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Abstract
Background  Only a limited number of biomarkers guide personalized management of pancreatic neuroendocrine 
tumors (PanNETs). Transcriptome profiling of microRNA (miRs) and mRNA has shown value in segregating PanNETs 
and identifying patients more likely to respond to treatment. Because miRs are key regulators of mRNA expression, 
we sought to integrate expression data from both RNA species into miR-mRNA interaction networks to advance our 
understanding of PanNET biology.

Methods  We used deep miR/mRNA sequencing on six low-grade/high-risk, well-differentiated PanNETs compared 
with seven non-diseased tissues to identify differentially expressed miRs/mRNAs. Then we crossed a list of 
differentially expressed mRNAs with a list of in silico predicted mRNA targets of the most and least abundant miRs to 
generate high probability miR-mRNA interaction networks.

Results  Gene ontology and pathway analyses revealed several miR-mRNA pairs implicated in cellular processes and 
pathways suggesting perturbed neuroendocrine function (miR-7 and Reg family genes), cell adhesion (miR-216 family 
and NLGN1, NCAM1, and CNTN1; miR-670 and the claudins, CLDN1 and CLDN2), and metabolic processes (miR-670 and 
BCAT1/MPST; miR-129 and CTH).

Conclusion  These novel miR-mRNA interaction networks identified dysregulated pathways not observed when 
assessing mRNA alone and provide a foundation for further investigation of their utility as diagnostic and predictive 
biomarkers.
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Introduction
Neoplasms arising from neuroendocrine cells within 
pancreatic islets are known as pancreatic neuroendo-
crine neoplasms (PanNENs), which can be divided into 
two broad histopathological categories that account for 
both the level of differentiation and proliferation: pan-
creatic neuroendocrine tumors (PanNETs) have a well-
differentiated morphology and are low to high grade 
(G1-G3), whereas pancreatic neuroendocrine carcino-
mas (PanNECs) have a poorly differentiated morphology 
and are high grade (G3). PanNETs comprise over 90% of 
PanNENs and even though PanNETs are rare, compris-
ing < 2% of all pancreatic cancers, their incidence has 
increased in recent decades, emphasizing the need to 
understand their molecular, clinical, and pathological 
characteristics [1, 2, 3].

Current methods such as counting mitotic cells and 
Ki67 labeling are essential to determine tumor grade, 
but these methods have limitations. The Ki67 index, 
used for classification, may not always show the aggres-
siveness of the PanNETs, raising concerns that patients 
with high Ki67 G1/G2 PanNETs might receive subopti-
mal treatment. Because immunohistochemistry (IHC) 
for hormones and other biomarkers remains optional in 
the evaluation of PanNETs, more reliable links between 
tumor biology and clinical symptoms are needed. There-
fore, there is a growing demand for biomarkers that better 
correlate tumor characteristics with patient symptoms to 
effectively guide treatment decisions. Biomarkers such as 
chromogranin A, synaptophysin, somatostatin receptors, 
DAXX/ATRX, p53/pRb, and MGMT help differentiate 
PanNET subtypes and improve diagnostic accuracy [4, 5, 
6, 7], although some biomarkers associated with specific 
mutations (e.g., loss of DAXX/ATRX/MEN1/TSC2/p53/
Rb) are more relevant for high-grade PanNETs [8, 9, 10, 
11]. Uncovering new markers by looking at miR-mRNA 
interaction networks holds promise to advance our 
understanding of PanNET biology, especially in cases of 
low grade, well differentiated PanNETs where conven-
tional markers like Ki67 are insufficient [6, 11, 12].

MicroRNAs (miRs) are small RNA molecules that 
negatively regulate gene expression by binding to the 3’ 
untranslated region (3’UTR) of target messenger RNAs 
(mRNAs) and either initiating cellular processes for 
transcript degradation or repressing protein translation 
[13]. Dysregulation of specific miRs can lead to aber-
rant expression of genes/proteins involved in key cel-
lular processes, such as cell proliferation, apoptosis, and 
differentiation [14, 15]. Despite limited data concerning 
miR expression in PanNETs, several studies have discov-
ered specific miRs and their regulatory networks that 
are crucial to the development and progression of these 
tumors, and they may be useful as diagnostic, prognos-
tic, and therapeutic biomarkers [16, 17, 18, 19, 20, 21, 

22]. PanNETs can be classified into distinct subtypes 
based on their unique miR and mRNA transcriptomes, 
and miR-based subtypes show concordance and enrich-
ment in select mRNA subtypes, which underlines the 
close regulatory relationships between miRs and mRNA 
[23]. This raises an intriguing possibility that combining 
information from both the small noncoding (miR) and 
protein coding (mRNA) transcriptomes may yield even 
deeper insights into molecular heterogeneity and path-
ways involved in PanNET pathogenesis.

