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Abstract
Background  This study was undertaken to develop and validate a radiomics model based on multiparametric 
magnetic resonance imaging (MRI) for predicting recurrence in patients with hepatocellular carcinoma (HCC) 
following postoperative adjuvant transarterial chemoembolization (PA-TACE).

Methods  In this retrospective study, 149 HCC patients (81 for training, 36 for internal validation, 32 for external 
validation) treated with PA-TACE were included in two medical centers. Multiparametric radiomics features were 
extracted from three MRI sequences. Least absolute shrinkage and selection operator (LASSO)-COX regression 
was utilized to select radiomics features. Optimal clinical characteristics selected by multivariate Cox analysis were 
integrated with Rad-score to develop a recurrence-free survival (RFS) prediction model. The model performance was 
evaluated by time-dependent receiver operating characteristic (ROC) curves, Harrell’s concordance index (C-index), 
and calibration curve.

Results  Fifteen optimal radiomic features were selected and the median Rad-score value was 0.434. Multivariate Cox 
analysis indicated that neutrophil-to-lymphocyte ratio (NLR) (hazard ratio (HR) = 1.49, 95% confidence interval (CI): 
1.1–2.1, P = 0.022) and tumor size (HR = 1.28, 95% CI: 1.1–1.5, P = 0.001) were the independent predictors of RFS after 
PA-TACE. A combined model was established by integrating Rad-score, NLR, and tumor size in the training cohort 
(C-index 0.822; 95% CI 0.805–0.861), internal validation cohort (0.823; 95% CI 0.771–0.876) and external validation 
cohort (0.846; 95% CI 0.768–0.924). The calibration curve exhibited a satisfactory correspondence.
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Introduction
Liver cancer is the sixth most common and the third 
most lethal malignancy globally, with a 5-year survival 
rate of approximately 18% [1, 2]. Hepatocellular car-
cinoma (HCC) accounts for over 85% of all liver can-
cer cases. Radical hepatectomy is the primary curative 
treatment for HCC. However, the long-term prognosis 
after liver resection remains unsatisfactory due to a high 
recurrence rate of approximately 60–70% within 5 years 
[3, 4]. Postoperative adjuvant therapies such as transar-
terial chemoembolization (TACE), chemotherapy, are 
introduced to prolong the long-term survival of patients 
with HCC after a hepatectomy [5, 6].

Postoperative adjuvant TACE (PA-TACE) has been 
shown to reduce the risk of recurrence and improve post-
operative survival of HCC patients by eliminating micro-
metastases, residual small lesions, and cancer cells [7, 8, 
9].However, not all HCC patients can benefit from PA-
TACE owing to tumor heterogeneity, TACE resistance, 
and damages from TACE like hepatic and immunologi-
cal functional impairment [10]. Therefore, it is essential 
to identify optimal candidates who can benefit from PA-
TACE. Biomarkers such as micro RNA-4651 [11], Ki67 
expression [12, 13], and microscopic vascular invasion 
[14] have been proposed to predict tumor recurrence 
after PA-TACE in HCC. However, these tissue-based bio-
markers necessitate invasive procedures to obtain tumor 
samples and fail to adequately capture the spatiotempo-
ral heterogeneity of the tumors. Additionally, multiple 
clinical factors, such as alpha-fetoprotein (AFP), alanine 
aminotransferase-to-hemoglobin ratio (AHR), tumor 
number, tumor size, and imaging features, are likely 
to predict the HCC recurrence [14, 15, 16, 17]. Indeed, 
several prediction models based on these clinical factors 
have demonstrated promising results in estimating the 
risk of recurrence after PA-TACE [15, 16, 17]. However, 
they fall short in considering the complex tumor biology, 
which may lead to a decline in performance. Thus, a com-
prehensive evaluation avoiding additional tissue dam-
ages, and encompassing both complex tumor biology and 
clinical features is needed.

