, respectively (Fig. 2C).

Correlation of FN1, MT-1 F, and TFF3 expression with CLNM 
in PTMC patients
The poor prognosis in PTMC patients is significantly 
associated with CLNM [23–25]. Previous studies have 
showed that lymph node metastasis increases the risk of 
recurrence in PTMC patients by threefold [26]. Conse-
quently, we further investigated the relationship between 
FN1, MT-1 F, TFF3, and CLNM using TCGA dataset. As 
shown in Fig. 3A-C, the cohort included 208 patients with 
CLNM and 163 patients without CLNM (NCLNM). FN1 
expression was significantly upregulated in the CLNM 
group versus both NCLNM and normal tissue groups 
(P < 0.001), while MT-1 F and TFF3 were markedly down-
regulated (P < 0.001). Moreover, as depicted in Fig. 3D-F, 
the AUCs for FN1, MT-1 F, and TFF3 in discriminating 
CLNM were 0.642, 0.656, and 0.652, respectively. These 
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findings suggest that these genes may serve as potential 
biomarkers for CLNM in PTMC.

Expression of FN1, MT-1 F, and TFF3 in tissue samples
Analysis of the TCGA dataset identified FN1, MT-1  F, 
and TFF3 as prognostic genes associated with PTMC. In 
tumor tissues, high FN1 expression and low MT-1 F and 
TFF3 expression were correlated with CLNM and worse 
DFS. To validate these findings, tissue samples from 404 
PTMC patients were collected and analyzed. RT-qPCR 
results indicated that FN1 expression in tumor tissues 
(2.15 ± 0.22) was significantly higher than that in nor-
mal tissues (1.11 ± 0.15, P < 0.001). Conversely, MT-1  F 
expression in tumor tissues (0.70 ± 0.11) was significantly 
lower than that in normal tissues (0.84 ± 0.24, P < 0.001). 
Similarly, TFF3 expression in tumor tissues (0.47 ± 0.26) 
was markedly lower than in normal tissues (1.22 ± 0.61, 
P < 0.001). Subsequently, based on the postoperative 
pathological results, patients were divided into CLNM 
and NCLNM groups. Consistent with the TCGA find-
ings, the expression levels of FN1, MT-1 F, and TFF3 in 

tumor tissues showed significant differences between the 
CLNM and NCLNM groups (Table 1).

Influencing factor analysis of CLNM in PTMC patients
Next, we assessed whether the three genes were inde-
pendent factors influencing CLNM and could be used to 
develop a predictive model for CLNM. The data from 404 
patients were divided into a derivation cohort (n = 323) 
and a validation cohort (n = 81). The characteristics of 
patients in both cohorts are summarized in Table  2. In 
the derivation cohort, univariate logistic analysis revealed 
that tumor size ≥ 5  mm, unclear boundaries, calcifica-
tion, extrathyroidal extension, high FN1 expression, low 
MT-1  F expression, and low TFF3 expression were fac-
tors associated with CLNM (P < 0.05), whereas sex, age, 
HT, multifocality, aspect ratio ≥ 1, and blood flow were 
not (P > 0.05, Table 3). These significant factors were then 
incorporated into multivariate logistic regression, which 
identified all seven variables as independent predictors of 
CLNM (P < 0.05, Table 3).

Fig. 1 Differentially expressed mRNAs associated with the prognosis of PTMC. (A) Volcano plot of differentially expressed mRNAs between tumor tissues 
and normal tissues. Red spots represent up-regulated genes, and blue spots represent down-regulated genes. (B) Heatmap of differentially expressed 
mRNAs between tumor tissues and normal tissues. (C) OS-related mRNA selection using the least absolute shrinkage and selection operator (LASSO) 
regression. (D-F) Kaplan-Meier survival curves for PTMC patients with high or low expression of FN1 (D), MT-1 F (E), and TFF3 (F) in the TCGA dataset
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Construction of a clinical-molecular predictive model for 
CLNM in PTMC patients
A logistic regression model was developed based on the 
seven aforementioned factors, with the equation: Logit(P) 
= -3.098 + 0.626 × Tumor size ≥ 5  mm + 0.696 × Unclear 
boundaries + 0.858 × Calcification + 0.847 × Extrathyroi-
dal extension + 0.951 × High FN1 expression + 0.880 × 
Low MT-1 F expression + 0.836 × Low TFF3 expression. 
To enhance clinical applicability, this model was visual-
ized as a nomogram (Fig. 4). When using the nomogram, 
the corresponding score for each variable is determined 
based on the patient’s characteristics. These scores are 
summed to obtain a total point, which provides an esti-
mated risk of CLNM.