In this study, we aimed to demonstrate the feasibility 
of utilizing both mRNA and miR sequencing to iden-
tify markers and pathways that are altered in PanNETs. 
By analyzing mRNA and miR profiles in six PanNETs 
and seven non-diseased pancreatic tissue samples using 
deep sequencing, we provide a proof-of-concept analysis 
that can serve as a foundation for future retrospective or 
prospective studies on larger cohorts. Such studies could 
potentially reveal new prognostic and predictive bio-
markers for PanNETs, contributing to improved classifi-
cation and personalized treatment strategies.

Materials and methods
Patient cohort
The PanNET tissue sections were provided by the 
Ontario Tumour Bank, which is supported by the 
Ontario Institute for Cancer Research through fund-
ing provided by the Government of Ontario. The clini-
cal characteristics of the patients’ tumor samples (n = 6) 
and non-diseased tissues (n = 7) are described in Supple-
mentary Table S1. Usage of the PanNET samples were 
approved for research purposes through the Queen’s 
University Health Sciences & Affiliated Teaching Hos-
pitals Research Ethics Board (PATH-145-14). Consid-
ering that the tissue could harbor molecular alterations 
responsible for the neoplastic degeneration in the ductal 
compartment, a pathologist delineated and dissected the 
non-diseased pancreatic tissue from pancreatic adeno-
carcinoma tissues, and the non-diseased tissue was used 
for further analyses. Non-diseased pancreatic tissues 
were obtained from the Surgical Pathology Archive in 
the Department of Pathology and Molecular Medicine at 
Queen’s University. Samples were approved for research 
through Research Ethics Board at Queen’s University 
(PATH-145-14). Hematoxylin-eosin-stained tissue sec-
tions from each case were reviewed by an experienced 
pathologist (AA) to assess tissue architecture and con-
firm neuroendocrine morphology. Grading was per-
formed separately on Ki-67-stained materials, following 
the European Neuroendocrine Tumor Society criteria 
adopted by the World Health Organization classification 
in 2010. Two to five 5 μm sections of the six FFPE Pan-
NETs were scraped from slides and deparaffinized using 
Paraffin Dissolver. Additionally, seven FFPE blocks of 
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non-diseased tumor tissues were sectioned (5 sections of 
5 μm) for RNA extraction.

Total RNA isolation
Although the formalin-fixation and paraffin-embedding 
process in FFPE tissues results in chemical modifications 
and degradation of RNA and thus could be perceived 
as a weakness, advances in commercial assays for RNA 
extraction and library preparation have been tailored for 
FFPE tissues and can help to reverse or mitigate some of 
the tissue alterations caused by the FFPE process. This 
ultimately allows users to generate sequencing libraries 
with low input, low quality FFPE tissues and high-quality 
microRNA and RNA expression data. Using FFPE tis-
sues has additional advantages because they are routinely 
collected, can be stored for long durations at room tem-
perature at low cost, and facilitate retrospective stud-
ies with more complete longitudinal clinical data. Total 
RNA including small RNAs was isolated from all Pan-
NETs and non-diseased tissue samples in a single batch 
using the NucleoSpin totalRNA FFPE XS kit (Macherey 
Nagel) according to the manufacturer’s protocol with 
the following modifications as recommended in the user 
instructions: (I) extension of the proteinase K digestion 
step to 90 min at 56 °C, and (II) inclusion of the optional 
on-column DNase digestion step to eliminate residual 
DNA. RNA quantity was determined using the Qubit 
RNA HS Assay Kit (Qubit 4 Fluorometer) and RNA 
quality was assessed using the Agilent High Sensitivity 
RNA ScreenTape (Agilent 4150 TapeStation). Samples 
with DV200 > 25% were considered suitable for library 
preparation.

RNA library preparation and sequencing
Total RNA libraries were prepared using TAKARA 
SMARTer Stranded total RNA-Seq kit v3– Pico Input 
Mammalian library prep according to the manufacturer’s 
guidelines, with specific modifications recommended for 
highly degraded FFPE specimens, including (I) total RNA 
input 10 ng, (II) DNase pretreatment step, (III) omission 
of the fragmentation step, (IV) performing 10 PCR cycles 
for the first PCR amplification step, and (V) conducting 
10 PCR cycles for the second PCR amplification step for 
10 ng input. Following library preparation, the quantity 
and range of fragment sizes were evaluated using the 
Qubit dsDNA HS kit with a Qubit 4 Fluorometer, as well 
as the Agilent High Sensitivity DNA ScreenTape kit with 
an Agilent 4150 TapeStation.

