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Abstract
Background  Sepsis remains a leading cause of mortality in critically ill patients, particularly those with malignancies 
who face heightened risks due to immunosuppression and metabolic dysregulation. This study aimed to evaluate the 
prognostic value of the lactate dehydrogenase-to-albumin ratio (LDAR) for predicting 28-day ICU mortality in septic 
patients with malignancies.

Methods  A retrospective cohort analysis was conducted using data from 1,635 septic patients with malignancies 
in the MIMIC-IV (3.1) database. Participants were stratified into quartiles based on LDAR values. The primary outcome 
was 28-day ICU mortality, with secondary outcomes including in-hospital and ICU mortality. Multivariable logistic 
regression, restricted cubic spline (RCS) analysis, and machine learning models were employed to assess associations 
between LDAR and outcomes. Subgroup analyses and feature importance evaluations were performed to validate 
robustness. The Shapley additive explanations method was used to enhance model interpretability and assess 
individual predictor contributions.

Results  Higher LDAR is independently associated with increased 28-day ICU mortality (OR: 3.441, 95% CI: 2.497–
4.741), ICU mortality (OR: 3.478, 95% CI: 2.396–5.049), and in-hospital mortality (OR: 3.747, 95% CI: 2.688–5.222), even 
after adjustment, highlighting its potential as a prognostic marker in ICU patients. RCS analysis revealed a nonlinear 
relationship, with mortality risk escalating sharply beyond log₂(LDAR) = 6.940. Metastatic cancer patients had higher 
median LDAR (135.0 vs. 118.5, P = 0.004) and mortality rates (52.0% vs. 36.4%, P < 0.001). Boruta feature selection 
showed that LDAR as the top predictor of mortality. Nine machine learning model with 20 variables were built, with 
random forest model performing best, achieving an AUC of 0.751 (0.708–0.794) in validation and 0.727 (0.682– 0.772) 
in text cohort.
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Introduction
Sepsis, a systemic inflammatory response syndrome 
caused by infection, remains a significant cause of mor-
bidity and mortality worldwide [1–3]. To enhance and 
unify clinical practices, the Surviving Sepsis Campaign 
has developed and periodically revises guidelines for 
managing patients with sepsis and septic shock [4, 5]. The 
increasing incidence of cancer has been accompanied 
by an increasing risk of sepsis [5, 6]. Compared with the 
general population, cancer patients are ten times more 
likely to develop sepsis [7]. Among septic patients, those 
with concurrent malignancies face increased risks due 
to malignancy-induced immunosuppression, complex 
metabolic dysfunction, and treatment-related complica-
tions such as chemotherap [8, 9]. Traditional scoring sys-
tems such as SOFA and SAPSII are widely used but may 
not fully capture the unique inflammatory and metabolic 
derangements in septic oncology patients.

Lactate dehydrogenase (LDH) and albumin (Alb) are 
widely used biomarkers in clinical practice, reflecting tis-
sue damage and metabolic dysfunction, as well as nutri-
tional and inflammatory status, respectively. Elevated 
LDH levels have been linked to inflammation, hypoxia, 
and organ dysfunction in sepsis, whereas hypoalbumin-
emia is associated with disease severity and poor prog-
nosis. While each marker alone is broadly indicative of 
disease severity, especially in critical illnesses, they may 
be insufficiently sensitive or specific for the complex 
interplay of immunosuppression, tumor burden, and sep-
sis. Recently, the lactate dehydrogenase to albumin ratio 
(LDAR) has gained widespread attention as a composite 
biomarker that integrates metabolic dysregulation and 
nutritional status, demonstrating superior prognostic 
value. Studies have shown that LDAR is closely associated 
with mortality in various diseases, such as malignancies 
and sepsis [10–14]. However, investigations of LDAR in 
patients with malignancies complicated by sepsis remain 
extremely limited, and the lack of data makes it unclear 
whether LDAR retains prognostic validity across differ-
ent tumor types (e.g., solid vs. hematologic) or sepsis eti-
ologies (e.g., pulmonary vs. abdominal). This knowledge 
gap is particularly significant, as patients with sepsis and 
malignancies exhibit unique pathophysiological features 
that may alter the predictive performance of LDAR. Cur-
rent research has not sufficiently explored the potential 
utility of LDAR in this high-risk population. Investigat-
ing the prognostic value of LDAR in septic patients with 

malignancies could address this gap and provide critical 
evidence to guide clinical decision-making.