Validation of the CLNM prediction model for PTMC 
patients
The performance of the prediction model was evaluated 
using data from the derivation and validation cohorts. No 
significant differences were observed between the seven 

key features in the two cohorts (Table S2), confirming 
their comparability. In the derivation cohort, the ROC 
curve resulted in an AUC of 0.736 (95% confidence inter-
val [CI]: 0.681–0.790), with a specificity of 71.7%, sen-
sitivity of 66.2%, and accuracy of 69.3% (Fig. 5A). In the 
validation cohort, the AUC was 0.813 (95% CI: 0.720–
0.905), with a specificity of 83.3%, sensitivity of 69.7%, 
and accuracy of 77.8% (Fig. 5D). Calibration curves dem-
onstrated good agreement between predicted and actual 
probabilities in both derivation and validation cohort 
(Fig.  5B&E), further supported by the Hosmer-Leme-
show test (χ² = 2.411, P = 0.966). DCA indicated that the 
model offered a clinical net benefit across a broad thresh-
old probability range (0.20–0.85 in the derivation cohort, 
Fig. 5C; and 0.1–0.90 in the validation cohort, Fig. 5F).

Discussion
In recent years, there has been a surge in the detection 
rates of PTMC, largely due to increased public health 
awareness and advancements in medical diagnostic 

Fig. 2 Risk scores based on the differentially expressed mRNAs. (A) Risk scores, survival time, and survival status in the TCGA dataset. Top: scatterplot of 
risk scores from low to high; middle: scatterplot distribution of survival time and survival status corresponding to risk scores of different samples; bottom: 
heat map of gene expression in the prognostic model. (B) Kaplan-Meier survival curves for high-risk and low-risk PTMC patients in the TCGA dataset. (C) 
Time-dependent ROC curve for 5-year and 10-year OS of the PTMC patients in TCGA dataset

 



Page 6 of 11Wang et al. BMC Cancer          (2025) 25:693 

technologies [2]. Although the majority of PTMC cases 
progress slowly and often remain indolent, a notable sub-
set of patients still faces the risk of developing CLNM, 
which profoundly impacts patient outcomes [26–28]. 
While numerous studies have explored methods to pre-
dict lymph node metastasis, the emergence of precision 
medicine highlights the critical need for molecular-level 
predictions of CLNM [29–31].

In this study, we conducted bioinformatics analysis 
using data from the TCGA database and identified FN1, 
MT-1 F, and TFF3 as prognostic biomarkers for PTMC. 

Among them, high FN1 expression was associated with 
poorer prognosis, while low expression of MT-1  F and 
TFF3 correlated with worse outcomes. In our real-world 
cohort of 404 PTMC patients, the incidence of CLNM 
was 42.6% (n = 172), slightly higher than the 38.7% rate 
reported by Shi et al. [6]. RT-qPCR analysis of surgi-
cal specimens from these patients validated the findings 
from the TCGA dataset. Compared with adjacent nor-
mal tissues, tumor tissues exhibited higher expression of 
FN1 and lower expression of MT-1  F and TFF3. More-
over, we found that FN1 was further overexpressed in the 
PTMC group with CLNM compared to the group with-
out CLNM, while MT-1 F and TFF3 showed the opposite 
pattern. These findings suggested that FN1 may promote 
tumorigenesis and CLNM in PTMC, while MT-1 F and 
TFF3 may play inhibitory roles [32].