The individual sequencing libraries were indexed using 
TruSeq Unique dual (UD) index adapters. Pooled librar-
ies were spiked with 10% PhiX, as recommended by both 
Illumina and Takara and sequenced by an Illumina Nova-
Seq 6000 platform on an SP patterned flow cell. Paired-
end sequencing with a read length of 2 × 100  bp was 

performed, aiming for approximately 100  million reads 
per sample.

Small RNA library preparation and sequencing
Small RNA cDNA libraries were generated using QIA-
seq miR library kit (Illumina, San Diego, CA, USA) with 
QIAseq miR NGS 48 Indexes, implementing 16 amplifi-
cation cycles for 100 ng input, and 19 PCR cycles for 10 
ng input. All steps from the procedure were performed 
according to manufacturer’s guidelines. Small RNA 
cDNA libraries were pooled based on concentrations of 
each sample determined by a Qubit 4 Fluorometer using 
the Qubit dsDNA HS kit and based on library fragment 
range determined by Agilent 4150 TapeStation using Agi-
lent High Sensitivity DNA ScreenTape kit. Sequencing 
was performed on Illumina NextSeq 500 using single-end 
high output mode with 75 cycles, 6nt index read mode 
with a sequencing depth of 10 million reads per sample.

Differential expression analysis
Firstly, reads mapping to rRNA together with tran-
scripts with less than five normalized counts in less than 
six samples (size of smaller group) were excluded. Final 
datasets consisted of 437 miR and 21,859 RNA tran-
script counts across the sample collection. Subsequently, 
DESeq2 (R package) [24] was used to apply variance sta-
bilizing transformation (VST) on filtered counts as well 
as for differential expression (DE) analysis. Additionally, 
to enhance accuracy of our analysis and remove false 
positive hits, DE analysis was performed a second time 
using the Wilcoxon rank-sum test [25]. In both cases, 
the significance level of DE was defined as|log2(fold 
change)| ≥ 2 and FDR-adjusted P-value < 0.05. Differen-
tially expressed genes (DEGs) and differentially expressed 
miRs (DEMs) fulfilled the following two requirements: 
(I) they were significantly differentially expressed in both 
analyses (i.e., the intersection of DESeq2 and Wilcoxon 
rank-sum test) and (II) the magnitude of their differen-
tial expression was the same sign in both analyses, posi-
tive or negative difference compared to the non-diseased 
group. Then, the final DE intersection analyses were visu-
alized as volcano plots of the DESeq2 data. For visualiza-
tion of differences in expression patterns between tumor 
and non-diseased samples, principal component analysis 
(PCA) was used. The top 10% of more and less abundant 
RNA transcripts and all more and less abundant miR 
transcripts were also hierarchically clustered and visu-
alized as heatmaps. For hierarchical clustering, Euclid-
ean distance and Ward's linkage criteria were used. To 
quantify distinction between tumor and non-diseased, 
clusters silhouette score was used. For PCA analysis, 
hierarchical clustering, and silhouette score calculation 
we used the scikit-learn (​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​s​c​i​k​​i​t​​-​l​e​​a​r​n​​
/​s​c​i​​k​i​​t​-​l​e​a​r​n) python library. For scatter plot and ​h​e​a​t​m​

https://github.com/scikit-learn/scikit-learn
https://github.com/scikit-learn/scikit-learn
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a​p visualization, seaborn (​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​m​w​a​s​​k​o​​m​
/​s​e​a​b​o​r​n) and matplotlib (​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​m​a​t​p​​l​o​​t​l​i​
b​/​m​a​t​p​l​o​t​l​i​b) python libraries were used. Gene ontology 
(GO) annotation and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis were performed 
for more/less abundant genes by The Database for Anno-
tation, Visualization and Integrated Discovery (DAVID) 
annotation tool separately [26, 27, 28].

Focused analysis of expression levels of key 
clinicopathological markers
In clinical practice, several biomarkers are routinely stud-
ied for accurate PanNET diagnosis and management. 
RNA-seq data was scrutinized for the expression of key 
general biomarkers (CHGA, PPY, ENO2, GNRH1), spe-
cific biomarkers important for functioning tumors (INS, 
IGF1, GCG, VIP, SST, PTHLH), theranostic biomarkers 
(SSTR1, SSTR2, SSTR3), immunohistochemical tissue 
biomarkers (MKI67, CHGA, SYP, PGR, CCND1, NESP55, 
CDX2, PAX8, PDX1) as well as known molecular drivers 
(DAXX, ATRX, TP53, RB1, MEN1, TSC1, TSC2, MGMT). 
For these biomarkers, normalized gene expression values 
were filtered and compared between tumor and non-dis-
eased tissues. Mann-Whitney U test was used to assess 
significance.