This study aimed to evaluate the clinical utility of the 
LDH/Alb ratio specifically for predicting mortality risk 
in septic patients with malignancies, focusing on 28-day 
ICU mortality endpoint.

Materials and methods
Data source
This study was designed as a retrospective cohort study 
based on the publicly available Medical Information Mart 
for Intensive Care-IV (MIMIC-IV) version 3.1 database. 
The MIMIC-IV contains more than 50,000 ICU admis-
sion records from Beth Israel Deaconess Medical Center 
(BIDMC) in Boston, Massachusetts, covering the period 
from 2008 to 2021 [15]. The database provides compre-
hensive information on patient demographics, vital signs, 
laboratory results, and diagnoses coded according to the 
Ninth (ICD-9) and Tenth (ICD-10) revisions of the inter-
national classification of diseases. To access and utilize 
the MIMIC-IV database, one of the study team mem-
bers (Yongshi Shen) completed the required data-user 
certification and extracted the relevant study variables 
(certification number: 37021016). Because the data in 
the MIMIC-IV are fully deidentified, the requirement 
for individual patient informed consent was waived. The 
inclusion criteria were as follows: (1) Patients aged 18 
to 100 years; (2) Patients meeting the diagnostic crite-
ria for sepsis based on the Third International Consen-
sus Definitions for Sepsis and Septic Shock (Sepsis-3); 
(3) Patients with a documented malignancy. Exclusion 
criteria: (1) ICU length of stay less than 6 h; (2) Multiple 
ICU admissions for sepsis—only the first admission was 
included; (3) Insufficient data; (4) There was no malig-
nancy. Figure 1 shows the patient screening process.

Study outcomes
The primary outcome was all-cause mortality within 
28 days of ICU admission. The secondary outcomes 
included in-hospital mortality and ICU mortality. In-
hospital mortality refers to death occurring at any point 
during the entire hospital admission, and ICU mortality 
pertains to death during the ICU stay itself.

Variable extraction
We used structured query language via PostgresSQL 
(version 17.2) and Navicat Premium (version 16) to 

Conclusions  LDAR is a robust, independent prognostic biomarker for 28-day ICU mortality in septic patients with 
malignancies, outperforming traditional scoring systems. The identified threshold (log₂(LDAR) ≥ 6.940) may aid early 
risk stratification and clinical decision-making. Prospective studies are warranted to validate these findings and 
explore dynamic LDAR monitoring in diverse populations.
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extract the data. The baseline characteristics collected for 
each patient included age, sex, body mass index (BMI), 
the Sequential Organ Failure Assessment (SOFA) score, 
and the Simplified Acute Physiology Score II (SAPSII). v, 
and the Charlson comorbidity index was also calculated. 
We additionally collected data on vital signs, clinical out-
comes, and laboratory measurements, including LDH, 
ALB, bicarbonate, white blood cell count (WBC), hemo-
globin, mean corpuscular volume (MCV), platelet count, 
alanine aminotransferase (ALT), aspartate aminotrans-
ferase (AST), creatinine, blood urea nitrogen (BUN), glu-
cose, potassium, calcium, and prothrombin time (PT), 
among others. All laboratory parameters extracted from 
the MIMIC-IV (3.1) were the first measurements taken 
after ICU admission. The SOFA score was the maximum 
score recorded within 24 h of ICU admission. Follow-up 
started on the date of ICU admission and ended on the 
date of patient death.

The LDAR was defined as the LDH value (U/L) divided 
by the albumin value (g/µL). The inflammation indi-
ces were calculated as follows: prognostic nutritional 
index (PNI) = 10 × serum albumin level (g/dL) + 0.005 × 
total lymphocyte count (/mm3); systemic inflammation 
response index (SIRI) = neutrophil count × monocyte 
count/lymphocyte count (×109/L); and systemic immune 

inflammation index (SII) = platelet count × neutrophil 
count/lymphocyte count (×109/L).

