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Abstract 

Purpose  Extracting image features can predict the prognosis and treatment effect of non-small cell lung cancer, 
which has been increasingly confirmed. However, the specific operation using 3D-Slicer still lacks standardization. 
For example, image segmentation is manually performed based on the lung window or automatically performed 
through the mediastinal window. The images used for feature extraction are either enhanced or plain scanned. It 
is questionable whether these influencing factors will affect the extraction results and which results will be affected. 
This article intends to preliminarily explore the above issues.

Methods  This article downloaded images of 22 patients with lung cancer from The Cancer Imaging Archive (TCIA), 
including 11 cases of adenocarcinoma and 11 cases of squamous cell carcinoma. Perform tumor image segmentation 
on the lung window and mediastinal window of the plain scan image, and the lung window and mediastinal window 
of the enhanced image. Manual drawing is used on the lung window, and automatic drawing is used on the medias-
tinal window and make manual modifications. Extracting radiomics features using Python radiomics. Firstly, analyze 
the image features of the original sequence and perform the Shapiro test. If it follows a normal distribution, perform 
an analysis of variance. If it does not follow a normal distribution, perform the Friedman test. Compare the signifi-
cantly different image features pairwise. Then, a preliminary analysis was conducted on the differences between squa-
mous cell carcinoma and adenocarcinoma in each group.

Results  A total of 88 sets of imaging features were extracted, with 107 features in each group. Among them, 
33 features showed significant differences. Continuing with pairwise repeated testing, it was found that there 
were 2 significant differences between enhanced and plain lung windows. There were 12 significant differences 
between enhanced lung windows and plain mediastinal windows. There is one significant difference between plain 
scanning and enhancement mediastinal window. There are 14 significant differences between the plain lung win-
dow and the enhanced mediastinal window groups. There are 14 significant differences between the lung window 
and the mediastinal window in the plain scan. There are 13 significant differences between the enhanced lung win-
dow and the mediastinal window. According to pathological grouping testing, it was found that there 54 significant 
differences between squamous cell carcinoma and adenocarcinoma.
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Conclusion  The enhancement of lung CT has a relatively small impact on extracting image features, while select-
ing lung or mediastinal windows for image segmentation has a significant impact on extracting image features. 
Therefore, choosing lung or mediastinal windows for feature extraction should be carefully considered, as the size 
of the image segmentation range has a significant impact on image features. The impact of lung squamous cell 
carcinoma and adenocarcinoma on imaging features is also significant, indicating a high possibility of distinguish-
ing between squamous cell carcinoma and adenocarcinoma based on radiomics (Liu C, He Y, Luo J, The Influence 
of Image Selection and Segmentation on the Extraction of Lung Cancer Imaging Radiomics Features Using 3D-Slicer 
Software, 2024).
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Introduction
The incidence of lung cancer ranks second among malig-
nant tumors, while the mortality rate ranks first [1]. 
Traditional diagnostic and treatment methods are no 
longer sufficient to meet the needs of today’s lung can-
cer patients. In order to improve the quality of life and 
survival rate of lung cancer patients, better diagnostic 
and treatment methods, more drugs, and better meth-
ods for predicting treatment outcomes are needed. The 
imaging radiomics technology has enormous potential to 
assist in the diagnosis and treatment of lung cancer. We 
can apply radiomics features to differentiate pathology 
[2–4], gene mutation status [5, 6], predict treatment effi-
cacy [7, 8], recurrence risk [9, 10], survival time [11, 12], 
and risk of treatment side effects [13, 14]. Of course, the 
application of these methods is not yet mature and can-
not replace traditional methods, but their potential can-
not be ignored.