Fibronectin (FN) is an extracellular matrix protein 
synthesized by fibroblasts, and its family member FN1 
is recognized as one of the important negative prognos-
tic markers in PTC patients [33]. Previous studies have 
demonstrated elevated FN1 expression in PTC, with 
aberrant overexpression of FN1 linked to decreased 
recurrence-free survival [34, 35]. Our sample analysis 

Table 1 Comparison of FN1, MT-1 F, and TFF3 expression levels 
in the different groups (n = 404)
Categories FN1 MT-1 F TFF3
Tumor tissue (n = 404) 2.151 ± 0.221 0.695 ± 0.109 0.467 ± 0.262
Normal tissue (n = 404) 1.107 ± 0.147 0.835 ± 0.235 1.222 ± 0.607
P-value < 0.001 < 0.001 < 0.001
CLNM group (n = 172) 2.190 ± 0.210 0.678 ± 0.099 0.419 ± 0.258
NCLNM group (n = 232) 2.122 ± 0.225 0.708 ± 0.114 0.503 ± 0.259
P-value 0.001 0.005 0.001
CLNM, central lymph node metastasis; NCLNM, non-central lymph node 
metastasis

Fig. 3 (A-C) Comparison of expression levels of FN1 (A), MT-1 F (B), and TFF3 (C) in CLNM, NCLNM, and normal tissues of PTMC patients. (D-F) ROC curves 
of FN1 (D), MT-1 F (E), and TFF3 (F) for predicting CLNM in PTMC patients
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further confirmed that FN1 is significantly upregulated in 
tumor tissues of PTMC patients with CLNM. This may 
be attributed to the role of FN1 in promoting cell pro-
liferation, migration, invasion, and inducing epithelial-
mesenchymal transition [36, 37]. Metallothioneins (MT) 
are a family of low-molecular-weight, cysteine-rich pro-
teins with metal-binding properties, widely expressed in 
human tissues and organs [38]. Notably, the expression 
and role of MT in different types of malignancies remain 

controversial. Several studies have reported increased 
MT expression in human tumors of the kidney, uterus, 
and breast, whereas decreased MT expression has been 
observed in tumors of the thyroid, liver, and stomach 
[39, 40]. To date, little research has specifically focused 
on MT-1  F in the context of PTMC. However, a study 
by Chen et al. identified MT-1 M, a homolog of MT-1 F, 
as an independent risk factor for lymph node metastasis 
in PTC. Their in vitro experiments demonstrated that 

Table 2 Characteristic of patients in derivation and validation cohort
Variables Derivation cohort (n = 323) Validation cohort (n = 81)

CLNM group (n = 139) NCLNM group (n = 184) P-value CLNM group (n = 33) NCLNM group (n = 48) P-value
Sex 0.808 0.912
 Male 41 (29.5%) 52 (28.3%) 10 (30.3%) 14 (29.2%)
 Female 98 (70.5%) 132 (71.7%) 23 (69.7%) 34 (70.8%)
Age, year 0.313 0.503
 < 45 49 (35.3%) 75 (40.8%) 10 (30.3%) 18 (37.5%)
 ≥ 45 90 (64.7%) 109 (59.2%) 23 (69.7%) 30 (62.5%)
HT 0.368 0.654
 Yes 55 (39.6%) 82 (44.6%) 16 (48.5%) 25 (52.1%)
 No 84 (60.4%) 102 (55.4%) 17 (51.5%) 23 (47.9%)
Tumor size, mm 0.022 0.055
 < 5 34 (24.5%) 67 (36.4%) 7 (21.2%) 20 (41.7%)
 ≥ 5 105 (75.5%) 117 (63.6%) 26 (78.8%) 28 (58.3%)
Multifocality 0.620 0.524
 Yes 62 (44.6%) 77 (41.8%) 14 (42.4%) 17 (35.4%)
 No 77 (55.4%) 107 (58.2%) 19 (57.6%) 31 (64.6%)
Boundary 0.034 0.414
 Clear 90 (64.7%) 139 (75.5%) 22 (66.7%) 36 (75.0%)
 Unclear 49 (35.3%) 45 (24.5%) 11 (33.3%) 12 (25.0%)
Aspect ratio 0.309 0.863
 < 1 76 (54.7%) 111 (60.3%) 20 (60.6%) 30 (62.5%)
 ≧ 1 63 (45.3%) 73 (39.7%) 13 (39.4%) 18 (37.5%)
Blood flow 0.581 0.136
 Yes 72 (51.8%) 101 (54.9%) 20 (60.6%) 21 (43.8%)
 No 67 (48.2%) 83 (45.1%) 13 (39.4%) 27 (56.3%)
Calcification 0.037 0.393
 Yes 79 (56.8%) 83 (45.1%) 19 (57.6%) 23 (47.9%)
 No 60 (43.2%) 101 (54.9%) 14 (42.4%) 25 (52.1%)
Extrathyroidal
extension