Data cleaning
Variables with > 30% missingness were excluded (e.g., 
procalcitonin). We excluded a total of 34 variables due 
to high missingness. For remaining variables, multiple 
imputation was performed using the R mice package. To 
assess potential multicollinearity among variables, we 
calculated variance inflation factors (VIFs); if the VIF for 
any variable exceeded 5, that variable was removed from 
the analysis owing to collinearity. We excluded 14 vari-
ables due to multicollinearity.

Statistical analysis
Overall analysis
Because this was a retrospective study, a formal sample 
size calculation was not performed. Patients were divided 
into four groups according to the quartile of LDAR. Con-
tinuous variables were described according to their dis-
tribution. Normally distributed variables are reported 
as the means ± standard deviations (SDs) and were com-
pared via one-way analysis of variance (ANOVA). Non-
normally distributed variables are presented as medians 
and interquartile ranges (IQRs) and were compared via 
the Mann‒Whitney U test or the Kruskal‒Wallis test. 

Fig. 1  Study flowchart. LDH: lactate dehydrogenase; ALB: albumin; LDAR: lactate dehydrogenase-to-albumin ratio
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Categorical variables are expressed as counts (n) and per-
centages (%) and were compared via the chi-square (χ²) 
test or Fisher’s exact test, as appropriate. To evaluate the 
associations between LDAR and the risk of in-hospital 
mortality, ICU mortality, and 28-day mortality, we per-
formed multivariable logistic regression. Odds ratios 
(ORs) and corresponding 95% confidence intervals (CIs) 
were calculated to quantify the effect of the LDAR index 
on these outcomes. Two models were specified: Model 
1: Unadjusted. Model 2: Adjusted for age, sex, BMI, vital 
signs (heart rate, mean arterial pressure, respiratory rate, 
oxygen saturation, and temperature), SOFA score, and 
the presence of metastatic solid tumors.

Subgroup analysis
We conducted both univariable and multivariable analy-
ses across predefined subgroups (age, sex, SOFA score, 
and presence of metastatic solid tumors) to validate the 
relationships between the LDAR index and in-hospital, 
ICU, and 28-day mortality. In the multivariable analy-
sis, we adjusted for the following covariates: age, BMI, 
gender, heart rate, respiratory rate, MBP, SOFA score, 
Comorbidities (myocardial infarction, congestive heart 
failure, cerebrovascular disease, chronic pulmonary dis-
ease, renal disease, severe liver disease and metastatic 
solid tumor) and infection site (respiratory, gastrointes-
tinal, genitourinary). (Note: the sex subgroup analysis 
did not adjust for sex as a covariate.) The subgroups were 
further stratified by age (< 65 years vs. ≥65 years), SOFA 
score (2–5 points, 5–8 points, and 8–21 points), and 
presence of a metastatic solid tumor. Each subgroup was 
analyzed via a logistic regression model, and the results 
are illustrated in a forest plot showing the OR and 95% 
CI. Kaplan‒Meier analyses were also performed as sen-
sitivity analyses to explore the associations between the 
LDAR index and the 28-day ICU mortality and in-hospi-
tal mortality endpoints.

Nonlinear relationship analysis
To investigate the nonlinear relationship between LDAR 
and 28-day ICU mortality, we employed a restricted 
cubic spline (RCS) analysis. Given that LDAR was skewed 
and had a wide range, we applied a log₂ transformation 
[log₂(LDAR)] to improve the distribution’s symmetry and 
reduce the impact of outliers, thereby enhancing model 
robustness. Following Harrell’s recommendations, four 
knots were placed at the 10th, 35th, 65th, and 90th per-
centiles of the log₂ (LDAR) distribution. In the model, 
28-day ICU mortality was the dependent variable, log₂ 
(LDAR) was the independent variable, and adjustments 
were made for age, BMI, gender, heart rate, respira-
tory rate, MBP, SOFA score, Comorbidities (myocardial 
infarction, congestive heart failure, cerebrovascular dis-
ease, chronic pulmonary disease, renal disease, severe 

liver disease and metastatic solid tumor) and infection 
site (respiratory, gastrointestinal, genitourinary). Nonlin-
earity was assessed by examining the overall association 
(P-overall) and the nonlinear effect (P-nonlinear). The 
results are presented graphically, and 95% CIs are used 
to assess model stability and precision. The proportional 
hazards assumption was checked using the Schoenfeld 
residuals. (Figure S1)