There are more and more studies on radiomics, from 
diagnosis to treatment selection, and even to prediction 
of outcomes, the presence of radiomics can be seen. Cur-
rently, the most widely used tool for feature extraction in 
radiomics is 3D Slicer software, as it is free and easy to 
operate. With continuous updates on new plugins and 
increasing functionality, it is an important tool for fea-
ture extraction in radiomics [15]. However, when using 
3D Slicer software for image segmentation, the selected 
images lack standards. Common images used for lung 
tumor segmentation include CT and PET-CT. However, 
Stefano found that the stability of image segmentation 
using PET-CT was poor [16], so we chose CT images for 
our research. Through literature review, we found that 
there is also a lack of standards for CT selection, such as 
whether CT is enhanced or not, and there is also no uni-
formity in selecting lung window or mediastinal window 
for image segmentation. Some studies use non enhanced 
CT to extract image features [7, 10, 17], some stud-
ies use enhanced CT to extract image features [5, 6, 8]. 
The aim of this experiment is to investigate the impact of 
these differences on radiomics feature data and to deter-
mine the optimal choice with minimal influence. At the 

same time, the CT scans selected in this study were from 
patients with adenocarcinoma and squamous cell carci-
noma, which account for 70–80% of lung cancer and are 
representative. Therefore, we can also preliminarily study 
the differences between lung adenocarcinoma and lung 
squamous cell carcinoma in different CT groups [18].

Materials and Methods
This article downloads images of 22 lung cancer patients 
from The Cancer Imaging Archive (TCIA) [19, 20]. Inclu-
sion criteria: 1. Patients diagnosed with lung squamous 
cell carcinoma or lung adenocarcinoma; 2. The CT scan-
ning range can fully cover the tumor; 3. Clear tumor 
boundaries; 4. It has both flat scanning and enhanced 
images. Exclusion criteria: 1. Patients with non squa-
mous cell carcinoma or adenocarcinoma in pathology; 
2. The CT scan range cannot fully include the tumor; 3. 
Tumor boundaries are difficult to determine due to the 
following reasons: pleural effusion, pneumonia, severe 
invasion of the hilum of the lungs, severe invasion of the 
mediastinum or pleura; 4. Lack of enhanced or flat scan 
images. Import the image into the 3D slicer, and for each 
patient, only consider the main lesion, which is the total 
tumor volume (GTV). Adjust the delineation and extrac-
tion conditions, and perform 4 segmentation methods 
for each patient: 1. Plain scan lung window group: Select 
a lung window on the CT plain scan image and manu-
ally delineate GTVf based on the tumor range displayed 
on the lung window; 2. Enhanced lung window group: 
Select a lung window on the CT enhanced image and 
manually delineate GTVfq based on the tumor range 
displayed on the lung window; 3. Plain scan mediastinal 
window group: Select the mediastinal window on the 
CT plain scan image, set the CT domain value to (-150-
500hu), and automatically draw GTVz. Draw according 
to the tumor range of the mediastinal window, and make 
manual revisions if necessary; 4. Enhanced mediastinal 
window group: Select the mediastinal window on the 
CT enhanced image, set the CT domain value to (-150-
500hu), and automatically draw GTVzq. Draw according 
to the tumor range of the mediastinal window and make 
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manual revisions if necessary. GTVf and GTVz extract 
image features from CT plain scan images, while GTVfq 
and GTVzq extract image features from CT enhanced 
images. 22 patients, each with 4 sets of imaging features, 
extracted a total of 88 sets of imaging features, each con-
taining 851 features. When using the Python3.7 radiom-
ics function to extract radiomics features from images, all 
images were preprocessed by resampling voxels into iso-
tropic 1 * 1 * 1. When extracting data features, the follow-
ing settings were set: binWidth = 25. The characteristics 
of the patient are shown in Appendix 1. Select a total of 
107 features from the original sequence for analysis. First, 
perform Shapiro test on the four sets of image features. If 
they conform to a normal distribution, perform analysis 
of variance. If they are not normally distributed, perform 
Friedman test. Compare the significantly different image 
features pairwise. Then, according to the pathology, they 
are divided into two groups. First, Shapiro test is per-
formed. If the distribution is normal, independent sam-
ple T-test is performed. If the distribution is not normal, 
Wilcoxon rank test is performed.

