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Abstract
Background  Breast cancer represents the most prevalent form of tumors among females and is characterized by a 
significant genetic component. The brain is a frequent site of metastasis for breast cancer. Although numerous loci 
associated with breast cancer brain metastasis (BCBM) have been identified, the critical regulatory genes underlying 
BCBM remain largely unclear.

Methods  The FinnGen R11 dataset was combined with Genotype-Tissue Expression Project (GTEx) for Transcriptome-
wide Association Study (TWAS). The Unified Test for Molecular Signatures (UTMOST), Multimarker Analysis of Genomic 
Annotation (MAGMA), and Functional Summary-based Imputation (FUSION) were used to identify candidate genes. 
Summary-data-based mendelian randomization (SMR) and co-localization were performed further to elucidate the 
association between key genes and BCBM. Finally, multiple external cohorts were obtained to validate the findings.

Result  In our study, 12 new genes associated with breast cancer were identified with TWAS. Subsequently, both SMR 
and co-localization have shown that CAPS8 was only expressed in brain tissues including frontal cortex and cerebellar 
hemispheres associated with breast cancer. Potential regulation of CASP8 could occur in BCBM. Finally, the findings 
were ultimately validated by external clinical cohorts.

Conclusion  Our study identified key gene CASP8, which was associated with BCBM, providing new insights into the 
occurrence of BCBM.
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Introduction
Breast cancer is a highly prevalent tumor worldwide [1]. 
According to the global cancer report, BC ranks the sec-
ond in incidence and the fourth in mortality rates of all 
tumors, which poses a serious challenge to the lives and 
health of people [2]. Advanced metastasis is the leading 
cause of death and brain metastasis is the most com-
mon distant metastasis of breast cancer. Certain subtypes 
such as HER2-positive breast cancer are prone to brain 
metastasis, which occurs in 50% of patients, with poorer 
survival outcomes [3]. Although there are standard treat-
ments available for BCBM, including surgery, radiation, 
chemotherapy, targeted therapies, and new antibody-
coupled drugs, mortality rates from BCBM remain high. 
Therefore, identifying novel key targets for BCBM is 
especially urgent for breast cancer patients.

Previous studies showed that the occurrence of breast 
cancer was mainly attributed to the polygenic trait of the 
disease. Recently, research on identifying genetic loci of 
diseases with GWAS was increasingly being conducted. 
Joana M Xavier identified candidate pathogenic variants 
at 41 breast cancer risk loci with GWAS [4]. Guochong 
Jia Identified genetic risk loci and blood risk biomark-
ers of breast cancer by integrating genomics and pro-
teomics data [5]. However, many trait loci of the disease 
were located in non-coding regions, posing a challenge in 
identifying their functional value [6]. In addition, com-
plex linkage disequilibrium (LD) could mask the screen-
ing of causal genes driving the disease [7].

TWAS is an approach for identifying genes associ-
ated with complex diseases through the transcriptome. 
Researchers can identify genes that may affect diseases 
through altered expression, providing insights for subse-
quent functional validation [8]. UTMOST is a common 
TWAS tool that integrates multiple datasets across tis-
sues to identify important genes that may be missed in 
traditional single-tissue analysis [9]. Moreover, FUSION 
identifies hub genes that potentially influence phenotype 
by utilizing gene expression and GWAS data, which is 
critical to understanding the biology of disease and devel-
oping new therapeutic strategies [10]. MAGMA serves as 
a tool for association analysis of genes or sets of genes 
and can identify genes as potential biomarkers [11]. In 
recent years, cross-tissue TWAS has been widely used to 
screen vital genes for complex diseases, including cardio-
vascular or endocrine diseases, and various cancers.

In this work, we integrated eQTL data from the 
GTEx project and GWAS of European populations with 
breast cancer from the Finnish R11 database to conduct 
cross-tissue TWAS. Next, we performed three TWAS 
approaches including FUSION, UTMOST, and MAGMA 
to identify candidate genes. Subsequently, SMR and co-
localization analysis were used to further elucidate the 
relationships between hub genes and BCBM. Finally, 

multiple external cohorts with BCBM were obtained to 
validate our findings.