Radiomics provides a robust method for extracting 
high-throughput, mineable, and quantitative radiologi-
cal features [18, 19]. It can also be considered a ‘digital 
biopsy’ of tumoral and peritumoral regions, offering 
non-invasive, reproducible, and comprehensive insight 
into tumor biology and heterogeneity [20]. Furthermore, 
accurately integrating radiomic features and clinical 

characteristics can enhance precision in intricate clini-
cal decision-making [21]. Radiomics has demonstrated 
the potential to predict treatment response and progno-
sis for locoregional [22, 23] and systemic therapies [24] 
in HCC. Study previously reported that a multi-phase, 
computed tomography (CT)-based radiomics model 
to predict HCC recurrence after surgical resection was 
developed and identify high-risk patients who may ben-
efit from PA-TACE [14]. However, the resolution of CT 
scan in soft tissues is relatively poor, and the information 
it can provide is still very limited. In comparison to CT, 
magnetic resonance imaging (MRI) offers superior soft-
tissue resolution, nonionizing radiation exposure, and 
more functional imaging approaches [25]. This capabil-
ity allows for a more comprehensive and detailed depic-
tion of organizational information. Indeed, MRI-based 
radiomics models were applied to predicted the efficacy 
of system or local treatment for cancers [22, 23, 24]. 
Our previous study also demonstrated that a MRI-based 
model combined radiomics and clinical factors acts as a 
new strategy for predicted the recurrence-free survival 
(RFS) of intermediate and advanced HCC treated with 
TACE plus RFA [26]. However, the radiomics features 
are mainly extracted from one or two MRI sequences, 
either in our studies or in others’ studies [22, 26]. Thus, 
we aim to investigate the ability of multiparametric MRI 
radiomics to predict recurrence in HCC patients follow-
ing PA-TACE.

In this study, we have developed and validated a mul-
tiparametric MRI-based radiomics model that provides 
personalized assessments of HCC recurrence risk before 
treatment, thereby evaluating the feasibility of its clinical 
application.

Materials and methods
Study population
This study received approval by the Ethical Committee 
of Lishui Hospital of Zhejiang University and was car-
ried out in accordance with the Declaration of Helsinki. 
The requirement for informed consent was waived due 
to the retrospective nature of the research. A total of 380 
patients with HCC who underwent PA-TACE within two 
months after radical hepatectomy from January 2015 to 
March 2022 were retrospectively inclueded in the two 
medical centers. A flowchart of patient enrollment is 
illustrated in the Fig. 1 The inclusion criteria are as fol-
lows: (1) pathological diagnosis of HCC; (2) a qualified, 
contrast-enhanced MRI scan performed within two 

Conclusion  A multiparametric MRI-based radiomics model can predict RFS of HCC patients receiving PA-TACE and a 
nomogram can be served as an individualized tool for prognosis.
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weeks before surgery; (3) a follow-up time of more than 
one year after PA-TACE; (4) no other anti-tumor treat-
ments or malignant tumors. The exclusion criteria were 
as follows: (1) patients who received other anti-tumor 
treatments such as radiotherapy, chemotherapy, radiofre-
quency ablation, or systemic therapy before the hepatec-
tomy; (2) patients without an MRI scan or with an MRI 
scan more than two weeks before the hepatectomy; (3) 
patients with more than one tumor lesion, macrovascu-
lar invasion, or extrahepatic metastasis; (4) patients who 
lacked MRI sequences or had poor quality images; (5) 
patients without clinical-pathology and follow-up data, 
or with a follow-up time of less than one year after PA-
TACE; (6) patients with other malignant tumors. Finally, 
a total of 149 patients were included in the study. One 
hundred and seventeen patients from center 1 (Lishui 
Hospital of Zhejiang University) were selected for inclu-
sion and randomly divided into a training (n = 81) and 
validation cohort (n = 36) at a ratio of 7:3. Then, 32 HCC 

patients from center 2 (the Third Affiliated Hospital of 
Wenzhou Medical University) were used as an external 
validation cohort. In addition, clinical factors including 
patient demographic characteristics; Child-Pugh class 
clinical grades and Barcelona Clinic Liver Cancer (BCLC) 
stages, laboratory indicators and histopathological fea-
tures were collected for further analysis.

