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SIM2, associated with clinicopathologic 
features, promotes the malignant biological 
behaviors of endometrial carcinoma cells
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Abstract 

Background  Endometrial carcinoma (EC) poses a significant threat to women’s health. Identifying effective prognos-
tic biomarkers and therapeutic targets is essential for improving survival rates in EC patients. This study aimed to iden-
tify key regulators involved in EC progression and investigate the biological functions of SIM bHLH transcription factor 
2 (SIM2) in EC.

Methods  Gene expression profiles and clinical data from EC and control samples were retrieved from the TCGA 
and GEO databases. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) 
were used to identify genes associated with EC tumorigenesis and progression. The least absolute shrinkage 
and selection operator (LASSO) method was applied to further screen prognostic genes and construct a prognostic 
risk model. The expression and biological function of SIM2 were analyzed using the GEPIA, HPA, and LinkedOmics 
databases. SIM2 knockdown and overexpression models were established in EC cell lines, and their function was vali-
dated through qRT-PCR, CCK-8, flow cytometry, and western blot. Additionally, an in vivo lung/liver metastasis model 
was employed to further validate the cancer-promoting properties of SIM2 in EC.

Results  WGCNA identified 343 EC-related genes. Cox regression analysis and LASSO were further applied to iden-
tify 13 prognostic genes, leading to the development of a robust prognostic risk model that effectively predicted 
EC patients’ clinical outcomes. Significant differences in the tumor immune microenvironment were observed 
between the high- and low-risk groups. Among these 13 genes, SIM2 was significantly overexpressed in EC tissues, 
and its high expression was associated with poor prognosis in EC patients. SIM2 depletion inhibited EC cell viability, 
induced cell cycle arrest, and promoted apoptosis. Additionally, SIM2 knockdown increased the expression of cleaved 
caspase-3 and reduced the levels of Cyclin D1 and CDK4 proteins, while SIM2 overexpression showed the oppo-
site effects. In vivo, silencing SIM2 notably suppressed the metastatic potential of EC cells.

Conclusion  SIM2 serves as both a biomarker and a therapeutic target for EC diagnosis and prognosis prediction, 
which positively modulates the malignant phenotypes of EC cells.
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Introduction
Endometrial carcinoma (EC) is one of the most prevalent 
gynecological malignancies, with both its global inci-
dence and mortality rates on the rise [1], and its age of 
onset gradually decreasing [2]. According to GLOBO-
CAN 2020, there were 417,000 new cases of EC in 2020, 
and 97,000 women died from this disease [3]. Several 
risk factors contribute to the development of EC, includ-
ing obesity, diabetes, estrogen use, and polycystic ovary 
syndrome [4–6]. Elucidating the molecular mechanisms 
behind EC tumorigenesis and progression, as well as 
identifying effective diagnostic markers and therapeu-
tic targets, is crucial for improving the prognosis of EC 
patients.

SIM bHLH transcription factor 2 (SIM2) is a transcrip-
tion factor that is highly expressed in neurons and plays 
a key biological role in stress response and cell develop-
ment [7, 8]. Deficient SIM2 is considered to be associ-
ated with Down syndrome [7]. It is also reported that 
the polymorphism of SIM2 is associated with the inci-
dence of tumors in patients with Down syndrome, sug-
gesting the role of SIM2 in cancer biology [8]. In recent 
years, increasing studies have reported that SIM2 is 
related to tumorigenesis. However, its role in tumor pro-
gression varies across different cancer types. In esopha-
geal cancer, SIM2 may increase the sensitivity of tumor 
cells to chemoradiotherapy by upregulating CD24 and 
cytokeratin 4 [9]. In cervical cancer, high SIM2 expres-
sion is considered to be an indicator of good prognosis 
[10]. However, short splice variant of SIM2 is significantly 
overexpressed in glioblastoma and prostate cancer and 
promotes the aggressiveness of tumor cells [11, 12]. How-
ever, the expression characteristics, clinical significance 
and biological function of SIM2 in endometrial carci-
noma remain unclear.

With the rapid advancements in microarray and 
sequencing technologies, a growing number of cancer-
related biomarkers and therapeutic targets have been 
identified [13]. Weighted gene co-expression network 
analysis (WGCNA) is an important method for explor-
ing the relationships between genes and clinical pheno-
types [14]. Additionally, Cox regression analysis and the 
least absolute shrinkage and selection operator (LASSO) 
are widely used to identify characteristic genes associated 
with cancer prognosis [15–17]. In the present work, it 
was hypothesized that SIM2 was involved in EC progres-
sion, and had the potential as a prognostic biomarker and 
therapeutic target. This study was performed to investi-
gate the expression characteristics, clinical significance, 
and biological functions of SIM2 in EC, and preliminar-
ily explore the downstream molecular mechanisms. With 
the bioinformatics approaches mentioned above, SIM2 
was identified as a crucial regulator of EC progression, 

and the biological function of SIM2 in regulating the 
malignant biological behaviors of EC cells were also veri-
fied with in vitro and in vivo assays.