Predictive model construction and validation
Feature selection
To identify important variables, we employed the Boruta 
algorithm, which compares the Z score of each real fea-
ture with that of “shadow features.” If the Z score of a real 
feature is significantly higher than the maximum Z score 
of the shadow features, that variable is deemed impor-
tant. The variables identified by the Boruta algorithm 
were used for subsequent model development.

Model construction and hyperparameter optimization
In the model development phase, we used random 
assignment to split the dataset into a training (70%) and 
a testing (30%) sets. We utilized nine machine learning 
algorithms—the extreme gradient boosting (XGBoost) 
classifier, logistic regression, light gradient boosting 
machine (LGBM) classifier, random forest classifier, 
adaptive boosting (AdaBoost) classifier, multilayer per-
ceptron (MLP) classifier, support vector machine (SVM), 
Gaussian naive Bayes (GNB), and K-neighbors (KNN) 
classifier—to construct predictive models.

To improve model performance, we applied a grid 
search for hyperparameter optimization. Grid search sys-
tematically explores a predefined parameter space and 
identifies the combination that yields the highest per-
formance. During this process, the training set was fur-
ther divided via 10-fold cross validation to ensure model 
robustness. The model with the highest area under the 
receiver operating characteristic curve (AUC) across the 
10-fold cross-validation was selected as the final model.

Model performance evaluation
The testing set was used for independent evaluation of 
the model’s performance. The key evaluation metrics 
included the following: the receiver operating character-
istic (ROC) curve and the area under the curve (AUC) for 
assessing overall predictive ability; the calibration curve 
for evaluating the accuracy of absolute risk predictions; 
and decision curve analysis (DCA) for determining clini-
cal utility across various risk thresholds.

We further applied Shapley additive explanations 
(SHAPs) to depict the contribution of each feature to the 
prediction. Group-level SHAP plots illustrate the overall 
impact of each feature on the model output, and SHAP 
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evaluations for selected cases help clarify how specific 
features influence individual predictions.

All the statistical analyses were conducted in R soft-
ware (version 4.3.1). A two-sided p value < 0.05 was con-
sidered statistically significant.

Results
Baseline characteristics
Data from 1,635 sepsis patients meeting the inclusion 
and exclusion criteria were extracted from MIMIC-
IV 3.1 (Fig.  1). The VIFs for the variables are shown in 
Table S1 and indicate that there is no multicollinear-
ity among the variables. The proportion of missing data 
for each variable is detailed in Table S2, while the base-
line characteristics of the study population are presented 
in Table  1 (see the end of the article). Among these 
patients, 984 (60.18%) were male. The comorbidities 
included myocardial infarction in 217 patients (13.27%), 
congestive heart failure in 421 patients (25.75%), cere-
brovascular disease in 161 patients (9.87%), peripheral 
vascular disease in 131 patients (8.01%), chronic pul-
monary disease in 429 patients (26.24%), and type I/
II diabetes in 429 patients (26.24%). Additional comor-
bidities were kidney disease in 350 patients (21.41%), 
severe liver disease in 208 patients (12.72%), and meta-
static solid tumors in 577 patients (35.29%). Patients 
were stratified into four quartiles on the basis of 
LDAR values: quartile 1 (27.941 ≤ LDAR < 81.579), 
quartile 2 (81.579 ≤ LDAR < 122.800), quar-
tile 3 (122.800 ≤ LDAR < 230.345), and quartile 4 
(230.345 ≤ LDAR ≤ 10,990.909). Quartile 3 contained 408 
cases, whereas the other three quartiles each contained 
409 cases. Quartile 4 patients were older and had higher 
heart rates, respiratory rates, SOFA scores, SAPSII 
scores, INR, PT, PTT, albumin levels, calcium, blood urea 
nitrogen, serum potassium, creatinine, alanine transami-
nase, alkaline phosphatase, aspartate transaminase, LDH, 
total bilirubin, white blood cell count, neutrophil count, 
monocyte count, lymphocyte count, eosinophil count, 
basophil count, red blood cell distribution width, platelet 
count, lactate level, and arterial‒alveolar oxygen gradi-
ent and lower oxygenation indices. Mortality rates (ICU 
28-day mortality, ICU mortality, and in-hospital mortal-
ity) were also higher in Quartile 4.