Procedure of PA-TACE
Firstly, all included HCC patients underwent R0 hepa-
tectomy, completely resecting the tumor while ensuring 
tumor-free margins. Then, patients were treated with 
conventional TACE after hepatectomy with two months. 
During the performance of PA-TACE, we inserted a 
hepatic arterial catheter via the femoral artery into the 
proper hepatic artery using the Seldinger technique. Sub-
sequently, based on a comprehensive evaluation of the 
patient’s body surface area, physical fitness, and residual 
liver volume, we administered a precisely formulated 

Fig. 1  Flowchart of patients enrollment
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mixture of chemotherapeutic agents (fluorouracil, epi-
rubicin, and platinum) and embolic agents (lipiodol and 
gelatin sponge) through the catheter into the residual 
liver. When lipiodol deposits were identified during PA-
TACE, the angiographic images were independently 
reviewed by two experienced interventional radiologists. 
Following PA-TACE procedures, all patients were hospi-
talized for post-procedural supportive care, and routine 
management was implemented, encompassing hydration, 
antiemetic administration, pain control, and continuous 
monitoring of liver function.

MRI image acquisition and feature evaluation
All MRI scans were performed using a German MAGNE-
TOM Area 1.5T MR scanner (Siemens AG Healthcare, 
Erlangen, Germany) and a Philips INGENIA 3.0T MR 
scanner (Philips Medical Systems Nederland B.V.). The 
detailed parameters of each sequence for the two scan-
ners are shown in Table S1. Preoperative MRI scans were 
retrospectively evaluated using the Picture Archiving and 
Communication System (PACS) by two radiologists with 
3 and 5 years of experience in liver imaging evaluation, 
independently. Qualitative and quantitative MRI features 
were analyzed using the Liver Imaging Reporting and 
Data System (LI-RADS version 2018) [27]. Detailed defi-
nitions of the qualitative features are listed in Table S2.

Follow-up
RFS was the end point of this study. HCC recurrence was 
screened by monitoring serum AFP levels and identify-
ing new tumor nodules within or outside the liver using 
contrast-enhanced CT or MRI imaging (Figure S1). RFS 
was defined as the time from the date of PA-TACE to the 
date of first recurrence or the last follow-up. The cutoff 
follow-up date for our research was March 31, 2023.

Image segmentation and feature extraction
The volumes of interest for HCC were manually delin-
eated on T2WI, diffusion-weighted imaging (DWI) 
(b = 800), and AP using 3D Slicer software (version 4.10, 
www.slicer.org). The two radiologists independently 
completed the image segmentations. MRI images were 
resampled to 1.0 × 1.0 × 1.0 mm³ voxels using a fixed bin 
width of 25 to eliminate spatial resolution inconsisten-
cies. Radiomic feature extractions were conducted using 
PyRadiomics version 3.0.1.

Correlation coefficients (ICCs) were used to evaluate 
the variability of the extracted features. For the assess-
ment of the intra-observer ICC, MR images of three 
sequences from 40 patients were randomly selected 
and segmented twice in one month by one of the radi-
ologists. To assess inter-observer ICC, the randomly 
selected images underwent independent segmentation 
by both radiologists. When the ICC exceeded 0.75, it was 

considered good agreement, and the first radiologist then 
performed the remaining segmentations.