Materials and methods
The data source of breast cancer
The FinnGen study was a large-scale genomics initia-
tive that analyzed over 500,000 samples. GWAS data for 
breast cancer were obtained from cohort II Neoplasms, 
from cancer register (ICD-O-3) of the FinnGen R11 data-
set, which included 20,586 cases and 201,494 controls 
of European ancestry [12]. The GTEx v8 project, which 
included 49 tissues from 838 post-mortem donors, aimed 
to discover the genetic effects of diseases and character-
ize the underlying molecular mechanisms [13]. Primary 
model weights files for gene expression were obtained 
from GTEx v8. We acquired BCBM datasets from Gene 
Expression Omnibus [14]. GSE46928 and GSE52604 
datasets contained the breast cancer patients who were 
examined with brain metastasis and some patients with 
no brain metastasis.

TWAS analysis in cross-tissue and single tissues
EQTL Integration was an effective method to con-
nect SNPs, genes and complex traits in genetic associa-
tion analysis. TWAS has provided new insights into the 
genetic basis of many diseases and traits [15]. Common 
TWAS analysis included FUSION and UTMOST.

Based on the tissue-dependent trait of transcriptional 
regulation, we used UTMOST to quantify gene-trait 
association. This method identified more genes in tissue 
with enriched trait heritability and enhanced inference 
accuracy. Subsequently, we used the generalized Berk-
Jones test to integrate the relationship of gene and traits 
[16]. After applying a false discovery rate (FDR) correc-
tion, FDR < 0.05 was considered statistically significant.

FUSION was designed to identify relationships 
between GWAS and phenotypes by constructing a pre-
dictive model and predicting and testing the above asso-
ciation [17]. We integrated eQTL data with breast cancer 
to estimate the associations between each gene and with 
disease. First, the LD between the prediction model 
and the SNP at each locus of GWAS was estimated 
using 1,000 Genomes European samples. Subsequently, 
FUSION integrated several prediction models to assess 
the impact of SNPs on gene expression weights. Model 
representations utilized the highest predictive perfor-
mance to determine gene weights [18]. Finally, we com-
bined the genetic effect of breast cancer with these gene 
weights for TWAS analysis.

Conditional and joint analysis
In genomic association studies, a single locus might 
contain multiple features (multiple SNPs or genes) that 
were associated with phenotype [19]. One of the roles 
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of COJO (the post-process module in FUSION) was to 
identify which of these features were statistically con-
ditionally independent, which meant that their effects 
on the phenotype were not accounted for the effects of 
other features [17]. COJO ensured a more comprehen-
sive understanding of the variation by interpreting LDs 
between genes [20]. Following testing, genes representing 
independent associations were termed significant, while 
those no longer showing significance were considered 
marginally significant.

Analysis of genetic effects of genomes
MAGMA was used for gene set association analysis, 
which could directly find functional genes or functional 
modules (gene regulatory pathways) related to the trait of 
interest, and was also conducive to the discovery of genes 
associated with multiple micro-effect SNPs [21]. By inte-
grating gene expression data, MAGMA could assess gene 
expression patterns in different tissues and determine 
their correlation to specific phenotypes [22].

Summary data based Mendelian randomization and 
bayesian colocalization
The integrative analytical framework of Summary-
based Mendelian Randomization (SMR) was originally 
developed by Zhu et al. (2016) to investigate genotype-
phenotype associations [23]. In the current investiga-
tion, transcriptome-wide association signals for breast 
cancer were evaluated through systematic integration of 
genome-wide association statistics with cis-expression 
quantitative trait loci (cis-eQTL) profiles encompassing 
49 anatomically distinct tissues from the Genotype-Tis-
sue Expression project (GTEx) version 8. Population-spe-
cific linkage disequilibrium (LD) patterns were quantified 
utilizing phased genotype data obtained from the Euro-
pean ancestry cohort of the 1000 Genomes Project Phase 
III. All analytical procedures adhered to the protocol-
specified parameter configurations embedded within the 
SMR software (​h​t​t​p​​s​:​/​​/​y​a​n​​g​l​​a​b​.​​w​e​s​​t​l​a​k​​e​.​​e​d​u​​.​c​n​​/​s​o​f​​t​w​​a​r​
e​/​s​m​r​/​#​O​v​e​r​v​i​e​w). A strict Bonferroni-corrected SMR 
threshold of p < 0.05 was performed. Heterogeneity in the 
dependent instrument (HEIDI) test was used to distin-
guish pleiotropy from linkage, where P-HEIDI < 0.01 was 
considered likely due to pleiotropy and was therefore dis-
carded from the analysis [24].