Results
Lung cancer images of 22 patients, including 11 cases 
of adenocarcinoma and 11 cases of squamous cell carci-
noma. Four sets of influencing features were extracted 
for each patient, namely the plain lung window group, 
plain mediastinal window group, enhanced lung win-
dow group, and enhanced mediastinal window group. 
A total of 88 sets of image features were extracted, each 
containing 851 features. Due to filtering adjustments 
made to sequences outside the original sequence, the 
stability cannot be determined. Therefore, a total of 
107 features of the original sequence were selected for 
analysis. Four sets of data for each feature were first 
subjected to Shapiro tests, all of which were non nor-
mal distributions, and Friedman tests were performed. 
Among them, 33 features showed significant intergroup 
differences, as shown in Table 1.

Perform the Wilcoxon rank test on 33 features in 
pairs within the group, with two groups showing sig-
nificant differences: the plain lung window group and 
the enhanced lung window group, as shown in Table 2.

There are 12 significant differences between the 
enhanced lung window and the plain scanning medias-
tinal window, as shown in Table 3.

There is one significant difference between plain 
scanning and enhancement of the mediastinal window, 
as shown in Table 4.

There are 14 significant differences between the plain 
scan lung window and the enhanced mediastinal win-
dow groups, as shown in Table 5.

There are 14 significant differences between the 
lung window and mediastinal window in plain scan, as 
shown in Table 6.

Table 1  intergroup significant differences

characteristics group -P

original-shape-LeastAxisLength 1.16438E-08

original-shape-MajorAxisLength 9.26044E-08

original-shape-Maximum2DDiameterColumn 0.0155954

original-shape-Maximum2DDiameterRow 0.0398511

original-shape-Maximum2DDiameterSlice 0.013897644

original-shape-Maximum3DDiameter 0.005388771

original-shape-MeshVolume 0.00028303

original-shape-MinorAxisLength 3.65474E-08

original-shape-SurfaceArea 0.005176663

original-shape-SurfaceVolumeRatio 0.001479286

original-shape-VoxelVolume 0.000269856

original-firstorder-10Percentile 2.30725E-10

original-firstorder-90Percentile 0.003636033

original-firstorder-Energy 1.42605E-10

original-firstorder-Skewness 0.001912288

original-glcm-Idmn 0.002408284

original-glcm-Idn 0.00618336

original-glcm-Imc1 0.000955016

original-gldm-DependenceVariance 0.027875081

original-gldm-LargeDependenceHighGrayLevelEmphasis 0.014577027

original-glrlm-GrayLevelNonUniformity 0.000151633

original-glrlm-LongRunHighGrayLevelEmphasis 0.000682814

original-glrlm-LowGrayLevelRunEmphasis 0.016113473

original-glszm-SmallAreaHighGrayLevelEmphasis 5.16E-08

original-glszm-SmallAreaLowGrayLevelEmphasis 2.47E-07

original-glszm-ZoneEntropy 5.30E-08

original-glszm-ZonePercentage 4.64E-08

original-glszm-ZoneVariance 6.24E-07

original-ngtdm-Busyness 1.26E-05

original-ngtdm-Coarseness 0.040425894

original-ngtdm-Complexity 1.21E-09

original-ngtdm-Contrast 4.83E-09

original-ngtdm-Strength 3.90E-05

Table 2  significant differences between the plain lung window 
group and the enhanced lung window group

characteristics P

original-glcm-Imc1 0.021025458

original-ngtdm-Complexity 0.017242836
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There are 13 significant differences between the 
enhanced lung window and the mediastinal window, as 
shown in Table 7.

According to pathological grouping testing, 54 cases 
were found to have significant differences between 
squamous cell carcinoma and adenocarcinoma, as 
shown in Table Table 8.

By sequentially plotting the above image features, it 
can be seen that groups 1 and 3 are more distinct. Con-
sidering that groups 1 and 3 have more advantages in 
distinguishing between squamous cell carcinoma and 
adenocarcinoma compared to groups 2 and 4 (Figs. 1, 2, 
3, 4, 5 and 6).