Feature selection and radiomics model construction
The radiomic features from three sequences were first 
standardized with z-scores. Next, Least absolute shrink-
age and selection operator (LASSO)-COX regression 
with 10-fold cross validation were used to identify opti-
mal radiomic features. A Rad-score was calculated for 
each patient through a linear combination of selected 
feature clusters, with corresponding LASSO coefficients 
applied as weights (Figure S2). Participants were strati-
fied into high- and low-risk signature groups based on 
the median value of the Rad-score. The underlying asso-
ciation between the Rad-score and RFS was demon-
strated via Kaplan-Meier survival curves in the training 
and validation cohorts.

Clinical model and combined model building
A clinical model was developed by integrating the opti-
mal clinical factors selected through univariate and 
multivariate Cox analyses. Then, a combined model was 
developed to improve prediction performance, we fur-
ther identified clinical risk factors through and developed 
a clinical-radiomics nomogram to predict 1-, 3-, and 
5-year RFS in both cohorts. Time-dependent receiver 
operating characteristic (ROC) and calibration curves 
were used to evaluate the performance of the combined 
model. The workflow of the radiomics analyses is shown 
in Fig. 2.

Statistical analyses
Categorical variables were analyzed using the Chi-
square test or Fisher’s exact test, while continuous vari-
ables were analyzed using the Student’s t-test or the 
Mann-Whitney U-test. Survival curves were plotted via 
the Kaplan-Meier method and compared using the log-
rank test. The performance of the combined model was 
evaluated using time-dependent ROC curves, Harrell’s 
concordance index (C-index), and calibration curves. All 
statistical analyses were conducted using R software (ver-
sion 4.1.2 ). Statistical significance was determined at a 
p-value<0.05 by all two-sided.

Results
Patient characteristics
A total of 149 HCC patients were included in this study. 
Among them, 81 patients were classified into the training 
cohorts, and 36 and 32 patients were classified into the 
internal and external validation cohorts. The median age 
of the training cohort was 57.6 years, 70 (86.4%) patients 
were male, and 49 (60.5%) patients were diagnosed with 
cirrhosis. The distribution of patients within each BCLC 
stage was relatively even, with 44.4% at BCLC stage A and 

http://www.slicer.org
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55.6% at BCLC stage B. Only 35.8% had undergone anti-
viral therapy. The overall recurrence rate was 37.6%. Spe-
cifically, 35.8%, 44.4% and 34.4% of patients experienced 
a recurrence after PA-TACE in the training, internal and 
external validation cohorts and the difference was no sig-
nificant. Furthermore, there was no significant difference 
in clinical factors between the training and validation 
cohorts. The data are summarized in Table 1.

Radiomic features for RFS prediction
The intra- ICCs ranged from 0.81 to 0.93 and inter-
observer ICCs ranged from 0.81 to 0.93, demonstrating 
favorable reproducibility between the two radiologists. 
Ultimately, 1,688 radiomic features were extracted for 
each sequence (5,064 in total). The heatmap expres-
sions of extracted radiomic features in each patient are 
shown in Figure S3. A total of fifteen radiomic features 
were selected from the 5,064 extracted features to con-
struct the radiomic model: eleven from T2WI, one from 
DWI, and three from the AP, can be seen in Table S4. A 
Rad-score was calculated using a formula shown in Table 
S4, and defined to be 0.434 based on the median value. 
Kaplan-Meier analysis revealed that patients in high 
risk group was associated with decreased RFS in train-
ing cohort (HR = 12.21, 95% CI: 5.56–26.82, P<0.0001), 
internal validation cohort (HR = 3.68, 95% CI: 1.38–9.84, 
P = 0.028) and external validation cohort (HR = 4.63, 95% 
CI: 1.61–0.92, P = 0.025) (Fig.  3a). The survival trend 
of OS was consistent with that observed for RFS in the 
training and validation cohort (Figure S4). Kaplan-
Meier analysis indicated that patients in high risk group 
was associated with decreased OS in training cohort 

(HR = 5.20, 95% CI: 2.09–12.91, P = 0.008), internal vali-
dation cohort (HR = 4.05, 95% CI 1.39–11.78, P = 0.028) 
and external validation cohort (HR = 4.79, 95% CI: 1.67–
13.74, P = 0.021) (Figure S4).