Co-localization analysis could be used to genetically 
co-locate two potentially related phenotypes to deter-
mine whether they shared common genetic causal vari-
ants in a given region [25]. Co-localization was based 
on sample sizes and converted correlation statistics into 
effect sizes. The method estimated the posterior prob-
ability (PP) that two outcomes within a locus were cor-
related and driven by a common causal variable [26]. The 
hypothesis has five PP statistics: H0: no features were 

genetically associated with SNPs in the region; H1: only 
feature 1 was genetically associated with SNPs; H2: only 
feature 2 was genetically associated with an SNP; H3: 
both traits were associated with SNPs, but using differ-
ent dependent variables; H4: both traits were associated 
with the SNP and shared a causal variable (focus on the 
probability of H4, PPH4, satisfying PPH4 > 0.7, which 
indicated that there could be co-localization between the 
two traits) [27].

Validation with mRNA expression levels of key gene in 
multiple clinical cohorts
We then obtained breast cancer tissues from 10 breast 
cancer and 10 breast cancer patients with brain metas-
tases (BM) for transcriptome sequencing from Can-
cer Hospital, Chinese Academy of Medical Sciences 
(CHCAMS). All approaches were carried out according 
to the relevant guidelines. The detailed method has been 
described previously [28]. The above experiments were 
approved by the Ethical Review Committee of CHCAMS 
and the patient has given informed consent.

Statistical analysis
GraphPad Prism 9.0 and R software (version 4.3.1) were 
used in our analysis. Wilcoxon test was used to com-
pare clinicopathological characteristics between groups. 
The differences between breast cancer tissues from the 
No-BM and BM patients were compared using unpaired 
t-tests.

Results
TWAS analysis in different tissues
The detailed workflow of this study was shown in Fig. 1. 
In the process of cross-tissue association analysis using 
UTMOST analysis, we first performed 49 single-tissue 
analysis, then cross-tissue analysis was conducted using 
GBJ and p-value adjustment was applied to the results. 
Finally, the results were obtained as shown in Table 1 and 
we obtained 67 genes in the UTMOST analysis for the 
subsequent study.

Next, we performed FUSION analysis with 49 tissue-
sourced gene expression weight files, which were first 
conducted according to individual tissues, calculated 
adjusted p-value, combined the results from multiple 
tissues, and finally filtered the results that met the crite-
ria. The detailed results were shown in Table S1, where 
we obtained 599 target genes during FUSION analysis. 
A total of 24 candidate genes including CASP8, TNS1, 
STRADB, EFR3B, SLC35E4, HSCB, MTMR3, DNAJC27, 
POMC, AAMP, ADCY3, CENPO, FLACC1, FZD7, 
DUSP18, AQP4, APOBEC3B, CBX6, CHEK2, PTRHD1, 
MAFF, RPL37A, DNAJC27-AS1, LINC00570 met the 
strict thresholds in both the cross-tissue and single-tissue 
analyses.

https://yanglab.westlake.edu.cn/software/smr/#Overview
https://yanglab.westlake.edu.cn/software/smr/#Overview
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The results of COJO analysis
To ensure whether genes were independently linked to 
phenotypes, we performed COJO analysis. The results 
of COJO analysis were shown in Table S2 and we found 
that CASP8 and FLACC1 could play a key role in various 
brain regions, including the amygdala, anterior cingu-
late cortex, caudate basal ganglia, cortex, frontal cortex, 
nucleus accumbens basal ganglia, hippocampus, and 
cerebellar hemispheres in Fig.  2. It has been noted that 

certain genes, which were genetically regulated, could be 
the driving force by other genes. Figure 2 demonstrated 
that in most brain tissues, FLACC1, labeled in blue, 
was the relatively less significant gene, whereas CASP8, 
labeled in green, was the most significant gene within the 
same chromosomal region. This suggested that the effect 
of CASP8 on the risk of breast cancer was statistically 
independent and its effect on phenotype was not affected 
by other genes. In contrast, the effect of FLACC1 on the 