Discussion
The incidence of lung cancer ranks second among malig-
nant tumors, while the mortality rate ranks first [1]. In 
order to clarify the pathological properties [2–4, 21], 
gene status [5, 6], treatment efficacy [7, 8, 17, 22–24], 
recurrence risk [7, 8, 17, 22–24], survival time [11, 12, 
25, 26], and distinguish radiation pneumonia [13, 14], 

Table 3  significant differences between the enhanced lung 
window and the plain scanning mediastinal window

characteristics P

original-firstorder-10Percentile 1.62759E-07

original-firstorder-Energy 5.10917E-06

original-firstorder-Skewness 0.019692889

original-glcm-Imc1 0.000194338

original-glszm-SmallAreaHighGrayLevelEmphasis 0.000111445

original-glszm-SmallAreaLowGrayLevelEmphasis 0.000667073

original-glszm-ZoneEntropy 5.10917E-06

original-glszm-ZonePercentage 0.003346064

original-ngtdm-Busyness 0.000808753

original-ngtdm-Complexity 3.37273E-05

original-ngtdm-Contrast 0.000667073

original-ngtdm-Strength 4.88686E-05

Table 4  significant difference between plain scanning and 
enhancement of the mediastinal window

characteristics P

original-firstorder-90Percentile 0.036536452

Table 5  significant differences between the plain scan lung 
window and the enhanced mediastinal window groups

characteristics P

original-firstorder-10Percentile 6.21914E-06

original-firstorder-Energy 2.42584E-06

original-glcm-Idmn 0.023922019

original-gldm-DependenceVariance 0.007351685

original-glrlm-LowGrayLevelRunEmphasis 0.022434047

original-glszm-SmallAreaHighGrayLevelEmphasis 3.36834E-07

original-glszm-SmallAreaLowGrayLevelEmphasis 4.32389E-05

original-glszm-ZoneEntropy 2.97324E-05

original-glszm-ZonePercentage 7.94135E-07

original-glszm-ZoneVariance 0.007351685

original-ngtdm-Busyness 0.017242836

original-ngtdm-Complexity 6.96925E-09

original-ngtdm-Contrast 5.10917E-06

original-ngtdm-Strength 0.0010726

Table 6  significant differences between the lung window and 
mediastinal window in plain scan

characteristics P

original-firstorder-10Percentile 2.82492E-06

original-firstorder-Energy 2.07957E-06

original-firstorder-Skewness 0.02714996

original-glcm-Idmn 0.02889707

original-gldm-DependenceVariance 0.013117159

original-glszm-SmallAreaHighGrayLevelEmphasis 1.55274E-05

original-glszm-SmallAreaLowGrayLevelEmphasis 0.000889334

original-glszm-ZoneEntropy 5.5166E-05

original-glszm-ZonePercentage 2.30186E-05

original-glszm-ZoneVariance 0.005005096

original-ngtdm-Busyness 0.000889334

original-ngtdm-Complexity 1.77955E-06

original-ngtdm-Contrast 5.5166E-05

original-ngtdm-Strength 7.88072E-05

Table 7  significant differences between the enhanced lung 
window and the mediastinal window

characteristics P

original-firstorder-10Percentile 7.7589E-07

original-firstorder-Energy 6.80587E-06

original-glcm-Imc1 0.025492812

original-glrlm-LongRunHighGrayLevelEmphasis 0.030737842

original-glrlm-LowGrayLevelRunEmphasis 0.019692889

original-glszm-SmallAreaHighGrayLevelEmphasis 5.90131E-06

original-glszm-SmallAreaLowGrayLevelEmphasis 7.0054E-05

original-glszm-ZoneEntropy 5.10917E-06

original-glszm-ZonePercentage 0.000330363

original-ngtdm-Busyness 0.015058807

original-ngtdm-Complexity 1.62759E-07

original-ngtdm-Contrast 0.000156071

original-ngtdm-Strength 0.002194965
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significant progress has been made in research on imag-
ing features. In recent years, most researchers have cho-
sen the radiomics component of 3D-Slicer software for 
image feature extraction due to its simple operability 
[15], but its application lacks standardization. Differences 
in positioning, acquisition, and segmentation, differences 
in contrast agents, image quality issues, and exclusion of 
patients with T4 lesions due to the uncertainty of lesion 
examination and potential bias in the final results.