0.008 0.337

 Yes 27 (19.4%) 17 (9.2%) 5 (15.2%) 4 (8.3%)
 No 112 (80.6%) 167 (90.8%) 28 (84.8%) 44 (91.7%)
FN1 expression* 0.003 0.007
 High 103 (74.1%) 107 (58.2%) 25 (75.8%) 22 (45.8%)
 Low 36 (25.9%) 77 (41.8%) 8 (24.2%) 26 (54.2%)
MT-1 F expression* < 0.001 0.004
 High 30 (21.6%) 72 (39.1%) 5 (15.2%) 22 (45.8%)
 Low 109 (78.4%) 112 (60.9%) 28 (84.8%) 26 (54.2%)
TFF3 expression* < 0.001 0.057
 High 63 (45.3%) 119 (64.7%) 15 (45.5%) 32 (66.7%)
 Low 76 (54.7%) 65 (35.3%) 18 (54.5%) 16 (33.3%)
HT, Hashimoto’s thyroiditis
* The cutoff values for FN1, MT-1 F, and TFF3 were 2.0350, 0.7655, and 0.4205, respectively
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upregulation of MT-1  M inhibited colony formation, 
proliferation, migration, and invasion of PTC cell lines 
[41]. Our study also revealed that low MT-1 F expression 
is associated with poor prognosis and CLNM in PTMC, 
although its molecular mechanisms warrant further 
investigation. TFF3, a member of the trefoil factor (TFF) 
family, plays a role in mucosal repair, signal transduc-
tion, and regulation of apoptosis [42]. Previous studies 

have demonstrated that low TFF3 expression in thyroid 
cancer is associated with lymph node metastasis and 
increased tumor aggressiveness [43, 44]. Mechanistically, 
the silencing of TFF3 may activate the IL-6/JAK/STAT3 
signaling pathway, thereby promoting cell proliferation, 
migration, angiogenesis, and evading immune surveil-
lance [45].

Table 3 Univariate and multivariate logistic regression analysis in the derivation cohort
Variables Univariate analysis Multivariate analysis

OR (95% CI) P-value OR (95% CI) P-value
Male 1.062 (0.653–1.726) 0.808
Age < 45 1.264 (0.801–1.993) 0.314
HT 0.814 (0.521–1.274) 0.369
Tumor size ≧ 5 mm 1.768 (1.084–2.886) 0.022 1.871 (1.093-3.200) 0.022
Multifocality 1.119 (0.717–1.745) 0.620
Unclear boundary 1.682 (1.037–2.728) 0.035 2.006 (1.176–3.421) 0.011
Aspect ratio ≧ 1 1.260 (0.807–1.969) 0.309
Blood flow 0.883 (0.568–1.373) 0.581
Calcification 1.602 (1.028–2.497) 0.037 2.359 (1.420–3.918) < 0.001
Extrathyroidal extension 2.368 (1.233–4.547) 0.010 2.334 (1.144–4.761) 0.020
High FN1 expression 2.059 (1.275–3.325) 0.003 2.588 (1.519–4.409) < 0.001
Low MT-1 F expression 2.336 (1.415–3.855) < 0.001 2.410 (1.403–4.140) 0.001
Low TFF3 expression 2.209 (1.408–3.465) < 0.001 2.307 (1.408–3.779) < 0.001
HT, Hashimoto’s thyroiditis