Fig. 1  The flowchart of our study. GWAS, genome-wide association study; GTEx, Genotype-Tissues Expression Project; TWAS, transcriptome-wide associa-
tion studies; BC, breast cancer; CHCAMS, Cancer Hospital, Chinese Academy of Medical Sciences
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Gene symbole Ensemeble ID Chromosomes Test_score Start End Width P_value P_fdr
CASP8 ENSG00000064012 2 11.867936 2.01E+08 2.01E+08 128,394 5.01E-06 0.00089
TNS1 ENSG00000079308 2 10.887393 2.18E+08 2.18E+08 234,395 1.78E-05 0.002388
STRADB ENSG00000082146 2 10.079696 2.01E+08 2.01E+08 92,989 9.26E-05 0.009918
EFR3B ENSG00000084710 2 17.177232 25,042,076 25,159,135 117,060 3.06E-08 1.91E-05
KIF3C ENSG00000084731 2 15.747699 25,926,598 25,982,749 56,152 9.06E-08 4.25E-05
OSM ENSG00000099985 22 9.1663835 30,262,829 30,266,851 4023 8.00E-05 0.008823
SLC35E4 ENSG00000100036 22 6.9291161 30,635,781 30,669,016 33,236 0.000564 0.037875
SLC16A8 ENSG00000100156 22 8.9948523 38,078,134 38,084,184 6051 7.80E-05 0.008823
HSCB ENSG00000100209 22 12.262935 28,742,039 28,757,515 15,477 1.66E-06 0.000366
TOMM22 ENSG00000100216 22 7.4151031 38,681,957 38,685,421 3465 0.000606 0.037875
XBP1 ENSG00000100219 22 12.894936 28,794,555 28,800,597 6043 1.05E-06 0.000262
C22orf31 ENSG00000100249 22 20.531281 29,058,672 29,061,831 3160 3.49E-10 3.27E-07
AP1B1 ENSG00000100280 22 13.373215 29,327,680 29,388,583 60,904 1.24E-06 0.00029
CABP7 ENSG00000100314 22 14.65697 29,720,003 29,731,833 11,831 3.90E-07 0.000126
ASCC2 ENSG00000100325 22 13.545938 29,788,609 29,838,304 49,696 4.05E-07 0.000126
MTMR3 ENSG00000100330 22 8.820537 29,883,169 30,030,868 147,700 3.66E-05 0.004737
DNAJC27 ENSG00000115137 2 13.000825 24,943,636 24,972,094 28,459 8.67E-07 0.000232
POMC ENSG00000115138 2 15.792371 25,160,853 25,168,903 8051 2.61E-08 1.91E-05
FANCL ENSG00000115392 2 6.7418857 58,159,243 58,241,410 82,168 0.000745 0.042986
PRKAG3 ENSG00000115592 2 8.0884554 2.19E+08 2.19E+08 9779 0.000382 0.028107
SUMO1 ENSG00000116030 2 8.5338296 2.02E+08 2.02E+08 32,418 0.000286 0.023316
TNP1 ENSG00000118245 2 91.755697 2.17E+08 2.17E+08 607 5.95E-11 7.44E-08
KLHL29 ENSG00000119771 2 6.8728296 23,385,179 23,708,611 323,433 0.000895 0.048646
TMEM175 ENSG00000127419 4 7.0481212 932,387 958,656 26,270 0.000726 0.042986
TUBA4A ENSG00000127824 2 7.4578938 2.19E+08 2.19E+08 28,193 0.000604 0.037875
VIL1 ENSG00000127831 2 7.0790771 2.18E+08 2.18E+08 34,175 0.000861 0.047497
AAMP ENSG00000127837 2 7.1350539 2.18E+08 2.18E+08 6050 0.000469 0.033811
ADCY3 ENSG00000138031 2 246.51319 24,819,169 24,920,237 101,069 1.00E-05 0.001568
CENPO ENSG00000138092 2 7.789083 24,793,136 24,822,376 29,241 0.000253 0.021101
DTNB ENSG00000138101 2 7.9807731 25,377,198 25,673,647 296,450 0.000248 0.021101
FAM13A ENSG00000138640 4 7.125542 88,725,955 89,111,398 385,444 0.000597 0.037875
DLX1 ENSG00000144355 2 8.5125908 1.72E+08 1.72E+08 4938 0.000243 0.021101
CHST9 ENSG00000154080 18 8.8972789 26,906,481 27,185,308 278,828 0.000211 0.019304
FLACC1 ENSG00000155749 2 11.105026 2.01E+08 2.01E+08 69,128 3.12E-06 0.000651
TMEM237 ENSG00000155755 2 7.2748577 2.02E+08 2.02E+08 23,387 0.0006 0.037875
FZD7 ENSG00000155760 2 8.1289412 2.02E+08 2.02E+08 4587 0.00014 0.013436
LRATD1 ENSG00000162981 2 6.9916824 14,632,700 14,650,814 18,115 0.000723 0.042986
WDCP ENSG00000163026 2 11.289658 24,029,347 24,049,575 20,229 1.18E-05 0.001698
DUSP18 ENSG00000167065 22 6.3804357 30,652,051 30,667,887 15,837 0.000929 0.04977
KCNJ4 ENSG00000168135 22 7.956443 38,426,327 38,455,199 28,873 0.000306 0.02387
CPLX1 ENSG00000168993 4 10.874508 784,957 826,129 41,173 7.63E-06 0.001243
ANTXR1 ENSG00000169604 2 9.3671672 69,013,176 69,249,327 236,152 0.000108 0.01098
AQP4 ENSG00000171885 18 8.4754139 26,852,043 26,865,771 13,729 0.00022 0.019612
HORMAD2 ENSG00000176635 22 7.5859602 30,080,464 30,177,075 96,612 0.0003 0.02387
APOBEC3B ENSG00000179750 22 23.866751 38,982,347 38,992,804 10,458 9.85E-12 3.69E-08
ZBTB12BP ENSG00000180610 4 8.6051568 39,770,081 39,771,371 1291 0.000205 0.019263
PRR34 ENSG00000182257 22 7.8980532 46,049,478 46,054,144 4667 0.000348 0.026065
EWSR1 ENSG00000182944 22 12.764608 29,268,009 29,300,525 32,517 5.22E-06 0.00089
CBX6 ENSG00000183741 22 8.8658415 38,861,422 38,872,249 10,828 0.000104 0.010881
KREMEN1 ENSG00000183762 22 14.1233 29,073,035 29,168,333 95,299 3.32E-07 0.000125
CHEK2 ENSG00000183765 22 88.464757 28,687,743 28,742,422 54,680 2.91E-11 5.46E-08
SMTN ENSG00000183963 22 10.546485 31,064,105 31,104,757 40,653 4.22E-05 0.005273
PLA2G6 ENSG00000184381 22 5.8397291 38,111,495 38,214,778 103,284 0.000577 0.037875