Some studies use non enhanced CT to extract image 
features [7, 10, 11, 17, 26–28]. some studies use 
enhanced CT to extract image features [5, 6, 8, 9, 12, 
29–31], some studies are uncertain whether to apply 
enhanced CT [22], some studies apply PET-CT [32–
34]. However, Stefano conducted a comprehensive 
search and found that applying PET-CT for image seg-
mentation has poor stability [16], so we chose CT 
images for our research. Tamponi analyzed the effect of 
enhancers on the extraction of omics features in a total 
of 17 patients, with GTV as tumor. Segmentation was 
performed by two hospitalized radiologists or radiation 
oncologists, and then revised by two radiologists. It was 
found that contrast agents have a significant impact, 
affecting approximately 90% of features [35]. No further 
relevant research has been found. At present, the 
extraction of imaging features in radiomics mostly uses 
the selection of lung window to delineate the tumor 
range, or the expansion of a certain boundary of the 
lung window tumor range to analyze tumor infiltration 
and treatment response. A few choose to delineate the 
mediastinal window or do not have a clear expression. 
At present, there is no clear article recommending the 
use of enhanced CT or plain CT when extracting imag-
ing omics, nor is there clear data support. The aim of 
this study is to conduct a preliminary analysis of the 
enhancement effect of CT and the differences in the 
selection of lung or mediastinal windows, in order to 
understand their impact on image feature extraction. I 
hope to provide a basis for future image feature extrac-
tion. In addition, many articles have proposed that 
radiomics is of great significance in the pathological 
differentiation of adenocarcinoma and squamous cell 
carcinoma [2–4]. Some research found that radiomics 

Table 8  significant differences between squamous cell 
carcinoma and adenocarcinoma