Clinical outcomes
Table  2 presents the results of the logistic regression 
analysis. Models I and II revealed that, compared with 
those in quartile 1, 28-day ICU mortality, ICU mortality, 
and in-hospital mortality significantly increased in quar-
tiles 2, 3, and 4.

Table  3 shows the comparison of clinical character-
istics between patients with nonmetastatic and those 
with metastatic solid tumors. Patients with metastatic 

tumors had significantly higher LDAR levels (p = 0.004) 
and lower albumin levels (p < 0.001) than did those with 
nonmetastatic tumors, whereas LDH levels did not sig-
nificantly differ between the groups (p = 0.399). The 
rates of intensive care unit (ICU) mortality (30.5% vs. 
22.6%, p < 0.001), in-hospital mortality (37.0% vs. 34.2%, 
p = 0.002), and 28-day intensive care unit (ICU) mortal-
ity (52.0% vs. 36.4%, p < 0.001) were significantly greater 
in the metastatic group. However, patients with nonmet-
astatic tumors had longer ICU stays (4.88 vs. 4.09 days, 
p = 0.001) and total hospital stays (13.94 vs. 11.73 days, 
p < 0.001). These findings suggest that while metastatic 
tumor patients have a greater risk of mortality, nonmeta-
static tumor patients may require prolonged hospitaliza-
tion and intensive care support.

Restricted cubic spline (RCS)
Figure 2 illustrates the RCS analysis results. After adjust-
ing for age, BMI, heart rate, mean arterial pressure, respi-
ratory rate, sex, SOFA score, and the presence of cancer, 
the relationships between log2(LDAR) and hazard ratios 
(HR) for 28-day ICU mortality and all-cause ICU mor-
tality exhibited significant nonlinear characteristics. At 
lower log2(LDAR) values, the risk increased slowly, but 
above the inflection point (6.940), the risk rose sharply. 
Log2(LDAR) was identified as a significant predictive 
variable, with its impact becoming particularly pro-
nounced beyond the threshold of 6.940.

On the basis of the results of the RCS analy-
sis, LDAR was classified into a high-LDAR group 
(log₂(LDAR) ≥ 6.940) and a low-LDAR group 
(log₂(LDAR) < 6.940). As shown in Supplementary Table 
S3, patients in the high-LDAR group had a greater inci-
dence of metastatic solid tumors, an elevated heart rate, 
an increased respiratory rate, higher lactate levels, and 
significantly higher SOFA and SAPSII scores, indicat-
ing greater disease severity. The 28-day ICU mortal-
ity rate was greater in the high-LDAR group than in the 
low-LDAR group (52.93% vs. 30.85%, P < 0.001).The ICU 
all-cause mortality rate was significantly greater in the 
high-LDAR group than in the low-LDAR group (35.09% 
vs. 15.67%, P < 0.001), and a similar trend was observed 
for in-hospital all-cause mortality (48.53% vs. 25.46%, 
P < 0.001).

Subgroup analysis
To further validate the relationship between LDAR and 
mortality outcomes, stratified analyses were performed 
on the basis of age, sex, SOFA score, and the presence 
of metastatic solid tumors. Figure 3 shows that the asso-
ciations between LDAR and 28-day ICU mortality, ICU 
mortality and in-hospital mortality remained significant 
across all subgroups, irrespective of covariate adjust-
ments. These findings support the stability of LDAR as a 
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Variable group p 
value2Overall 

N = 1,6351
Quartile 1 
N = 4091

Quartile 2 
N = 4091

Quartile 3 
N = 4081

Quartile 4 
N = 4091

Age, M (Q1, Q3) 68.246 (59.961, 
77.275)