Table 1  The significant genes for breast cancer risk in cross-tissue UTMOST analysis
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risk of breast cancer was influenced by CASP8. FLACC1 
would also be excluded in subsequent analysis.

Gene analysis of MAGMA
MAGMA analysis identified 348 significant genes asso-
ciated with breast cancer (FDR < 0.05) (Table S3). To 
increase the robustness of the findings, we integrated the 
results from FUSION and UTMOST analyses to obtain 
12 significant shared genes. The detailed results were 
shown in Fig. 3.

The results of SMR and colocalization
To verify whether there was a causal relationship between 
12 genes and breast cancer, we performed SMR analysis 
with GTEx v8 data. And we found that the expression of 
CASP8 was positively correlated with breast cancer only 
in a wide range of brain tissues including the Anterior 
cingulate cortex, Cerebellar Hemisphere, Cerebellum, 
Cortex and Frontal Cortex (bSMR > 0; pSMR < 0.05), and 
there was no significant heterogeneity in this process 
(pHEIDI > 0.05) (Table  2). CASP8 was located on chro-
mosome 2 and co-localization analysis showed that most 
PP.H4 values were greater than 0.9 (Table  3). Among 
them, rs10197246 was the most significant co-local-
ized locus with breast cancer in the above brain tissues 
(Fig. 4).

External clinical cohort validation analyses
We obtained RNA sequencing data from brain metastasis 
tissues as well as external datasets of brain metastasis. We 
found that CASP8 had higher expression levels in breast 
cancer patients with brain metastasis than no brain 
metastasis in the CHCAMS cohort (Fig.  5A). The same 
validation results occur in the GSE52604 and GSE46928 
cohorts (Fig.  5B, C). In conclusion, CASP8 was differ-
entially expressed in patients with brain metastasis and 
could play a significant regulatory role in BCBM.

Discussion
Breast cancer is the most common tumor in women 
and also has one of the highest mortality rates [29]. A 
key factor affecting 5-year survival from breast cancer is 
the occurrence of brain metastasis [30]. The regulatory 
network of brain metastasis is especially complex. It is 
particularly important to find key targets of BCBM and 
explore their potential regulatory mechanisms.