Clinical and radiomic features for RFS prediction
Firstly, Univariate Cox regression analysis reveal 
that among the 14 clinical factors, only had p val-
ues < 0.05(Fig.  4). The three factors with p < 0.05, were 
subjected to multivariate Cox analysis, and the results 
suggested that NLR (hazard ratio (HR) = 1.49, 95% con-
fidence interval (CI): 1.10–2.10, P = 0.022), tumor size 
(HR = 1.28, 95% CI: 1.10–1.50, P = 0.001), and Rad-score 
(HR = 16.35, 95% CI: 5.90–45.0, P<0.001) were identified 
as independent predictors of RFS (Table  2). Moreover, 
the optimal cut off values of NLR and tumor size are cal-
culated using the Kaplan-Meier curves and log-rank test. 
The cut-off threshold of NLR was 3.0 (Figure S5). Patients 
in high NLR group was associated with decreased RFS in 
training cohort (HR = 3.03, 95% CI: 0.95–9.62, P = 0.0048) 
and internal validation cohort (HR = 3.20, 95% CI: 0.93–
10.99, P = 0.014) and external validation (HR = 4.81, 95% 
CI: 1.20-19.24, P < 0.001) (Fig.  3b). Similarly, the cut-
off threshold of tumor size was 4.4 (Figure S6). Patients 
with high tumor size were associated with worse RFS in 
training cohort (HR = 2.16, 95% CI: 0.96–4.90, P = 0.034), 
internal validation cohort (HR = 2.95, 95% CI: 1.06–8.17, 
P = 0.024) and external validation (HR = 3.53, 95% CI: 
1.22–10.23, P = 0.021) (Fig. 3c). Then, a combined model 
integrating Rad-score and clinical factors was developed.

Fig. 2  Workflow of radiomics analysis
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Training
(n = 81)

Internal validation
(n = 36)

External validation
(n = 32)