Fig. 4 The nomogram of CLNM prediction model for patients with PTMC
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Previous multivariate analyses have identified factors 
such as tumor size ≥ 5  mm, calcification, multifocality, 
and extrathyroidal extension as significant predictors 
of CLNM [46]. In this study, these clinicopathological 
features, along with three key genes (FN1, TFF3, and 
MT-1  F), were found to be independent predictors of 
CLNM. The CLNM prediction model developed based 
on these features differs from existing systems in the fol-
lowing aspects: Firstly, the model overcomes the limi-
tations of traditional approaches. Current CLNM risk 
prediction tools mainly fall into two categories: clinical 
factor-based models and radiomics-based models [47–
49]. However, models relying solely on clinical factors 
exhibit relatively low accuracy, and some tumor imag-
ing features are susceptible to imaging parameters and 
interpreter experience [21]. While a limited number of 
studies have incorporated common gene mutations asso-
ciated with PTMC, such as BRAF V600E and TERT pro-
moter mutations, the roles of these mutations in CLNM 
remains controversial [50, 51]. This study, conducted 
on a medium-sized cohort, quantitatively measured the 
expression of prognostic genes identified from the TCGA 

database and integrated them with clinical parameters 
to develop a novel clinical-molecular prediction model. 
Although the prognostic relevance of FN1 and TFF3 
in PTMC has been reported previously, this is the first 
time they have been combined with MT-1 F for CLNM 
prediction. Secondly, the new model greatly improves 
prediction performance for CLNM. Due to the difficult 
anatomical visualization of central lymph nodes by ultra-
sound, traditional ultrasound detects only 20–31% of 
CLNM cases [9]. In contrast, the prediction model dem-
onstrated accuracy rates of 69.3% and 78.0% in the deri-
vation and validation sets, respectively. Furthermore, the 
AUCs of the model (0.736 and 0.813) slightly outperform 
those of other existing CLNM prediction models (AUCs: 
0.656 ~ 0.757) [21, 49, 52]. The model was evaluated using 
ROC curves, calibration curves, and DCA in an internal 
validation cohort, which indicated its clinical utility. In 
the validation cohort, the model showed high accuracy 
and specificity, correctly identifying 83.3% of negative 
cases, which is crucial for avoiding unnecessary PLND. In 
clinical practice, molecular marker testing (FN1, MT-1 F, 
and TFF3) can be performed on preoperative fine needle 

Fig. 5 Validation of the CLNM prediction model for patients with PTMC. (A-C) ROC curve (A), calibration curve (B), and decision curve analysis (C) of the 
CLNM prediction model in the derivation cohort; (D-F) ROC curve (D), calibration curve (E), and decision curve analysis (F) of the CLNM prediction model 
in the validation cohort
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aspiration (FNA) samples. By integrating ultrasound fea-
tures, the probability of CLNM can be calculated using 
the nomogram, enabling individualized risk assessment 
that informs surgical decision-making and improves 
patient outcomes.

However, this study has certain limitations. First of all, 
it was a single-center retrospective study, and the predic-
tive model developed has not been externally validated. 
Although multiple evaluation metrics were employed in 
internal validation to ensure a robust assessment of the 
model’s performance within the available dataset, the 
lack of an independent external validation cohort may 
limit the generalizability of our findings. Second, the 
molecular biomarkers selected were not further vali-
dated at the mechanistic level. Additionally, our model 
was developed using surgical samples. While previous 
studies have confirmed that detection of these genes in 
FNA samples can be used for preoperative diagnosis 
or course prediction of PTC [43, 53], their applicabil-
ity to FNA samples has not been directly verified in this 
study. Future studies should include larger, multi-center 
cohorts to validate the predictive model and conduct in 
vitro experiments to elucidate the underlying biological 
functions of the identified biomarkers in the progression 
and metastasis of PTMC. Furthermore, prospective stud-
ies using ultrasound-guided FNA samples are needed to 
evaluate the model’s performance in a clinical setting and 
its potential to guide PLND decisions.

Conclusion
FN1, MT-1  F, and TFF3 were identified as prognostic 
biomarkers for PTMC. Tumor size ≥5 mm, calcification, 
multifocality, and extrathyroidal extension, as well as 
these genes were also independent predictors of CLNM. 
The clinical-molecular predictive model integrating these 
factors may provide a useful basis for guiding personal-
ized PLND decisions in patients with cN0 stage PTMC.
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