miR–mRNA interaction network and GO/KEGG analysis
For prediction of miR-mRNA pairs, the top three most 
abundant and top three least abundant miRs were 
selected to demonstrate the proof-of-concept of gener-
ating biologically relevant miR/mRNA interaction net-
works. The miR’s putative mRNA targets were predicted 
by the miRDB [29] in silico prediction tool with default 
settings. These predicted targets were then intersected 
with our set of DEGs, specifically comparing the tar-
gets of the most abundant miRs with the least abundant 
mRNA DEGs and vice versa. The purpose of selecting 
only the top three most and least abundant miRs was to 
provide a manageable yet representative sample for ana-
lyzing miR-mRNA interactions, while ensuring that the 
results would be meaningful and interpretable. Running 
a larger number of miRs through miRDB would yield a 
large set of targets, making it difficult to identify consis-
tent and biologically relevant miR-mRNA pairs. These 
predicted targets, which were differentially expressed in 
PanNETs, were used for function enrichment analysis. 
Here, the online tool for GO [26, 27] and KEGG analy-
sis was the module combined with clusterProfiler [30], 
Pathview [31], and the Scientific and Research plot tool 
(SRplot) [32]. These results were clarified by the DAVID 
annotation tool [28]. Results with P-value < 0.05 were 
considered significantly enriched. For correlation analysis 
of predicted targets, Pearson correlation and subsequent 
hierarchical clustering with Ward's linkage was used. For 

visualization of predicted miR-mRNA pairs as well as for 
degree calculation, the NetworkX (​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​n​e​
t​w​​o​r​​k​x​/​n​e​t​w​o​r​k​x) python library was used.

Results
Differential expression analysis of mRNA
First, we used PCA to investigate whether transcriptomic 
profiles differed between the two sample groups. The plot 
of PC1 (46.11% variance cover) and PC2 (13.53% variance 
cover) showed clear differences between tumor and non-
diseased samples, with no overlapping samples between 
groups in PC1 (Fig. 1a). Moreover, the clustering was not 
affected by the sex or age of patients (Supplementary Fig. 
S1).

To investigate differential expression patterns of 
mRNAs in tumor versus non-diseased groups, we took 
the intersection of the two DE analyses (DESeq2 and 
Wilcoxon rank sum test) and revealed 1,417 (7.72% of 
all analyzed) DEGs (Supplementary Table S2), which are 
divided into 715 more abundant and 702 less abundant 
(Fig. 1b). Hierarchical clustering of the top 10% (72) more 
abundant and top 10% (70) less abundant genes showed 
clear separation of two clusters corresponding to tumor 
(light orange) and non-diseased (light blue) groups 
(Fig. 1c). Unsupervised cluster analysis showed different 
clusters of tumor and non-diseased samples with a sil-
houette score of 0.75, indicating relatively well-separated 
clusters.

To shed light on the functional characteristics of the 
DEGs, the more abundant and less abundant DEGs were 
analyzed using GO and KEGG enrichment analyses 
separately. (Supplementary Table S3 and Supplementary 
Table S4). A list of the top 10 GO terms from the three 
categories biological process (BP), cellular component 
(CC), and molecular function (MF) is presented in Sup-
plementary Fig. S2. For the PanNET less abundant DEGs, 
the GO analysis showed that DEGs were significantly 
enriched in digestion at the BP level, in extracellular 
exosome at the CC level and in serine– type endopepti-
dase activity at the MF level. Furthermore, the enriched 
KEGG pathways of the less abundant DEGs included 
pathways in pancreatic secretion, protein digestion and 
absorption, maturity onset diabetes of the young, metab-
olism of xenobiotics by cytochrome P450 and meta-
bolic pathways. For the PanNET more abundant DEGs, 
the GO analysis showed that DEGs were significantly 
enriched in regulation of ion transmembrane transport at 
the BP level, in dendrite at the CC level and in calcium 
ion binding at the MF level. Furthermore, the enriched 
KEGG pathways of the more abundant DEGs included 
pathways in dopaminergic synapse, GABAergic synapse, 
circadian entrainment, glutamatergic synapse, and insu-
lin secretion.

https://github.com/mwaskom/seaborn
https://github.com/mwaskom/seaborn
https://github.com/matplotlib/matplotlib
https://github.com/matplotlib/matplotlib
https://github.com/networkx/networkx
https://github.com/networkx/networkx
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Biomarker expression and association with key 
clinicopathological markers
We used RNA-seq to assess the expression of clinically 
relevant biomarkers for PanNET management in tumor 
compared to non-diseased tissues (Fig. 2) and then asso-
ciated these findings with known clinicopathological 
data.