p value

Age 57.6 (9.67) 58.3 (8.14) 62.9 (8.46) 0.670
Sex 0.878
Male 70 (86.4%) 30 (83.3%) 26 (81.3%)
Female 11 (13.6%) 6 (16.7%) 6 (18.7%)
BMI 23.3 (2.91) 23.7 (3.16) 23.5 (3.16) 0.561
Antiviral treatment 0.961
Absent 52 (64.2%) 24 (66.7%) 11 (34.4%)
Present 29 (35.8%) 12 (33.3%) 21 (35.6%)
Cirrhosis 0.563
Absent 32 (39.5%) 17 (47.2%) 10 (31.3%)
Present 49 (60.5%) 19 (52.8%) 22 (68.7%)
BCLC stage 0.355
A 36 (44.4%) 12 (33.3%) 20 (62.5%)
B 45 (55.6%) 24 (66.7%) 12 (37.5%)
CNLC 0.549
Ia 60 (74.1%) 24 (66.7%) 15 (46.9%)
Ib 21 (25.9%) 12 (33.3%) 17 (53.1%)
Child Pugh score 0.661
A5 63 (77.8%) 30 (83.3%) 25 (78.1%)
A6 18 (22.2%) 6 (16.7%) 7 (21.9%)
PLT, ×109/L 150 (65.1) 137 (52.4) 182 (61.3) 0.282
ALT, U/mL 32.6 (19.7) 32.8 (26.0) 32.8 (26.0) 0.970
AST, U/mL 31.2 (11.2) 32.6 (14.2) 32.6 (14.2) 0.626
GGT, U/L 64.0 (70.5) 68.9 (65.8) 107 (124) 0.718
ALP, U/L 90.0 (33.7) 89.6 (21.8) 95.0 (36.9) 0.931
TB, umol/L 15.8 (7.58) 15.1 (7.56) 16.3 (7.55) 0.624
CB, umol/L 6.39 (3.07) 6.02 (2.49) 6.02 (2.49) 0.493
ALB, g/L 39.0 (4.13) 40.7 (4.69) 41.9 (3.48) 0.069
PT, second 12.0 (0.93) 11.9 (1.16) 12.1 (0.82) 0.532
INR 1.09 (0.09) 1.07 (0.11) 1.07 (0.11) 0.304
FDP, g/L 2.85 (0.77) 2.93 (0.73) 3.05 (0.94) 0.568
AFP, ng/mL 271 (588) 329 (630) 312 (1216) 0.642
CEA, mg/L 3.06 (1.79) 3.24 (2.19) 2.28 (1.21) 0.654
NLR 2.26 (1.24) 2.39 (1.24) 2.43 (1.70) 0.604
PLR 101 (42.7) 95.8 (33.6) 110 (41.4) 0.484
MLR 0.27 (0.10) 0.30 (0.12) 0.32 (0.19) 0.159
AGLR 142 (101) 140 (57.4) 116 (66.7) 0.903
AHR 0.23 (0.15) 0.23 (0.17) 0.23 (0.17) 0.840
Differentiation degree 0.661
High 14 (17.3%) 4 (11.1%) 4 (12.5%)
Median 44 (54.3%) 20 (55.6%) 18 (56.3%)
Low 23 (28.4%) 12 (33.3%) 10 (31.2%)
Hep expression 0.091
Negative 5 (6.17%) 6 (16.7%) 4 (12.5%)
Positive 76 (93.8%) 30 (83.3%) 28 (87.5%)
AFP expression 0.934
Negative 54 (66.7%) 25 (69.4%) 23 (71.9%)
Positive 27 (33.3%) 11 (30.6%) 9 (28.1%)
GPC3 expression 1.000
Negative 44 (54.3%) 20 (55.6%) 18 (56.3%)
Positive 37 (45.7%) 16 (44.4%) 14 (43.7%)
Ki-67 0.678

Table 1  Baseline characteristics of the patients in the training and validation cohorts
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Accuracy of RFS-predictive models
The performance of the different model was compared 
using the areas under the curve (AUCs) at 1, 3 and 
5 years of time-dependent ROC curves. The AUC of 
radiomics model was 0.84, 0.87 and 0.88 in the training 

cohorts and the AUCs of clinical model the at 1, 3 and 
5 years were 0.53, 0.61 and 0.63. It is notable that the 
RFS prediction performance of radiomics model is bet-
ter than that of clinical model. Furthermore, the AUCs of 
combined model at 1, 3 and 5 years were 0.82, 0.89 and 

Fig. 3  Kaplan-Meier survival curves based on Rad-score, NLR and tumor size in the training, internal validation and external cohorts. (a) Kaplan-Meier 
survival analysis based on Rad-score. (b) Kaplan-Meier survival analysis based on NLR. (c) Kaplan-Meier survival analysis based on tumor size

 

Training
(n = 81)

Internal validation
(n = 36)

External validation
(n = 32)

p value

Low expression 18 (22.2%) 10 (27.8%) 10 (31.3%)
High expression 63 (77.8%) 26 (72.2%) 22 (68.7%)
Status 0.496
Non-recurrence 52 (64.2%) 20 (55.6%) 21 (65.6%)
Recurrence 29 (35.8%) 16 (44.4%) 11 (34.4%)
BMI, body mass index; BCLC, Barcelona Clinic Liver Cancer; CNLC, China liver cancer staging; PLT, platelet count; ALT, alanine aminotransferase; AST, aspartate 
aminotransferase; GGT, glutamyl transpeptidase; TB, total bilirubin; CB; conjugated bilirubin; ALB, albumin; PT, prothrombin time; INR, international normalized ratio; 
FDP, fibrinogen degradation product; AFP, alpha-fetoprotein; CEA, carcinoembryonic antigen; NLR, neutrophil-lymphocyteratio; PLR, platelet-lymphocyte ratio; 
MLR, lymphocyte-monocyte ratio; AGLR, (ALP [U/L] + GGT[U/L]) /lymphocyte count (×109/L) ratio; AHR, alanine aminotransferase to hemoglobin ratio