Multi-omics association studies were currently being 
used to identify hub genes. Yi-Xiao Chen et al. identi-
fied key regulators of breast cancer and determined that 
RNASEH2A was identified as a new candidate gene for 
breast cancer based on an integrated multi-omics analy-
sis [31]. Meanwhile, Jonathan Beesley used data from the 
Breast Cancer Society Consortium and eQTL to identify 
shared genetic relationships, with 17 genes, identified as 
potential mediators of breast cancer [32]. Moreover, Zhi-
hao Zhang identified genes associated with breast cancer 
by integrating GWAS, eQTL, and mQTL, and ultimately 
found that the association of ATG10 and RCCD1 with 
breast cancer was significant [33]. Variations in results 
might be attributed to differences in sample size and 
sources, as well as differences between the methods used. 
However, this emphasized the significance of performing 
multiple ways of identifying potential genes contributing 
to breast cancer.

In our study, we integrated eQTL data from the GTEx 
project and GWAS from the Finnish R11 database to 
conduct cross-tissue TWAS. Meanwhile, unlike previ-
ous studies, we performed multiple TWAS approaches 
including FUSION, UTMOST, and MAGMA to iden-
tify candidate genes, which ensured the stability of our 
results. Subsequently, the results of both SMR and co-
localization analysis have shown that across multiple tis-
sues, CAPS8 was only expressed in multiple brain tissues 
associated with breast cancer. The above multiple genetic 
evidence demonstrated that CASP8 had a strong link 

Gene symbole Ensemeble ID Chromosomes Test_score Start End Width P_value P_fdr
PTRHD1 ENSG00000184924 2 11.517625 24,789,728 24,793,391 3664 1.09E-05 0.001635
MAFF ENSG00000185022 22 7.1764991 38,200,767 38,216,507 15,741 0.00067 0.041189
PCGF3 ENSG00000185619 4 7.5289471 705,748 770,089 64,342 0.000136 0.013436
CCDC157 ENSG00000187860 22 6.7352357 30,356,635 30,378,673 22,039 0.000782 0.04379
RPL37A ENSG00000197756 2 16.001079 2.16E+08 2.17E+08 80,356 4.86E-08 2.61E-05
MYH9-DT ENSG00000223695 22 6.904549 36,388,626 36,396,517 7892 0.00053 0.037532
LAPTM4A-DT ENSG00000223734 2 7.6079342 20,052,114 20,054,501 2388 0.000739 0.042986
DNAJC27-AS1 ENSG00000224165 2 12.732983 24,971,390 25,039,716 68,327 8.44E-07 0.000232
LINC00570 ENSG00000224177 2 9.6856409 11,372,612 11,403,175 30,564 6.57E-05 0.007701
MTND4P23 ENSG00000225796 2 8.1665249 2.01E+08 2.01E+08 1363 0.000327 0.024995
LEF1-AS1 ENSG00000232021 4 9.6815871 1.08E+08 1.08E+08 90,513 6.28E-05 0.007598
LINC02261 ENSG00000249699 4 3.3631447 27,217,479 27,282,225 64,747 0.000771 0.043784
AQP4-AS1 ENSG00000260372 18 11.927423 26,655,737 27,190,698 534,962 4.28E-06 0.000844
PCAT18 ENSG00000265369 18 15.025169 26,687,621 26,703,638 16,018 2.59E-07 0.000108

Table 1  (continued) 
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between breast cancer and the nervous system. Previous 
studies have also shown that brain metastasis occurred 
in approximately 50% of HER2-positive breast cancer 
and common site of metastasis for breast cancer was the 
brain [34]. Sites of metastasis from breast cancer with 

brain metastasis include parenchymal metastasis, men-
ingeal metastasis, and both (3.6% incidence, but worst 
prognosis) [35]. Breast cancer and the nervous system 
were strongly linked [36]. With the above finding, we 
have sufficiently inferred that potential genetic regulation 