Materials and methods
The overall design of the study
In this study, differentially expressed genes (DEGs) in 
EC tissues were identified from EC-related datasets in 
the Gene Expression Omnibus (GEO) and the Cancer 
Genome Atlas (TCGA) Program-Uterine Corpus Endo-
metrial Carcinoma (UCEC) cohort. WGCNA was then 
employed to further identify genes associated with EC 
tumorigenesis and progression. A prognostic risk model 
was constructed based on the intersection of these genes 
using Cox regression analysis and LASSO. Subsequently, 
the expression pattern and biological function of SIM2, a 
key gene in the prognostic risk model, were analyzed. The 
study design is illustrated in Fig. 1.

Data download and processing
Gene expression datasets, including GSE17025, 
GSE63678, and GSE106191 (Table  1), were downloaded 
from the GEO database (https://​www.​ncbi.​nlm.​nih.​
gov/​geo/). The Sangerbox online platform was used to 
convert gene IDs into Gene Symbols, and the datasets 
GSE17025 and GSE63678 were merged [18]. The batch 
effect between the datasets was corrected using the 
COMBAT method.

Screening of DEGs
DEGs were screened using the “limma” package in R, 
with thresholds set at P < 0.05 and |log2FoldChange|> 1. 
The TCGA-UCEC RNA-seq data were obtained from 
the UCSC Xena database (https://​xenab​rowser.​net/​datap​
ages/). The “DESeq2” package in R was employed to iden-
tify DEGs in the TCGA-UCEC dataset, with criteria set 
at padj < 0.05 and |log2FoldChange|> 2.

WGCNA
First, the median absolute deviation (MAD) of each gene 
was calculated, and the top 50% of genes with the smallest 
MAD values were excluded. Next, outlier genes and sam-
ples were removed using the goodSamplesGenes method 
in the WGCNA package in R. The WGCNA package was 
then used to construct a scale-free co-expression net-
work. A soft threshold of 3 was set, after which an adja-
cency matrix was created, and the gene distribution was 
matched to a scale-free network based on the degree of 
connectivity. The adjacency matrix was subsequently 
transformed into a topological overlap matrix (TOM). 
Hierarchical clustering was performed to generate a 
dendrogram and assess the correlation between module 
characteristic genes and clinical labels.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
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Construction of prognostic risk model
TCGA-UCEC samples were randomly split into a train-
ing set and a test set in a 7:3 ratio. Univariate Cox regres-
sion was initially used to identify genes associated with 
prognosis, and these genes were further analyzed using 
LASSO and multivariate Cox regression to construct 
the prognostic risk model. A ten-fold cross-validation 
was conducted to determine the optimal penalty param-
eter (λ) for the model. Based on the average risk score, 
the samples were classified into high-risk and low-risk 
subgroups. The Kaplan–Meier method and log-rank test 
were used to compare the overall survival (OS) between 
the two groups. The accuracy of the risk model in 

predicting 1-, 3-, and 5-year survival rates was evaluated 
using receiver operating characteristic (ROC) curves and 
nomograms.

Immunoinfiltration analysis
After dividing the TCGA-UCEC cohort into high-risk 
and low-risk groups, the levels of immune cell infiltration 
in each group were calculated using the CIBERSORT 
algorithm [19], and the results were compared between 
the groups. Additionally, single-sample gene set enrich-
ment analysis (GSEA) (ssGSEA) was employed to assess 
the degree of immune cell infiltration in different samples 
using the R package “GSVA” [20]. The immune microen-
vironment of the two groups was further analyzed using 
the Estimation of Stromal and Immune cells in Malig-
nant Tumors using Expression data (ESTIMATE) algo-
rithm, available in the R package “ESTIMATE” [21]. The 
ESTIMATE, stromal, and immune scores were compared 
between the two groups. Furthermore, the expression 
levels of immune checkpoint markers, including CD28, 
CD274, CTLA4, LAG3, and TIGIT, were compared 
between the samples from the high-risk and low-risk 
groups.

Fig. 1  Workflow of the work

Table 1  Information about the GEO datasets

Datasets Control group EC group Affymetrix 
platform

Species

GSE17025 12 91 GPL570 Homo sapiens

GSE63678 5 7 GPL571 Homo sapiens

GSE106191 31 66 GPL570 Homo sapiens
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Gene expression, subcellular localization and biological 
function analysis of SIM2
Gene expression data for SIM2 in UCEC and normal tis-
sues were obtained from the Gene Expression Profiling 
Interactive Analysis (GEPIA) database (http://​gepia2.​can-
cer-​pku.​cn/#​index) using TCGA data [22]. Additionally, 
the expression characteristics of SIM2 in EC tissues were 
validated using the GSE106191 dataset. The subcellular 
localization and immunohistochemical analysis of SIM2 
in normal endometrial tissues and EC tissues were per-
formed using data from the Human Protein Atlas (HPA) 
database [23]. The LinkedOmics database (https://​www.​
linke​domics.​org/​admin.​php) was used to identify genes 
correlated with SIM2 in the TCGA-UCEC cohort. Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analyses were performed 
using the Sangerbox platform [18]. GO analysis includes 
three categories: biological process (BP), cellular compo-
nent (CC), and molecular function (MF). A p-value < 0.05 
was considered significant for enrichment.