68.640 (60.551, 
77.414)

70.895 (62.767, 
79.138)

67.211 (58.557, 
75.981)

66.807 (59.068, 
75.944)

< 0.001

Heartrate, M (Q1, Q3) 98.000 (83.000, 
113.000)

92.000 (78.000, 
110.000)

97.000 (83.000, 
114.000)

99.000 (85.500, 
113.000)

101.000 (86.000, 
116.000)

< 0.001

Weight, M (Q1, Q3) 80.600 (70.400, 
92.340)

79.600 (70.000, 
88.630)

79.170 (69.100, 
90.200)

81.495 (69.855, 
94.230)

82.800 (72.250, 
97.000)

0.002

BMI, M (Q1, Q3) 197.363 (105.844, 
290.740)

199.164 (88.389, 
287.389)

208.028 (127.214, 
307.055)

185.981 (91.531, 
277.881)

192.894 (106.509, 
283.567)

0.076

Spo2, M (Q1, Q3) 97.000 (94.000, 
99.000)

97.000 (95.000, 
99.000)

97.000 (94.000, 
100.000)

97.000 (94.000, 
100.000)

97.000 (94.000, 
99.000)

0.650

MAP, M (Q1, Q3) 78.000 (68.000, 
91.000)

78.000 (68.000, 
90.000)

78.000 (67.000, 
91.000)

77.000 (68.000, 
89.500)

79.000 (68.000, 
93.000)

0.703

Respiratory rate, M 
(Q1, Q3)

21.000 (17.000, 
25.000)

20.000 (17.000, 
24.000)

21.000 (16.000, 
25.000)

22.000 (17.000, 
26.000)

22.000 (18.000, 
27.000)

< 0.001

Temperature, M (Q1, 
Q3)

36.830 (36.500, 
37.170)

36.780 (36.560, 
37.170)

36.830 (36.440, 
37.220)

36.830 (36.500, 
37.280)

36.780 (36.440, 
37.110)

0.103

Infection site, n (%)
Respiratory 460(28.135) 110(26.895) 109(26.650) 121(29.657) 120(29.340)
Gastrointestinal 196(11.988) 52(12.714) 43(10.513) 60(14.706) 41(10.024)
Genitourinary 223(13.639) 58(14.181) 57(13.936) 52(12.745) 56(13.692)
Others 882(53.945) 220(53.790) 231(56.479) 211(51.716) 220(53.790)
Charlson comorbidity 
index, M (Q1, Q3)

8.000 (6.000, 10.000) 8.000 (6.000, 10.000) 8.000 (6.000, 10.000) 8.000 (6.000, 10.000) 8.000 (6.000, 10.000) 0.759

SOFA, M (Q1, Q3) 7.000 (4.000, 9.000) 5.000 (4.000, 8.000) 6.000 (4.000, 9.000) 7.000 (4.000, 10.000) 8.000 (5.000, 11.000) < 0.001
SAPSII, M (Q1, Q3) 49.000 (39.000, 

60.000)
45.000 (36.000, 
55.000)

50.000 (40.000, 
60.000)

49.000 (40.000, 
60.000)

53.000 (42.000, 
65.000)

< 0.001

INR, M (Q1, Q3) 1.400 (1.200, 1.700) 1.300 (1.200, 1.600) 1.400 (1.200, 1.700) 1.400 (1.200, 1.700) 1.500 (1.300, 1.900) < 0.001
PT, M (Q1, Q3) 15.600 (13.700, 

18.600)
14.800 (13.000, 
17.400)

15.300 (13.600, 
18.500)

15.550 (13.750, 
18.200)

16.900 (14.600, 
20.900)

< 0.001

PTT, M (Q1, Q3) 32.600 (28.200, 
39.700)

31.300 (28.300, 
36.400)

32.500 (27.700, 
39.000)

33.100 (28.350, 
41.200)

33.700 (28.400, 
42.700)