Fig. 2  Transcriptome-wide conditional and joint analysis. Genes independently associated with breast cancer are highlighted (green) and genes not 
independently associated with breast cancer are highlighted (blue) in the top of Fig. 2. SNPs associated with breast cancer before conditional analysis are 
highlighted (gray), and secondary SNPs associated with breast cancer after conditional analysis are highlighted (blue) in the bottom of Fig. 2
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Table 2  Outcomes of summary data-level Mendelian randomization analysis
Tissue Gene b_SMR se_SMR p_SMR_multi p_HEIDI nsnp_HEIDI
Anterior_cingulate_cortex CASP8 0.0847715 0.0165362 2.95E-07 3.82E-01 20
Cerebellar_Hemisphere CASP8 0.0783516 0.0138049 8.18E-08 7.03E-01 20
Cerebellum CASP8 0.0731566 0.0128932 1.39E-08 7.44E-01 20
Cortex CASP8 0.088889 0.0158294 1.96E-08 8.23E-01 20
Frontal_Cortex CASP8 0.0809234 0.0140482 8.39E-09 7.45E-01 20

Fig. 3  Venn diagram of shared genes identified by FUSION, UTMOST, and MAGMA
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of CASP8 could occur in breast cancer brain metastasis. 
Ultimately, we used the BCBM dataset as well as our self-
assessment dataset for external validation and found that 
CASP8 was more highly expressed in BCBM, and CASP8 
might play an important role in BCBM.

CASP8 encoded a member of the cysteine-aspartate 
protease family [37]. The activation of cyst-aspartase 
played a pivotal role in the execution phase of apoptosis. 
CASP8 was involved in programmed cell death induced 
by Fas and various apoptotic stimuli [38]. CASP8 was 

Table 3  The results of bayesian colocalization analysis
Gene symbole Panel Nsnps PP.H0 PP.H1 PP.H2 PP.H3 PP.H4
CASP8 Anterior_cingulate_cortex 4887 4.86E-16 2.07E-07 2.06E-10 0.086817826 0.91318197

Cerebellar_Hemisphere 4865 3.40E-23 5.49E-08 1.44E-17 0.022270628 0.97772932
Cerebellum 4776 7.55E-23 5.18E-08 3.20E-17 0.020959575 0.97904037
Cortex 4885 2.05E-22 5.24E-08 8.70E-17 0.021244036 0.97875591
Frontal_Cortex 4891 1.91E-25 5.20E-08 8.10E-20 0.021073049 0.9789269
Hippocampus 4820 5.03E-08 9.10E-08 0.02130536 0.037605456 0.94108904
Hypothalamus 4876 8.26E-08 9.53E-08 0.03498323 0.039444224 0.92557237
Nucleus_accumbens_basal_ganglia 4882 3.32E-07 3.09E-07 0.14054559 0.130195884 0.72925789

Fig. 4  Co-localization results between CASP8 and breast cancer in various brain tissues
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detected in insoluble fractions of affected brain regions 
in Huntington’s disease patients, suggesting a role in 
neurodegenerative disease. Previous studies have identi-
fied the co-occurrence of regulatory and dysfunctional T 
cells in a tumor microenvironment that proliferated cells 
and was enriched for BRCA1 and CASP8 mutations and 
predicted poor outcomes in breast cancer [39]. In addi-
tion, a study conducted by Irene Catucci et al. found that 
the rs3834129 polymorphism in the promoter region of 
the CASP8 gene was associated with breast cancer [40]. 
However, the association of the rs10197246 polymor-
phism in the CASP8 gene region with breast cancer has 
been poorly reported. Although there have been some 
reports finding that CASP8 might be associated with the 
occurrence of breast cancer, there was a lack of research 
on BCBM, which was remedied by our study.

Finally, our study identified novel genes associated with 
breast cancer with various TWAS analysis and deter-
mined the correlation between CASP8 and BCBM by 
SMR and co-localization, and subsequently validated 
this finding by multiple cohort validation with BCBM, 
which showed the rigor of our findings and contributed 
to the stability of our conclusions. However, our study 
had several limitations. Firstly, due to the criteria of sig-
nificant cis-genetic power genes, not all genes could be 
captured and those SNP that affect breast cancer but 
were independent of cis-expression would be ignored. 
Secondly, although the finding was validated by genetic 
analysis and multiple external cohorts, the validation was 
at the expression level and a series of biological experi-
ments would be required to be performed to confirm 
our conclusion. In conclusion, this study provided new 

perspectives and genetic insights in the effect of CASP8 
on the occurrence and progression of BCBM.

Conclusion
The aim of this study was to identify causal genes driving 
brain metastasis in breast cancer by integrating multi-tis-
sue TWAS and mendelian randomization. And the above 
results indicated that the expression of CASP8 was asso-
ciated with BCBM, which provided new insights into the 
genetic architecture of BCBM. This provided a target for 
subsequent treatment of BCBM.
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