Cell culture and transfection
The immortalized endometrial epithelium cell line 
hEM15A and EC cell lines hEM15A, HEC-1-A, AN3CA, 
KLE and Ishikawa were obtained from the American 
Type Culture Collection (ATCC, Rockville, MD, USA). 
The cells were cultured in Dulbecco’s Modified Eagle 
Medium (DMEM) (Gibco, Carlsbad, CA, USA) enriched 
with 10% fetal bovine serum (FBS, ThermoFisher Sci-
entific, MA, USA), 100 U/mL penicillin, and 0.1  mg/
mL streptomycin (ThermoFisher Scientific, MA, USA) 
in an incubator at 37  °C with 5% CO2. Lipofectamine® 
3000 (ThermoFisher Scientific, MA, USA) was used for 
transfection of shRNA (sh-NC, sh-SIM2-1, sh-SIM2-2) 
and plasmids (oe-NC and oe-SIM2) into HEC-1-A and 
KLE cells. The target sequences for sh-SIM2-1 and sh-
SIM2-2 are 5’-GCT​CAC​GGG​CAA​CAG​TAT​ATTA-3’ 
and 5’-TGC​ATC​GTG​AGT​GTC​AAT​TAT-3’, respectively.

Real‑time quantitative polymerase chain reaction (qPCR)
Total RNA from HEC-1-A and KLE cells was extracted 
using TRIzol reagent (Invitrogen, Shanghai, China). 
The RNA was reverse-transcribed into cDNA using the 
HiScript IV All-in-One Ultra RT SuperMix for qPCR 
kit (R433-01, Vazyme, Nanjing, China). The PCR mix-
ture was prepared using the ChamQ Blue Universal 
SYBR qPCR Master Mix kit (Q312-02, Vazyme, Nanjing, 
China) and primers. qPCR was performed on a StepO-
nePlus real-time PCR system (Applied Biosystems, San 
Francisco, CA, USA). The primer sequences used were as 
follows: SIM2, forward: 5’-AAG​TCC​AAG​AAT​GCG​GCC​
AA-3’, and reverse: 5’ -TTG​TCC​AGC​TGC​GAA​GTG​
TGAT-3’. β-actin, forward: 5’-CAT​GTA​CGT​TGC​TAT​

CCA​GGC-3’, and reverse: 5’-CTC​CTT​AAT​GTC​ACG​
CAC​GAT-3’.

Cell Counting Kit‐8 (CCK‐8) assay
Cell viability was assessed using a CCK-8 kit (Beyotime, 
Shanghai, China). After transfection, HEC-1-A and KLE 
cells were seeded in 96-well plates (2 × 103 cells /well) 
and cultured in an incubator. At 0, 24, 48, and 72 h post-
transfection, 10 μL of CCK-8 reagent was added to each 
well. After incubating for 1 h, the absorbance at 450 nm 
was measured using a spectrophotometer (Bio-Rad, CA, 
USA).

Flow cytometry
Apoptosis in HEC-1-A and KLE cells was detected using 
an Annexin V-FITC apoptosis detection kit (Beyotime, 
Shanghai, China). Briefly, the collected cells were washed 
with ice-cold phosphate-buffered saline (PBS) and resus-
pended in a binding buffer. Annexin V-FITC and propid-
ium iodide were added, and the mixture was incubated 
at room temperature for 10  min, protected from light. 
A flow cytometer (FACScan; BD Biosciences, USA) was 
used to analyze the cells. For cell cycle distribution analy-
sis, cells were washed twice with PBS and fixed with 75% 
ethanol. After fixation, cells were stained with propidium 
iodide (PI) for 10 min, followed by flow cytometry.