Table 1  (continued) 



Page 8 of 12Guo et al. BMC Cancer          (2025) 25:683 

0.91, demonstrating better RFS prediction performance 
than clinical model or radiomic model. Similar trend was 
observed in the internal and external validation cohorts, 
shown in Fig. 5.

A nomogram for individualized prediction of RFS
To predicted the RFS individually, a novel clinical-
radiomic nomogram was constructed based on the Rad-
score and two clinical predictors (Fig. 6a). The calibration 
curve of the clinical-radiomic nomogram demonstrated a 
good fit between predicted and observed RFS at 1, 3 and 
5 years in the training and validation cohorts (Fig.  6b). 
The clinical-radiomic model performed similarly to the 

radiomics model in predicting RFS, as evidenced by a 
comparable C-index of 0.822 (95% CI: 0.805–0.861) in the 
training cohort. Furthermore, the combined model sig-
nificantly enhanced the accuracy for predicting RFS with 
C-index of 0.823 (95% CI: 0.771–0.876) and 0.846 (95% 
CI: 0.768–0.924) compared to the radiomic and clini-
cal models in the internl and external validation cohort. 
These results indicate that the nomogram exhibits a good 
predictive effect for RFS of HCC patients treated with 
PA-TACE after surgery resection.

Discussion
PA-TACE is an effective strategy to prevent tumor recur-
rence of patients receiving surgery resection. Specific 
gene mutations and signatures from next-generation and 
single-cell sequencing with high cost and invasiveness 
may serve as potential biomarkers for screening opti-
mal candidates for PA-TACE treatment [28, 29, 30, 31]. 
However, non-invasive predictive factors are still needed 
due to lacks effective biomarkers for prognosis [28]. In 
this study, we developed a multiparametric, MRI-based 

Table 2  Multivariable Cox analyses of RFS
Multivariable analysis
Hazard ratio 95% CI P value

NLR 1.49 1.10–2.10 0.022
Tumor size 1.28 1.10–1.50 0.001
Rad score 16.35 5.90–45.0 <0.001
NLR, neutrophil-lymphocyteratio

Fig. 4  Multivariable Cox analyses of RFS
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radiomics model for predicting recurrence in patients 
with HCC after PA-TACE and validated it internally. 
Most of the final radiomic features (8/15) selected to 
predict HCC recurrence were from wavelet and Lapla-
cian of Gaussian filtered imaging; for example, textural 
features derived from the grey-level, run-length matrix, 
which reflects the degree of homogeneity or heterogene-
ity within tumor regions. High grey levels might be more 
representative of heterogeneity, such as tumor necrosis 
and chaotic vascularization. Previous research has dem-
onstrated a correlation between tumor heterogeneity and 
grey-level features with tumor response and prognosis, 
findings that are consistent with the results of this study 
[24, 32, 33]. These results suggest that radiomics has the 
potential to identify intricate details and extract features 
from multiparametric MRI scans that are imperceptible 

or unquantifiable by human observation, thereby pro-
viding an accurate reflection of the underlying biology 
of HCC [22, 34]. The textural features may also serve as 
indicators of the tumor microenvironment, but further 
investigation with genomic or histological correlative 
data is necessary to validate this hypothesis [35]. In our 
study, these high-dimensional features were further inte-
grated to form the Rad-score, which contained effective 
biological information and exhibited greater sensitivity in 
predicting recurrence than clinical features.