< 0.001

Albumin, M (Q1, Q3) 2.700 (2.300, 3.100) 3.000 (2.600, 3.400) 2.700 (2.300, 3.000) 2.600 (2.100, 3.100) 2.500 (2.100, 2.900) < 0.001
Calcium, M (Q1, Q3) 8.100 (7.500, 8.700) 8.200 (7.600, 8.800) 8.100 (7.600, 8.600) 8.100 (7.500, 8.700) 8.100 (7.400, 8.600) 0.004
BUN, M (Q1, Q3) 24.000 (16.000, 

42.000)
21.000 (14.000, 
34.000)

24.000 (16.000, 
39.000)

24.500 (16.000, 
40.000)

29.000 (18.000, 
52.000)

< 0.001

Potassium, M (Q1, Q3) 4.200 (3.700, 4.700) 4.000 (3.700, 4.600) 4.100 (3.700, 4.600) 4.100 (3.700, 4.700) 4.500 (3.900, 5.100) < 0.001
Creatinine, M (Q1, Q3) 1.100 (0.800, 1.800) 1.000 (0.700, 1.700) 1.100 (0.800, 1.700) 1.100 (0.700, 1.800) 1.300 (0.900, 2.100) < 0.001
ALT, M (Q1, Q3) 30.000 (16.000, 

70.000)
19.000 (12.000, 
36.000)

25.000 (14.000, 
52.000)

34.500 (18.000, 
72.500)

67.000 (25.000, 
258.000)

< 0.001

ALP, M (Q1, Q3) 99.000 (66.000, 
172.000)

84.000 (59.000, 
123.000)

90.000 (64.000, 
145.000)

101.000 (70.000, 
171.500)

141.000 (81.000, 
260.000)

< 0.001

AST, M (Q1, Q3) 44.700 (23.000, 
120.000)

24.000 (16.000, 
42.000)

37.000 (21.000, 
66.000)

50.500 (30.500, 
122.000)

150.000 (56.000, 
585.000)

< 0.001

LDH, M (Q1, Q3) 321.000 (228.000, 
574.000)

186.000 (155.000, 
221.000)

270.000 (234.000, 
310.000)

412.500 (342.000, 
491.000)

1,027.000 (703.000, 
1,918.000)

< 0.001

Total Bilirubin, M (Q1, 
Q3)

0.900 (0.400, 2.000) 0.700 (0.400, 1.300) 0.800 (0.400, 1.700) 0.900 (0.450, 2.100) 1.300 (0.600, 2.600) < 0.001

WBC, M (Q1, Q3) 11.500 (6.300, 18.300) 10.000 (5.300, 
15.400)

11.800 (6.800, 
18.000)

11.250 (5.650, 
18.100)

13.700 (7.500, 
24.000)

< 0.001

Neutrophils, M (Q1, Q3) 9.087 (4.700, 14.898) 7.490 (3.846, 12.228) 9.550 (5.118, 14.613) 9.375 (4.654, 15.330) 10.140 (5.730, 
17.140)

< 0.001

Monocytes, M (Q1, Q3) 0.570 (0.269, 0.979) 0.520 (0.230, 0.847) 0.580 (0.325, 0.948) 0.573 (0.248, 1.014) 0.611 (0.280, 1.120) 0.028
Lymphocytes, M (Q1, 
Q3)

0.830 (0.440, 1.373) 0.780 (0.436, 1.320) 0.790 (0.425, 1.300) 0.808 (0.381, 1.300) 0.965 (0.500, 1.590) 0.004

Table 1  Patient demographics and baseline characteristics
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Variable group p 
value2Overall 

N = 1,6351
Quartile 1 
N = 4091

Quartile 2 
N = 4091

Quartile 3 
N = 4081

Quartile 4 
N = 4091

Eosinophils, M (Q1, Q3) 0.018 (0.000, 0.093) 0.026 (0.000, 0.110) 0.024 (0.000, 0.114) 0.012 (0.000, 0.081) 0.000 (0.000, 0.061) < 0.001
Basophils, M (Q1, Q3) 0.010 (0.000, 0.030) 0.013 (0.000, 0.031) 0.010 (0.000, 0.028) 0.010 (0.000, 0.029) 0.000 (0.000, 0.028) < 0.001
RDW, M (Q1, Q3) 16.100 (14.600, 

18.200)
15.700 (14.300, 
17.600)