Western blotting
Total protein from EC cells in each group was extracted 
and separated by sodium dodecyl sulfate–polyacrylamide 
gel electrophoresis (SDS-PAGE), then transferred to a 
polyvinylidene fluoride (PVDF) membrane (Millipore, 
Bedford, MA, USA). The membrane was incubated with 
primary and secondary antibodies (Abcam, Shanghai, 
China). Protein bands on the PVDF membrane were vis-
ualized using a supersensitive ECL chemiluminescence 
kit (Beyotime, Shanghai, China). ImageJ software (NIH, 
Bethesda, MD, USA) was used to analyze the gray val-
ues of each band. The antibodies used in this study were: 
anti-SIM2 (ab131161, 1:1000, Abcam, Shanghai, China), 
anti-cleaved caspase-3 (ab2302, 1:1000, Abcam, Shang-
hai, China), anti-Cyclin D1 (ab16663, 1:1000, Abcam, 
Shanghai, China), anti-CDK4 (ab108357, 1:1000, Abcam, 
Shanghai, China), anti-GAPDH (ab181602, 1:5000, 
Abcam, Shanghai, China), and secondary antibodies 
(1:5000, Proteintech, Wuhan, China).

Animal model
Animal experiments were approved by the Ethics Com-
mittee of Wuhan Children’s Hospital. Female BALB/c 
nude mice (6  weeks old) were obtained from Shulaibao 
Co., Ltd. (Wuhan, China). HEC-1-A cells (2 × 106 per 
mouse), with or without SIM2 depletion, were injected 

http://gepia2.cancer-pku.cn/#index
http://gepia2.cancer-pku.cn/#index
https://www.linkedomics.org/admin.php
https://www.linkedomics.org/admin.php
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into the tail vein of each mouse (6 mice per group). Four 
weeks after injection, the mice were euthanized. The 
mice  were sacrificed by CO2 asphyxiation followed by 
cervical dislocation. The lungs and livers were harvested, 
washed, fixed, and embedded in paraffin. Tissue sections 
were then prepared, and hematoxylin–eosin staining was 
performed. Metastatic tumor nodules in the lungs and 
livers were observed and evaluated under a microscope.

Statistical analysis
Survival curves were generated using the Kaplan–Meier 
method and analyzed with the log-rank test. For nor-
mally distributed continuous variables, comparisons 
were made using the Student’s t-test. For non-normally 
distributed variables, the Wilcoxon test was used to 
compare the mRNA expression levels of a single gene 
between the high-risk and low-risk groups, or compare 
the data of animal assays. The experimental results were 
analyzed and plotted using GraphPad Prism software. A 
P value < 0.05 was deemed statistically significant.

Results
Screening of DEGs in EC and identification of EC‑related 
genes with WGCNA
After merging the GSE17025 and GSE63678 datasets 
and correcting for batch effects (Fig.  2A-C), a total 
of 986 DEGs were identified, with 458 genes signifi-
cantly upregulated and 528 genes significantly down-
regulated in EC (Fig.  2D). The heatmap presents the 
expression profiles of the top 20 genes that were most 
significantly upregulated and downregulated (Fig.  2E). 
Subsequently, WGCNA was used to identify gene mod-
ules associated with cancerous and non-cancerous tis-
sue groupings. A soft threshold of β = 3 (R2 = 0.91) was 
applied to construct a scale-free network (Supplemen-
tary Fig.  1A-C). Modules with a distance less than 0.8 
were merged, resulting in four co-expression modules. 
Among these, the lightgreen module, which contained 
960 genes, was significantly positively correlated with 
EC (r = 0.70, P = 5.3e-18), while the royablue module, 
containing 707 genes, was significantly negatively cor-
related with EC (r = -0.56, P = 9.2e-11) (Supplementary 
Fig.  1D-E). Additionally, genes in these two modules 
showed significant correlations with StromalScore and 
ESTIMATEScore (Supplementary Fig.  1D-E). In the 
TCGA-UCEC cohort, 4,762 DEGs were identified, with 
3,241 genes upregulated and 1,521 genes downregu-
lated in EC (Fig.  3A). There were 343 common genes 
found in the intersection of DEGs from the TCGA data-
set, DEGs from the GEO dataset, and genes from the 
lightgreen and royablue modules (Fig. 3B). GO analysis 
revealed that these 343 genes were enriched in BP, such 
as cell division and the cell cycle (Fig. 3C), CC, such as 

chromosomes, microtubule cytoskeleton, and extracel-
lular matrix (Fig. 3D), and MF, such as glycosaminogly-
can binding, extracellular matrix structural constituent, 
and signaling receptor binding (Fig. 3E). KEGG enrich-
ment analysis indicated that these genes were involved 
in the cell cycle, oocyte meiosis, p53 signaling pathway, 
and IL-17 signaling pathway (Fig. 3F).