characteristics P

original-shape-Elongation 0.013153277

original-shape-Flatness 0.034639767

original-shape-LeastAxisLength 3.11E-05

original-shape-MajorAxisLength 2.44E-05

original-shape-Maximum2DDiameterColumn 0.000134437

original-shape-Maximum2DDiameterRow 0.000377624

original-shape-Maximum2DDiameterSlice 1.22E-05

original-shape-Maximum3DDiameter 0.000269693

original-shape-MeshVolume 0.00107793

original-shape-MinorAxisLength 4.22E-06

original-shape-SurfaceArea 5.40E-05

original-shape-SurfaceVolumeRatio 0.008647681

original-shape-VoxelVolume 0.001118603

original-firstorder-Entropy 0.040893511

original-firstorder-InterquartileRange 0.007386044

original-firstorder-Kurtosis 0.001257898

original-firstorder-Range 0.040891333

original-firstorder-RobustMeanAbsoluteDeviation 0.036122056

original-firstorder-Skewness 0.000737878

original-firstorder-Uniformity 0.010562257

original-glcm-Idn 0.025077306

original-glcm-Imc1 0.047117091

original-glcm-Imc2 0.012533799

original-glcm-SumEntropy 0.023464294

original-gldm-DependenceEntropy 0.008868887

original-gldm-DependenceNonUniformity 0.00056928

original-gldm-GrayLevelNonUniformity 0.00056928

original-gldm-HighGrayLevelEmphasis 0.036122056

original-gldm-LowGrayLevelEmphasis 0.027976743

original-gldm-SmallDependenceLowGrayLevelEmphasis 0.014820466

original-glrlm-GrayLevelNonUniformity 0.000227723

original-glrlm-GrayLevelNonUniformityNormalized 0.00801305

original-glrlm-HighGrayLevelRunEmphasis 0.036122056

original-glrlm-LongRunHighGrayLevelEmphasis 0.014820466

original-glrlm-LowGrayLevelRunEmphasis 0.025635667

original-glrlm-RunLengthNonUniformity 0.001337266

original-glrlm-ShortRunHighGrayLevelEmphasis 0.040893511

original-glrlm-ShortRunLowGrayLevelEmphasis 0.021941184

original-glszm-GrayLevelNonUniformity 1.31E-05

original-glszm-HighGrayLevelZoneEmphasis 0.012533799

original-glszm-LargeAreaEmphasis 0.007810867

original-glszm-LargeAreaHighGrayLevelEmphasis 0.002220192

original-glszm-LargeAreaLowGrayLevelEmphasis 0.017462591

original-glszm-LowGrayLevelZoneEmphasis 0.009562788

original-glszm-SizeZoneNonUniformity 5.00E-05

original-glszm-SizeZoneNonUniformityNormalized 9.20E-05

original-glszm-SmallAreaEmphasis 8.86E-05

original-glszm-SmallAreaHighGrayLevelEmphasis 0.004738257

original-glszm-SmallAreaLowGrayLevelEmphasis 0.039247488

Table 8  (continued)

characteristics P

original-glszm-ZoneVariance 0.007613218

original-ngtdm-Busyness 5.61E-05

original-ngtdm-Coarseness 1.62E-05

original-ngtdm-Complexity 0.041737989

original-ngtdm-Strength 0.003312745
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features can effectively distinguish between lung squa-
mous cell carcinoma and lung adenocarcinoma [21, 36], 
but the impact of CT image enhancement and target 
delineation in the lung or mediastinal window is not 
clear in these study. Garau found that the imaging 

radiomics of plain CT can effectively distinguish 
between benign and malignant pulmonary nodules, and 
attempted to apply Combat harmonization method to 
reduce the influence of different brands of CT and scan 
parameters, but found no significant differences [37]. 

Fig. 1  Diagram of image features for each group

Fig. 2  Diagram of image features for each group
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This article briefly analyzes the differences in the 
impact of imaging radiomics features on lung squa-
mous cell carcinoma and adenocarcinoma under differ-
ent combinations of enhanced CT or plain CT, lung 
window or mediastinal window conditions. Four sets of 

influencing features were extracted for each patient, 
namely the plain lung window group, plain mediastinal 
window group, enhanced lung window group, and 
enhanced mediastinal window group. A total of 88 sets 
of image features were extracted, each containing 851 

Fig. 3  Diagram of image features for each group

Fig. 4  Diagram of image features for each group
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features. Due to filtering adjustments made to 
sequences outside the original sequence, the stability 
cannot be determined. Therefore, a total of 107 features 
of the original sequence were selected for analysis. Four 
sets of data for each feature were first subjected to 

Shapiro tests, all of which were non normal distribu-
tions, and Friedman tests were performed. Among 
them, 33 features showed significant differences. Con-
tinuing with pairwise repeated detection, it was found 
that there were 2 significant differences between 