Key biomarkers, including chromogranin A (CHGA, 
P < 0.001) and synaptophysin (SYP, P < 0.001), were differ-
entially expressed in tumors compared to non-diseased 
control tissues. This suggests that RNA could serve as 
a surrogate analyte for these markers commonly used 
for PanNET diagnosis via IHC. Similarly, mRNA for 
the somatostatin receptors, SSTR1 (P < 0.01) and SSTR2 
(P < 0.001), which are associated with somatostatin ana-
logue therapy, were differentially expressed across all 
tumor samples. In addition, sample P4, identified as a 
tumor secreting vasoactive intestinal peptide (VIP) based 
on biobank data, showed a substantial increase in VIP 
mRNA expression. Interestingly, non-diseased samples 
exhibited higher levels of insulin (INS, P < 0.001) expres-
sion compared to tumors. Increased abundance of glu-
cagon (GCG) was observed in tumor samples P3 and P6. 
Moreover, most of the samples in our cohort display a low 
IHC Ki-67 index (P1: 10%, P2: <1%, P5: <1%, P6: <2%), 

which is consistent with our MKI67 mRNA expression 
data. These findings demonstrate that mRNA expression 
data can offer a streamlined way to profile many clinically 
relevant biomarkers using a single approach, yielding 
valuable insights into the molecular profile of PanNETs 
that complements traditional diagnostic and prognostic 
biomarkers.

Differential expression analysis of miRs
Similar to mRNA, PCA analysis of miRNome profiles 
(Fig. 3a) showed clear differences in expression patterns 
between tumor and non-diseased groups in the first two 
dimensions, PC1 (49.43% variance covered) and PC2 
(13.99% variance covered), which were independent of 
the patients’ sex or age (Supplementary Fig. S3).

To investigate differential expression patterns of miRs 
in tumor versus non-diseased groups, we again used the 
intersection of two DE analyses and found 60 (16.6%) 
miRs with 41 and 19 miRs more abundant and less abun-
dant, respectively (Fig. 3b). Hierarchical clustering of all 
DEMs yielded two different clusters for tumor and non-
diseased samples, although the separation (0.57 silhou-
ette score) was less defined than the clusters based on 
mRNA profiles.

Fig. 1  Analysis of mRNA expression levels. (a) PCA analysis of tumor (n = 6) and non-diseased (n = 7) tissue samples. (b) Volcano plot of intersection DE 
analysis. The significance level was set to|Log2(fold change)| ≥ 2 and - Log10(adjusted P-value) < 0.05. (c) Hierarchically clustered heatmap of top 10% 
more abundant and less abundant genes based on their corresponding VST values.
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The miR-216 cluster (miR-216a, miR-216b, and miR-
217), located in the same genomic region of chromosome 
2 (2q16.1), were the least abundant miR in tumor ver-
sus non-diseased groups; Conversely, miR-670-3p, miR-
129-5p, and miR-7-5p were the most abundant miRs in 

tumor versus non-diseased groups (Supplementary Table 
S5).

Construction of the miR-mRNA interaction network
Given that PanNETs can be stratified into molecular 
subtypes by their separate mRNA and miR profiles [23], 

Fig. 2  Clinically relevant mRNA biomarker expression. The balloon plot shows the expression of key biomarkers in individual PanNETs compared to non-
diseased tissue. Both the heatmap and size of dots denote normalized gene expression (VST). Red rectangular boxes highlight key markers assessed in 
routine clinical practice.
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we aimed to extend these findings by identifying miR-
mRNA interaction networks using the top three most 
abundant miRs: 670-3p, 129-5p, and 7-5p as well as the 
top three least abundant miRs: 216a-5p, 216b-5p, and 
217-5p. Then, we used the miRDB [29] target prediction 
tool with default settings to generate a list of putative 
mRNA targets (Supplementary Table S6) and overlapped 
the list of putative mRNA targets with our list of DEGs 
(Fig. 4a). As a result, we found 54 unique targets for more 
abundant miRs and 35 unique targets for less abundant 
miRs. More abundant miR-670-3p had the most targets 
(N = 25), while the less abundant miR-216a-5p had the 
least targets (N = 7) in PanNETs versus non-diseased 
tissues (Fig.  4b). The network of less abundant miRs 
(Fig. 4c) consists of three distinct sub-networks with no 
shared targets among them, while our more abundant 
miRs (Fig.  4d) shared six mRNA targets together, spe-
cifically PKHD1 and TSPAN6 between miR-670-3p and 
miR-129-5p. Also, miR-129-5p share TMEM97 and PKP2 
with miR-7-5p, and miR-7-5p share targets IGSF3 and 
TGFA with miR-670-3p.