Establishment of a prognostic risk model for EC patients 
via LASSO
In the TCGA-UCEC cohort, a univariate Cox regres-
sion analysis was performed on the 343 genes identified 
previously to screen for prognostic genes. A prognostic 
risk model was then constructed using LASSO and mul-
tivariate Cox analysis (Fig.  4A-B). The model included 
13 genes. The risk score for each patient was calculated 
using the following formula: risk score = (0.186 × TSPYL5 
expression value) + (0.467 × NAP1L2 expression value) + 
(0.327 × HAPLN1 expression value) + (-0.781 × RNASE4 
expression value) + (-0.329 × KLF2 expression value) +  
(0.422 × CKMT1B expression value) + (-0.260 × PAMR1 
expression) + (1.061 × PLCL1 expression) + (0.220 × SIM2  
expression) + (0.374 × ATP1B2 expression) + (0.420 × MEOX2  
expression) +(0.166 × GALNT14 expression) + (0.141 × NTS 
expression). This prognostic risk model was evaluated using 
the training set, validation set, and TCGA-UCEC dataset. 
The ROC curve analysis revealed that the area under the 
curve (AUC) values for the risk score were consistently 
high in all three groups of EC patients (> 0.7), indicating 
the risk score’s strong diagnostic ability to predict 1-year, 
3-year, and 5-year survival outcomes (Fig.  4C). Kaplan–
Meier survival analysis showed that the survival rate of 
patients in the high-risk group was notably lower across 
all three groups of EC patients (Fig.  4D). CIBERSORT 
analysis revealed a decrease in CD8 T cell infiltration in 
the high-risk group (Supplementary Fig.  2A). ssGSEA 
showed significant differences in the infiltration levels of 
most immune cell types between the high- and low-risk 
groups (Supplementary Fig.  2B). The ESTIMATE algo-
rithm indicated that the StromalScore, ImmuneScore, and 
ESTIMATEScore were significantly lower in the high-risk 
group compared to the low-risk group, suggesting that 
tumors with a high-risk score tend to be “cold tumors” 
with immunosuppression (Supplementary Fig.  2C). Fur-
thermore, the expression of immune checkpoint markers 
CD28, CTLA4, and TIGIT was significantly higher in the 
low-risk group (Supplementary Fig. 2D).

Expression characteristics of genes in the prognostic risk 
model
Univariate Cox analysis of the 13 genes identified in the 
prognostic risk model revealed that RNASE4, KLF2, and 
PAMR1 acted as protective factors (hazard ratio < 1), 
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while the remaining genes served as risk factors (hazard 
ratio > 1) (Fig.  5A). The distribution of risk scores and 
survival status in EC patients indicated that the survival 
rate in the high-risk group was notably lower than that 
in the low-risk group (Fig. 5B). Heatmaps and box plots 
further revealed that RNASE4, KLF2, and PAMR1 were 
significantly underexpressed in the high-risk group, while 
the expression of the other genes was notably higher in 
the low-risk group in the TCGA-UCEC cohort (Fig.  5B 
and C). These findings suggest that RNASE4, KLF2, and 
PAMR1 function as tumor suppressors in EC, while the 

other 10 genes likely act as oncogenes. Additionally, 
a nomogram was constructed that combined the risk 
score with clinicopathological parameters, including age, 
tumor grade, and tumor stage. In the nomogram, the risk 
score contributed the most to the overall score (Fig. 5D). 
The calibration curve demonstrated that the nomogram 
accurately predicted 1-, 3-, and 5-year survival, with high 
consistency between the predicted and actual survival 
outcomes (Fig.  5E). Furthermore, a nomogram model 
was developed based on the expression levels of the 13 
genes, and all of these genes significantly contributed 

Fig. 2  Merging of GEO datasets and DEGs analysis. A-C Data distribution (A), density distribution (B) and UMAP distribution (C) after merging 
the data of GSE17025 and GSE63678, and removal of batch effect. D The volcano map shows the DEGs in EC tissues and non-cancerous 
tissues, with green representing significantly down-regulated genes, red representing significantly up-regulated expression genes, and black 
representing genes with insignificant expression differences. E The heat map shows the expression profiles of the top 20 up-regulated and top 20 
down-regulated DEGs in EC and non-cancerous tissues. The red group represents normal tissue samples and the blue group represents EC samples. 
In the heat map, the deeper the red, the higher the expression level, and the deeper the blue, the lower the expression level



Page 7 of 14Nie and Chen ﻿BMC Cancer          (2025) 25:666 	

to survival prediction (Fig.  5F). The corresponding cali-
bration curves also showed strong agreement between 
the survival predictions and the actual observed values 
(Fig. 5G).

SIM2 identified as a potential oncogenic factor in EC 
from the 13 genes in the prognostic risk model
In the GEO dataset, CKMT1B, GALNT14, HAPLN1, 
NTS, and SIM2 were notably overexpressed in EC tissues 
compared to non-cancerous endometrial tissues (Supple-
mentary Fig. 3A). Similarly, in the TCGA-UCEC cohort, 
CKMT1B, GALNT14, HAPLN1, and SIM2 were signifi-
cantly overexpressed in EC tissues, while NTS was under-
expressed (Supplementary Fig. 3B). Next, patients in the 
TCGA-UCEC cohort were divided into high-expression 
and low-expression groups based on the median expres-
sion value of each gene. Notably, EC patients with high 
expression of NAP1L2 and SIM2 exhibited significantly 
worse prognosis, while those with high expression of 
PAMR1 had a better prognosis (Supplementary Fig. 3C). 
No significant association was found between the expres-
sion of the other 10 genes and patient prognosis (data 
not shown). Given that SIM2 was highly expressed in 

patients with high-risk scores, as well as in EC tissues 
compared to non-cancerous tissues, and its association 
with poor prognosis, it was hypothesized that SIM2 acts 
as a cancer-promoting factor in EC. Consistently, in the 
GSE106191 dataset, SIM2 was significantly more highly 
expressed in EC tissues compared to non-cancerous tis-
sues (Supplementary Fig. 4).