Fig. 5  Diagram of image features for each group

Fig. 6  Diagram of image features for each group



Page 9 of 11Liu et al. BMC Cancer          (2025) 25:728 	

enhanced and nonenhanced lung windows, namely ori-
gin glcm Imc1 and origin ngtdm Complexity, indicating 
a significant difference in the amplitude of image 
changes. This may be due to the enhancement of adja-
cent pixel differences in enhanced CT. There are 12 
imaging features that show significant differences 
between the enhanced lung window and the plain scan-
ning mediastinal window, indicating a significant differ-
ence in grayscale between the two, especially in the 
10th percentile, and there is also a significant difference 
in adjacent grayscale differences. The plain scanning 
mediastinal window and the plain scanning mediastinal 
window show a significant difference in grayscale, with 
1 being the original firster-90 percentile, indicating a 
significant difference in grayscale between the 90th 
percentile. There are 14 significant differences between 
the plain scanning lung window and the enhanced 
mediastinal window group, indicating a significant dif-
ference in grayscale between the two, especially in the 
10th percentile, and there is also a significant difference 
in adjacent grayscale differences, as well as a significant 
difference in the size of low-intensity grayscale areas. 
There are 14 imaging features with significant differ-
ences between the lung window and mediastinal win-
dow in plain scan, indicating a significant difference in 
grayscale between the two, especially in the 10th per-
centile, and there are also significant differences in 
adjacent grayscale differences. There are 13 imaging 
features with significant differences between the 
enhanced lung window and the mediastinal window, 
indicating a significant difference in grayscale between 
the two, especially in the 10th percentile. There are also 
significant differences in adjacent grayscale differences, 
with significant differences in large areas of homogene-
ous high grayscale areas and significant differences in 
homogeneous low grayscale areas. Different from our 
guess, image segmentation is carried out according to 
different conditions of lung window and mediastinum 
window. We originally thought that there would be sig-
nificant differences in shape, but the result is that there 
are significant differences in gray level differences, 
which may be different from the lung window image 
segmentation, which includes a large number of tumor 
edge areas, and the gray level differences in tumor edge 
areas change more than the changes in tumor interior. 
The application of enhanced CT also affects the gray-
scale of lung window image segmentation, but the 
affected features are only two, and the grayscale impact 
on mediastinal window image segmentation is even 
more limited. Then, based on pathology, the data were 
divided into two groups: 44 groups of 11 squamous cell 
carcinoma patients and 44 groups of 11 adenocarci-
noma patients, which displayed abnormal distribution. 

Wilcoxon’s rank test was performed, and 54 imaging 
features were found to have significant differences 
between squamous cell carcinoma and adenocarci-
noma, accounting for more than half of the original 
sequence By sequentially plotting the above image fea-
tures, it can be seen that groups 1 and 3 have more 
advantages in distinguishing between squamous cell 
carcinoma and adenocarcinoma compared to groups 2 
and 4, that is, extracting image features from plain CT 
may be better than enhancing CT. Liu found that the 
enhanced features of CT are not the main imaging fea-
tures for distinguishing squamous cell carcinoma from 
adenocarcinoma, which is consistent with the conclu-
sion of this study [38]. Image segmentation and image 
feature extraction are the cornerstone of imaging omics 
research. For the selection of plain CT or enhanced CT, 
as well as the selection of lung window or mediastinal 
window for image segmentation, this article provides a 
basis for image selection and segmentation in image 
feature research, reduces possible biases in image fea-
ture extraction data, and contributes to the homogeni-
zation progress of future image feature extraction. 
However, this study also has certain limitations, the CT 
images included in the study have different hospitals, 
brands, batches, and scan parameters, which may affect 
research conclusions, despite undergoing resampled 
image preprocessing method [21]. But there is currently 
no clear and effective method to avoid such impacts 
[39, 40]. In addition, the small number of patients 
included in this study may have a biased impact on the 
research results. And Image segmentation is carried 
out from the mediastinal window and the lung window, 
and amount of radiomics data with significant differ-
ences are extracted, which are quite important. How-
ever, whether these data will affect differential diagnosis 
and prognosis still requires further investigation. In the 
future, we will establish models for differential diagno-
sis and prognosis prediction and make comparisons to 
evaluate the impact of the lung window and the medi-
astinal window on the prediction models. Meanwhile, 
in future studies, we will expand the patient population 
to obtain more convincing results.

Conclusions
The enhancement of lung CT has a relatively small 
impact on extracting image features, and the selection 
of lung or mediastinal windows during image segmen-
tation has a greater impact on the grayscale changes in 
extracting image features. Therefore, the selection of lung 
or mediastinal windows for feature extraction should be 
carefully considered. The size of the image segmentation 
range has a greater impact on image features, indicating 
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that the tumor edge area contains richer changes in 
image features. The impact of lung squamous cell carci-
noma and adenocarcinoma on imaging features is also 
significant, indicating a high possibility of distinguishing 
between squamous cell carcinoma and adenocarcinoma 
based on radiomics.
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