For a more in-depth analysis of the relationships 
between expression patterns of miR-mRNA pairs, we 
calculated Pearson correlation coefficients between the 
selected DEMs, and all their predicted mRNA targets 

(N = 89), which participate in 95 interactions (Fig.  4e). 
Correlation between more abundant miRs and their less 
abundant mRNAs are generally strongly negative with 
the range of R (-0.95, -0.47), with the highest anticorre-
lation for miR-670-3p/RDH10 and miR-129-5p/PKHD1 
pairs and the smallest anticorrelation between the pairs 
miR-670-3p/C1ORF115 and miR-670-3p/CLDN2 (Sup-
plementary Table S6). Counterintuitively, all more and 
less abundant miRs have some putative mRNA targets 
that are expressed in the same direction (i.e., both the 
increased abundance of the miR and its putative target), 
suggesting that regulation at the transcript level may 
occur through an indirect mechanism or direct regula-
tion may not result in degradation of the mRNA tran-
script, but rather translational repression.

GO term & KEGG pathway enrichment analysis of target 
genes
To elucidate the potential function of candidate target 
genes (89) observed in our miR-mRNA interaction net-
works, we performed GO and KEGG pathway enrich-
ment analyses (Supplementary Table S7). In biological 
processes, the enriched GO terms were associated with 
regulation of synaptic vesicle cycle, positive regulation of 
exocytosis and positive regulation of regulated secretory 

Fig. 3  Analysis of miR expression levels. (a) PCA analysis of tumor (n = 6) and non-diseased (n = 7) tissue samples. (b) Volcano plot of intersection DE 
analysis. The significance level was set to|Log2(fold change)| ≥ 2 and - Log10(adjusted P-value < 0.05. (c) Hierarchically clustered heatmap of all (60) DEMs 
based on their corresponding VST normalized values.
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pathway (Fig.  5a). These targeted genes were catego-
rized into the Cell adhesion molecules pathway (NLGN1, 
NCAM1, CNTN1, CLDN1 and CLDN2), Cysteine and 
methionine metabolism (MPST, CTH and BCAT1), 
Mucin and other type O-glycan biosynthesis (GALNT17 
and GALNT3), Ferroptosis (SLC39A14 and ACSL6), Gly-
colysis/Gluconeogenesis (ACSS1/GPI) and Sulfur metab-
olism (MPST) by the KEGG pathway analysis (Fig. 5b).

Discussion
Current diagnostic biomarkers for PanNETs are limited 
to individual immunohistochemical markers and a hand-
ful of mutated genes, making it challenging to capture the 
complex and heterogeneous nature of PanNETs. In this 

study, we sequenced both mRNA and miR, integrated 
these results with in silico miR target predictions, and 
identified novel dysregulated mRNA-miR interaction 
networks in PanNETs compared to non-diseased pan-
creatic samples. Our comprehensive analysis of PanNET 
coding and small non-coding transcriptomes provides 
valuable biological insights into regulatory mechanisms 
of PanNETs, thus demonstrating the feasibility of com-
bining mRNA/miR profiling. This provides a foundation 
for future studies on larger cohorts that could explore 
PanNET pathogenesis with the aim of revealing novel 
biomarkers and potential therapeutic targets.

While emerging evidence underlines the importance 
of both mRNA and miR transcriptomes in PanNETs, we 

Fig. 4  Putative miR-mRNA interaction networks. (a) Venn diagram of the less abundant and more abundant DEGs and predicted targets. (b) Histograms 
of degree counts for top three least abundant DEMs (left) and top three most abundant DEMs (right). (c) Network of top three least abundant DEMs with 
predicted more abundant mRNA. (d) Network of top three most abundant DEMs with predicted less abundant mRNA targets. (e) Hierarchically clustered 
correlation dot–plot between selected miR and all their corresponding predicted mRNA pairs.
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found only one study describing pairwise next-generation 
sequencing analysis of mRNA/miRs and their interac-
tion networks in PanNETs [33]. Our approach extends 
these findings by (1) using a well described, homoge-
neous clinical cohort of low-mid grade (G1-2), high risk 
(large tumor, node positive), well differentiated PanNETs; 
(2) conducting stringent differential expression analysis 
using two combined approaches to mitigate false posi-
tive DEGs; and (3) performing transcriptome profiling of 
mRNA/miRs on identical RNA samples from the same 
patients, enabling robust investigation of miR-target 
interactions.