In‑silico analysis of expression and biological function 
of SIM2 in EC
In the HPA database, SIM2 was significantly overex-
pressed in EC tissues. Among the EC samples, 3 cases 
showed high expression, 6 cases showed medium 
expression, 1 case had low expression, and 2 cases 
had no detectable expression. However, SIM2 was 
not detected in endometrial stroma or glandular cells 
(Fig.  6A). Subcellular localization analysis revealed 
that SIM2 was predominantly localized in the nucleus 
(Fig.  6B). The BP and signaling pathways associated 
with SIM2 in EC were analyzed using the LinkedOm-
ics database. The results showed that SIM2-related 
genes were mainly involved in positively regulating 
BP, such as DNA conformation change, chromosome 

Fig. 3  Screening of EC-related genes and functional enrichment analysis. A The volcano map shows the DEGs between EC tissues and normal 
tissues in the TCGA-UCEC cohort. Green represents down-regulated genes and red represents up-regulated genes. B The common genes of DEGs 
in GEO dataset, genes in the crucial modules in WGCNA, and DEGs in TCGA-UCEC cohort were obtained by a Venn diagram. C-E The bubble 
diagram shows the results of GO enrichment analysis, including BP (C), CC (D) and MF (E). The size of bubble indicate indicates the gene count, 
the color of the bubble indicates the P value. F The string diagram shows the results of KEGG enrichment analysis. BP: biological process; CC: cellular 
component; MF: molecular function
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segregation, DNA strand elongation, and DNA rep-
lication. Conversely, SIM2-related genes were found 
to negatively regulate pathways such as adrenergic 
receptor signaling, muscle system processes, the cel-
lular response to vascular endothelial growth factor 
(VEGF) stimuli, etc. (Fig. 6C). KEGG enrichment anal-
ysis revealed that SIM2-related genes were primarily 
involved in pathways associated with tumorigenesis 
and cancer progression, including the cell cycle, fruc-
tose and mannose metabolism, p53 signaling pathway, 
cGMP-PKG signaling pathway, etc. (Fig.  6D). These 
findings suggest that SIM2 contributes to EC tumo-
rigenesis and progression by promoting DNA replica-
tion, cell cycle progression, and the growth of cancer 
cells.

SIM2 positively regulates the malignant biological 
behaviors of EC cells
Next, the expression level of SIM2 in different EC cell 
lines were detected by Western blot, and the result 
showed that compared with that in immortalized endo-
metrial epithelium cell line hEM15A, the expression 
level of SIM2 in EC cell lines was significantly increased 

(Fig.  7A). To investigate the role of SIM2 in EC, SIM2 
knockdown and overexpression models were established 
in HEC-1-A and KLE cells (Fig.  7B and C). Among the 
shRNAs tested, sh-SIM2-1 exhibited the most effective 
inhibition of SIM2 and was therefore used for subse-
quent experiments. The viability of HEC-1-A and KLE 
cells with SIM2 knockdown was notably reduced com-
pared to the sh-NC group. Conversely, EC cells with 
SIM2 overexpression showed a significant increase in 
cell viability compared to the oe-NC group (Fig. 7D). The 
apoptosis rate of EC cells in the sh-SIM2-1 group was sig-
nificantly higher than that in the control group (sh-NC), 
while the apoptosis rate in the oe-SIM2 group was sig-
nificantly lower than in the oe-NC group (Fig. 7E). Cell 
cycle analysis revealed that the proportion of EC cells 
in the G1 phase was notably higher in the sh-SIM2-1 
group compared to the sh-NC group, and the propor-
tion of cells in the S phase was significantly lower. In 
contrast, the proportion of EC cells in the G1 phase 
was significantly reduced in the oe-SIM2 group, while 
the proportions in the S and G2 phases were notably 
increased (Fig. 8A). Western blot analysis was conducted 
to examine the expression levels of apoptosis-related and 

Fig. 4  Establishment of the prognostic risk model for EC. A Ten-fold cross-validation of adjusted parameters using LASSO-Cox regression model. B 
Locus of EC-related genes. One line represents a gene, and the horizontal axis represents the logarithm of the gene λ, and the vertical axis shows 
the coefficient of the gene. C ROC curves were applied to evaluate the predictive value of risk model in training set, validation set, and TCGA-UCEC 
cohort. D Kaplan–Meier survival curves were used to analyze the overall survival of patients in the high and low risk groups in the training set, 
validation set and TCGA-UCEC cohort, and log-rank test was performed
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cell cycle-related proteins. The results showed that the 
protein expression level of cleaved caspase-3 was sig-
nificantly higher following SIM2 knockdown, while the 
levels of Cyclin D1 and CDK4 were significantly reduced. 