Multiple studies have demonstrated the superior per-
formance of Rad-scores in predicting treatment response 
and prognosis of HCC [14, 22, 24, 36]. Xu et al. devel-
oped and validated an MRI-based radiomic model to 
predict objective response and survival in advanced HCC 
patients receiving combination therapy with lenvatinib 

Fig. 5  Time-dependent ROC curves of the three different models in the training and validation cohorts. (a) The time-dependent ROC curves based on 
Rad-score in both the training and cohorts. AUCs at 1-, 3-, and 5-year RFS were calculated from time-dependent ROC curves to evaluate the prognostic 
accuracy. (b) The time-dependent ROC curves based on NLR and tumor size. (c) The time-dependent ROC curves based on clinical-radiomics model
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plus an anti-PD-1 antibody [24]. The results have dem-
onstrated the incremental predictive value of radiomic 
features beyond clinicopathologic features. The clin-
icopathologic-radiomic model had a higher AUC in 
the training (0.987 vs. 0.748) and validation (0.884 vs. 
0.702) cohorts compared to the clinicopathologic model. 
A recent study has also shown that a multi-phase CT 
radiomics signature was significantly correlated with 
recurrence following PA-TACE, as evidenced by C-index 
values of 0.809, 0.812 and 0.892 in training, internal, and 
external validation cohorts, respectively [14]. Our study 
further investigated the role of radiomics in multi-phase 
MRIs, a widely used imaging modality for HCC.

We also confirmed the significance of the NLR and 
tumor size as crucial prognostic factors for HCC, con-
sistent with previous research findings [24, 37, 38, 39]. 
The opinion that systemic inflammation, a critical hall-
mark of cancer, plays a pivotal role in tumor develop-
ment and progression [37], may account for the higher 

NLR is related the poor prognosis of HCC. However, the 
exact mechanism underlying the unfavorable treatment 
response and survival outcomes observed in patients 
with an elevated NLR remains unclear, further study is 
needed. In addition, we also found that the tumor size is 
the other independent prognostic factor, which is related 
to tumor burden. Consistent with the six-and-twelve 
score model, patients with the heavy burden based on 
tumor diameter and number may serve as a user-friendly 
tool for stratifying recommended TACE candidates and 
predicting individual survival with a favorable perfor-
mance [40]. Notably, we combined these clinical factors 
and radiomics features to obtain better performance pre-
diction. The AUC of the combined model is much higher 
than that of the clinical model, indicating that incorpo-
rating clinical risk factors into the Rad-score model could 
add prognostic information that better predicts the risk 
of recurrence in HCC patients.

Fig. 6  The nomogram and calibration curves based on the clinical-radiomics model. (a) Clinical-Radiomics nomogram for predicting RFS of HCC patients 
treated with PA-TACE. (b) The calibration curves for the Clinical-Radiomics nomogram in both the training and validation cohorts
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Admittedly, this study has several limitations: (1) the 
sample size was small, and there is potential selection 
bias due to its retrospective nature; (2) All study partici-
pants were diagnosed with hepatitis B virus-related HCC 
in China; (3) The potential variability across different 
MRI parameters may still influence the reproducibility 
of results; (4) Although LASSO regression was employed 
for feature screening, there remains the possibility of 
overfitting due to the small sample sizes and high-dimen-
sional features.

In conclusion, we developed and validated a model 
combined with multiparametric MRI-based radiomics 
and clinical factors for predicting recurrence in HCC 
patients treated with PA-TACE. The model demonstrated 
strong predictive performance in the short term, with 
AUC values of 0.91 − 0.82 and 0.91 − 0.80 for 1-year and 
3-year recurrence, respectively, in all cohorts. However, 
its performance decreased for 5-year recurrence pre-
diction, with an AUC of 0.75–0.89, indicating room for 
improvement in long-term prediction. These results sug-
gest that the model is promising for short- to medium-
term recurrence prediction, but further optimization and 
validation are needed to enhance its long-term predictive 
accuracy.
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