To construct a miR-mRNA regulatory network, we 
focused on the top three least abundant (miR-216a-5p, 
miR-216b-5p, and miR-217-5p) and the three most abun-
dant (miR-670-3p, miR-129-5p, and miR-7-5p) miRs 
and generated high probability mRNA targets by cross-
ing lists of miR in silico putative mRNA targets with 
PanNET-specific DEGs. Although several studies have 

reported downregulation of the miR-216 family [33] and 
upregulation of miR-7-5p and miR-129-5p in neuroendo-
crine tumors (NETs) [34, 35, 36, 37], including PanNETs, 
we extend these findings by highlighting the interconnec-
tions with mRNA targets, biological processes, and path-
ways. Our functional analyses of miR-mRNA networks 
yielded enriched GO terms that were consistent with 
aberrations in neuroendocrine cells and overactive secre-
tion of bioactive hormones.

The KEGG pathway analysis revealed enrichment 
in the cell adhesion molecule (CAM) pathway, which 
included promising miR-mRNA pairs such as miR-
217-5p/NLGN1, miR-217-5p/NCAM1, and miR-216b-
5p/CNTN1. In NETs, CAMs are involved in tumor 
progression, metastasis, and interactions with the tumor 
microenvironment [38, 39, 40]. The NCAM1 (Neural 
Cell Adhesion Molecule 1) and CNTN1 (Contactin 1) 
genes are members of the immunoglobulin superfam-
ily (IgSF) of cell adhesion molecules involved in cell-cell 

Fig. 5  Function analysis of miR-mRNA interaction network. (a) GO enrichment analysis and (b) KEGG pathway analysis of the 89 predicted gene targets 
(dot plot on the left, network plot on the right). The size and color of the dots represent the amount of DEGs enriched in the pathway and enrichment 
significance.
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interactions, neuronal development, and synaptic plas-
ticity [41]. NCAM1, also known as CD56, has been used 
as an IHC diagnostic and prognostic biomarker with 
high sensitivity and specificity to differentiate PanNETs 
from other pancreatic cancers [42, 43, 44, 45]. Because 
NCAM1 plays an important role in cell adhesion, detach-
ment, and cell aggregation, tumors that cannot express 
NCAM1 tend to grow rapidly, and adjacent invasion is 
more common [44]. Negative regulators of NCAM1, such 
as miR-217-5p, may serve as important therapeutic tar-
gets to ensure high NCAM1 expression and prevent the 
invasive potential of PanNETs.

We observed a novel miR-mRNA interaction between 
miR-670-3 and two claudins (CLDNs), CLDN1 and 
CLDN2, that were part of an enriched cell adhesion mol-
ecule KEGG pathway. Dysregulated expression of CLDNs 
is common in many cancers and plays a role in tumor ini-
tiation, progression, metastasis, and treatment response. 
While PanNETs show high expression of CLDNs − 3 and 
− 7 and low expression of CLDNs − 1 and − 4, pancreatic 
ductal adenocarcinomas express CLDNs − 1, -4, and − 7 
[46], indicating that unique claudin signatures may serve 
as therapeutic targets and biomarkers to distinguish pan-
creatic cancers of different cellular origins (i.e., endocrine 
vs. exocrine). Our results showed that PanNETs have 
less abundant CLDN1 and CLDN2, two putative target 
genes of the more abundant miR-670-3p. In addition, 
we observed a decrease in the abundance of CLDN10, 
CLDN18, and CLDN23 in our DEGs (Supplementary 
Table S2). Since the increased abundance of miR-670-3p 
in PanNETs is novel and yet to be reported in the litera-
ture, this warrants additional investigation to confirm 
that claudins are a direct target of mir-670-3p as well as 
to elucidate the precise roles of individual claudin iso-
forms in PanNET pathogenesis.

Our mRNA-miR interaction networks discovered 
novel pairs (miR-670-3/BCAT1, miR-670-3/MPST, miR-
129-5p/CTH) that play a key role in the cysteine and 
methionine metabolism pathway, suggesting alterations 
in metabolic processes in PanNETs. A recent multiomic 
(transcriptomic and metabolomic) analysis of duode-
nopancreatic NETs showed that BCAT1 expression was 
associated with intermediate outcomes and CTH (cys-
tathionine gamma-lyase) gene enrichment in glutathi-
one synthesis in PanNETs [47]. The CTH gene has been 
studied in various tumors, including lung adenocarci-
noma [48], prostate cancer [49], hepatocellular carci-
noma [50], and glioblastoma [51]; however, its specific 
expression in PanNETs remains unknown. While the role 
of MPST (also known as 3-MST) in PanNETs is unclear, 
there is growing evidence that hydrogen sulfide produc-
ing enzymes like MPST are more abundant in numer-
ous cancers and may serve as druggable targets [52, 53]. 
Overall, genes involved in the cysteine and methionine 

metabolic pathway play critical roles in cancer patho-
genesis by influencing regulation of redox balance, anti-
oxidant defense, and cellular proliferation in cancer cells 
[54]. Our results support this emerging evidence of dis-
tinctive metabolic gene programs in PanNETs and sug-
gest that perturbed expression of miR-mRNA networks 
may be implicated in altered regulation of genes and 
pathways involved in energy homeostasis.