Conversely, the opposite results were observed in the oe-
SIM2 groups (Fig. 8B). To further validate the biological 
function of SIM2 in EC progression, a nude mouse model 
with lung/liver metastasis was established. In this model, 

Fig. 5  Expression characteristics of the genes in the prognostic risk model. A The forest map shows the results of univariate Cox analysis of the 13 
genes in the prognostic risk model. B Risk score distribution, survival status and 13 gene expression profiles of the patients with high or low 
risk scores in the TCGA-UCEC dataset. C The box plots show the expression of 13 genes in the high-low risk group in the TCGA-UCEC dataset. D 
and E The nomogram model including clinicopathologic features and risk score was constructed, and the calibration curves of 1 year, 3 years 
and 5 years were used to evaluate the prediction accuracy of nomogram. F and G The nomogram model including the expression of 13 genes 
was constructed, and the calibration curves of 1 year, 3 years and 5 years were used to evaluate the prediction accuracy of nomogram. Wilcoxon 
test was used to compare the data between two groups. *** P < 0.001
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silencing SIM2 notably reduced the ability of HEC-1-A 
cells to form metastatic nodules in the lungs and livers of 
the mice (Fig. 8C and D).

Discussion
The p53 pathway plays a critical role in repressing cell 
cycle progression and inducing apoptosis in EC cells by 
inhibiting cyclin-dependent kinases [24, 25]. IL-17, a pro-
inflammatory cytokine secreted by various cells within 
the tumor microenvironment, including T helper cells, 
CD8 T cells, and natural killer cells [26], has been impli-
cated in promoting EC progression [27]. In this study, 
343 genes were identified through differential expression 
analysis combined with WGCNA. Bioinformatics analy-
sis suggested that these genes were primarily involved in 
processes such as cell division, cell cycle regulation, the 
p53 signaling pathway, and the IL-17 signaling pathway. 
Our data further support the critical roles of the p53 and 
IL-17 pathways in EC tumorigenesis and progression. 
Subsequent univariate Cox regression analysis and the 
LASSO identified 13 key EC-related genes, which were 
used to construct a prognostic risk model. This model 
demonstrated strong predictive efficacy for forecasting 
the prognosis of EC patients. Based on this risk model, 

patients in the TCGA cohort were classified into high-
risk and low-risk groups. In recent years, immunotherapy 
has significantly improved the prognosis of EC patients, 
particularly for those with metastatic disease [28]. CD8 
T cells are known to play an essential anti-tumor role, 
and their recruitment to tumors can enhance the effec-
tiveness of immune checkpoint inhibitors [29]. In this 
study, the level of CD8 T cells was found to be notably 
higher in the low-risk group compared to the high-risk 
group, suggesting that patients in the low-risk group may 
have a better response to immunotherapy. Additionally, 
the expression levels of immune checkpoint proteins 
such as CD28 (PD-1), CTLA4, and TIGIT were evidently 
lower in the high-risk group, indicating T cell exhaustion 
within the tumor microenvironment of these patients. 
Collectively, this prognostic risk model may prove useful 
for immunotherapy stratification in EC patients. Future 
studies should enroll more patients from diverse medi-
cal centers to validate the efficacy of this risk model. In 
particular, further investigation into the relationship 
between risk scores and patient responses to immuno-
therapy, as well as the status of microsatellite instability, 
is warranted to better understand its potential in clinical 
applications.

Fig. 6  Expression characteristics and biological function analysis of SIM2 in EC. A Representative immunohistochemical images of SIM2 in EC 
tissues and normal tissues in HPA database. Scale bar = 200 μm. B Representative images of subcellular localization immunofluorescence of SIM2 
in cells in HPA database.Scale bar = 20 μm. C-D Functional enrichment analysis of SIM2-related genes, including GO analysis (biological process, C) 
and KEGG enrichment analysis (D), were performed using LinkedOmics database. Benjamini–Hochberg false discovery rate was applied to evaluate 
the enrichment
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In this study, SIM2, one of the 13 genes identified, was 
selected for further investigation. SIM2 encodes a tran-
scription factor that plays a crucial role in neurogenesis 
and angiogenesis. It undergoes ubiquitination by RING-
IBR-RING-type E3 ubiquitin ligases, including the par-
kin RBR E3 ubiquitin protein ligase [30]. Recent studies 
have also highlighted the involvement of SIM2 in the 
progression of cervical cancer, prostate cancer, and pan-
creatic cancer [10, 31, 32]. Our findings revealed that 
SIM2 was significantly overexpressed in EC tissues, and 
patients with high SIM2 expression had notably poorer 
clinical outcomes. Furthermore, SIM2 was found to posi-
tively regulate the malignant biological behaviors of EC 

cells, consistent with the results of a recent study [33]. 
Additionally, SIM2 was predominantly localized in the 
nucleus, and genes associated with SIM2 were linked to 
BP, such as DNA conformation changes, chromosome 
segregation, DNA strand elongation, and DNA repli-
cation. Cyclin D primarily binds to cyclin-dependent 
kinase 4/6 (CDK4/CDK6), facilitating the transition from 
the G1 to the S phase of the cell cycle [34]. In this study, 
SIM2 knockdown resulted in a significant reduction in 
the expression levels of Cyclin D1 and CDK4 proteins, 
which provides preliminary insight into the mechanism 
by which SIM2 modulates the phenotypes of cancer cells.

Fig. 7  SIM2 promotes the viability and represses the apoptosis of EC cells. A Western blot was used to detect SIM2 expression levels in different 
cell lines including hEM15A, HEC-1-A, AN3CA, KLE and Ishikawa. B qRT-PCR was used to detect SIM2 expression levels in HEC-1-A and KLE cell 
lines with SIM2 knockdown or overexpression. C Western blot was used to detect SIM2 expression levels in HEC-1-A and KLE cell lines with SIM2 
knockdown or overexpression. D The effect of SIM2 expression on EC cell viability was detected by CCK-8 assay. E The effect of SIM2 expression 
on EC cell apoptosis was detected by flow cytometry. Student’s t test was used to compare the data between two groups. *P < 0.05, **P < 0.01 
and ***P < 0.001
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It is important to note that the other 12 genes in the 
prognostic model may also play a role in regulating the 
phenotypes of EC cells. These genes are closely associated 
with cancer biology. For example, HAPLN1 (hyaluronan 
and proteoglycan link protein-1) is highly expressed in 
cancer-associated fibroblasts [35], where it can promote 
tumor cell plasticity. It has been shown to enhance the 
aggressiveness of tumor cells in pancreatic and gastric 
cancers [36, 37]. KLF2 (Kruppel-like factor 2), a member 
of the transcription factor family with conserved zinc fin-
ger domains, is involved in various biological processes 
[38–40]. Due to its low expression in several cancer types, 
KLF2 is considered a tumor suppressor [41, 42]. PLCL1 
(phospholipase C-like 1) encodes a protein that activates 
phospholipase C activity. In renal carcinoma, PLCL1 has 
been shown to inhibit cancer progression by regulating 
lipid metabolism [43]. A proteomic study has reported 
that PLCL1 is differentially expressed in EC and normal 

tissues [44]. MEOX2 (mesenchyme homeobox-2) also 
plays a cancer-promoting role in various cancers [45, 46]. 
Future studies should aim to further clarify the expres-
sion characteristics, biological functions, and underlying 
mechanisms of these genes in EC.

This study has some limitations. First, the specific 
molecular mechanism by which SIM2 is involved in EC 
progression has not been fully elucidated. As a tran-
scription factor, SIM2’s abnormally high expression may 
induce the transcription of downstream oncogenes, 
thereby promoting the malignant biological behaviors of 
tumor cells. Additionally, the regulatory effects of SIM2 
on other malignant phenotypes of tumor cells, such as 
angiogenesis and drug resistance, require further inves-
tigation. These hypotheses need to be validated through 
additional cell and animal models. Finally, the potential 
of SIM2 as a clinical prognostic biomarker must be con-
firmed in a larger cohort of clinical samples.

Fig. 8  SIM2 knockdown represses cell cycle progression of EC cells in vitro and metastasis of EC cells in vivo. A The effect of SIM2 expression on EC 
cell cycle progression was detected by flow cytometry. B The expression levels of cleaved caspase 3, Cyclin D1 and CDK4 in HEC-1-A and KLE cell 
lines with SIM2 knockdown or overexpression, were detected by western blot. C and D HEC-1-A cells were injected into nude mice via tail vein, 
and H&E staining was used to examine lung (C) and liver (D) metastases in mice, and the severity of metastasis in two groups was compared. 
For the in vitro assays, Student’s t test was used to compare the data between two groups. For the in vivo assays, Wilcoxon test was used 
to compare the data between two groups. *P < 0.05, **P < 0.01 and ***P < 0.001
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Conclusion
The prognostic risk model, developed using bulk RNA 
sequencing data, provides a useful tool for predicting the 
prognosis of EC patients and may offer valuable insights 
into the patients’ responsiveness to immunotherapy. 
Furthermore, SIM2 promotes the malignant biological 
behaviors of EC cells and has the potential to serve as a 
therapeutic target for EC.
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