Consistent with our results, multiple studies report 
more abundant miR-7-5p in NETs [34, 35, 36, 37]. In 
comparison with non-NET controls, miR-7 levels are 
48-fold higher in all NET cases [35], suggesting that 
miR-7 has a high degree of neuroendocrine specificity. 
Another study in gastroenteropancreatic neuroendo-
crine tumors indicates that upregulation of miR-7-5p can 
inhibit cell proliferation and induce apoptosis [55]. One 
potential mechanism through which miR-7 may influ-
ence pancreatic neuroendocrine progression, is by regu-
lating expression of regenerating islet-derived (Reg) gene 
family members expressed in pancreatic endocrine cells. 
For example, miR-7 directly targets mouse Reg1 expres-
sion in pancreatic acinar and islet β-cells [36]. Interest-
ingly, our data shows a significant reduction of Reg family 
members (REG1A/B, REG3A/G, and REG4), which 
could be driven by the increased abundance of miR-
7-5p. REG3G was also found in the interaction hub of 
DEGs that were predicted targets of miR-7-5b. Addition-
ally, REG1A and CPA1 show utility in diagnosing mixed 
pancreatic acinar cell carcinoma/acinar-neuroendocrine 
carcinoma [56]; notably, we show that CPA1 has the 
highest reduction in PanNETs, which is consistent with 
the absence of CPA1 immunohistostaining in PanNETs 
[57]. We also observed miR-7-5p as a key player in an 
mRNA-miR interaction network that included coregula-
tion of TMEM97 and PKP2 with miR-129-5p and IGSF3 
and TGFA with miR-670-3p. Future studies should aim 
to elucidate the mechanisms behind the increased abun-
dance of miR-7-5p expression and how this may regulate 
cell-type specific pancreatic gene networks (e.g., Reg fam-
ily) and how this could be exploited for therapeutic and 
diagnostic purposes.

This study also examined mRNA expression of bio-
markers in PanNETs and compared it with clinical data 
to better understand the disease’s molecular charac-
teristics and prognosis. Elevated levels of CHGA and 
SYP in PanNETs indicate increased neuroendocrine 
cell production, which could help identify tumors and 
predict their aggressiveness. Increased SSTR2 expres-
sion suggests potential sensitivity to somatostatin, with 
therapeutic implications for somatostatin analogues in 
PanNET management. Additionally, mRNA analysis 
confirmed the VIP-secreting tumor diagnosis for patient 
P4 and suggested that patients P3 and P6 may have a 
rare form of PanNET, glucagonoma. This suggests that 
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whole transcriptome sequencing could be used to profile 
clinically relevant PanNET biomarkers. As sequencing 
becomes more cost-effective and efficient, this approach 
could become a viable option for diagnostic applications 
in clinical settings.

The current study is inherently affected by several limi-
tations. First, the study’s sample size is relatively small, 
making it important to confirm the validity of these find-
ings in larger cohorts. Second, although clinical data 
were integrated into the analysis, select information was 
missing, including certain IHC biomarkers due to them 
not being part of routine diagnostics and long-term out-
come data. Thus, the study focused primarily on molecu-
lar profiling. Further validation of the clinical significance 
of the identified biomarkers and pathways is required in 
independent cohorts with detailed longitudinal outcome 
data. Third, the non-diseased pancreatic control tissue 
likely contains an exocrine component, thus the differen-
tially expressed genes may reflect both the endocrine and 
exocrine composition of the control tissue.

Our study provides a proof-of-concept demonstration 
that mRNA and miR sequencing can be used to inter-
rogate clinically relevant biomarkers for PanNETs. The 
identification of novel miR-mRNA pairs and interac-
tion networks that are central to altered neuroendocrine 
function, cell adhesion, and metabolic pathways under-
scores how this approach can yield insights into bio-
logical processes and signaling pathways important for 
PanNET biology. Further functional characterization of 
these miR-mRNA networks as well as individual DEGs in 
larger cohorts may reveal new biomarkers and therapeu-
tic targets for the diagnosis and treatment of PanNETs, 
ultimately paving the way for future research aimed at 
improving the outcomes of patients with PanNETs.
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