15.900 (14.600, 
17.700)

16.400 (14.600, 
18.300)

16.800 (15.000, 
19.100)

< 0.001

Platelet, M (Q1, Q3) 155.000 (84.000, 
256.000)

170.000 (102.000, 
256.000)

165.000 (98.000, 
259.000)

156.000 (87.000, 
257.500)

121.000 (61.000, 
231.000)

< 0.001

Lactate, M (Q1, Q3) 2.100 (1.400, 3.400) 1.700 (1.200, 2.530) 1.900 (1.300, 3.000) 2.100 (1.400, 3.250) 3.080 (1.900, 6.000) < 0.001
Po2, M (Q1, Q3) 78.000 (45.000, 

134.000)
81.000 (47.000, 
138.000)

81.000 (43.000, 
141.000)

74.850 (44.000, 
129.000)

73.000 (45.000, 
122.000)

0.422

Pao2Fio2ratio, M (Q1, 
Q3)

154.000 (100.000, 
250.000)

162.500 (110.452, 
261.000)

162.000 (100.000, 
275.000)

148.505 (91.714, 
226.333)

142.388 (94.000, 
244.250)

0.004

Aado2, M (Q1, Q3) 285.970 (194.500, 
395.350)

265.350 (180.450, 
344.675)

267.005 (176.750, 
366.850)

300.060 (210.835, 
413.550)

317.500 (220.170, 
460.900)

< 0.001

Glucose, M (Q1, Q3) 131.000 (105.000, 
171.000)

127.000 (107.000, 
162.000)

132.000 (105.000, 
171.000)

131.000 (104.500, 
165.000)

136.000 (102.000, 
200.000)

0.593

Gender, n (%) 0.746
No 651 (39.8%) 159 (38.9%) 169 (41.3%) 167 (40.9%) 156 (38.1%)
Yes 984 (60.2%) 250 (61.1%) 240 (58.7%) 241 (59.1%) 253 (61.9%)
Myocardial infarct, 
n (%)

0.101

No 1,418 (86.7%) 361 (88.3%) 358 (87.5%) 359 (88.0%) 340 (83.1%)
Yes 217 (13.3%) 48 (11.7%) 51 (12.5%) 49 (12.0%) 69 (16.9%)
Congestive heart 
failure, n (%)

0.130

No 1,214 (74.3%) 307 (75.1%) 287 (70.2%) 304 (74.5%) 316 (77.3%)
Yes 421 (25.7%) 102 (24.9%) 122 (29.8%) 104 (25.5%) 93 (22.7%)
Peripheral vascular 
disease, n (%)

0.841

No 1,504 (92.0%) 380 (92.9%) 374 (91.4%) 373 (91.4%) 377 (92.2%)
Yes 131 (8.0%) 29 (7.1%) 35 (8.6%) 35 (8.6%) 32 (7.8%)
Cerebrovascular dis-
ease, n (%)

0.778

No 1,474 (90.2%) 372 (91.0%) 368 (90.0%) 363 (89.0%) 371 (90.7%)
Yes 161 (9.8%) 37 (9.0%) 41 (10.0%) 45 (11.0%) 38 (9.3%)
Chronic pulmonary 
disease, n (%)

0.018

No 1,206 (73.8%) 284 (69.4%) 306 (74.8%) 294 (72.1%) 322 (78.7%)
Yes 429 (26.2%) 125 (30.6%) 103 (25.2%) 114 (27.9%) 87 (21.3%)
Diabetes, n (%) 0.883
No 1,206 (73.8%) 297 (72.6%) 300 (73.3%) 306 (75.0%) 303 (74.1%)
Yes 429 (26.2%) 112 (27.4%) 109 (26.7%) 102 (25.0%) 106 (25.9%)
Renal disease, n (%) 0.426
No 1,285 (78.6%) 312 (76.3%) 318 (77.8%) 329 (80.6%) 326 (79.7%)
Yes 350 (21.4%) 97 (23.7%) 91 (22.2%) 79 (19.4%) 83 (20.3%)
Severe liver disease, 
n (%)

0.206

No 1,427 (87.3%) 366 (89.5%) 362 (88.5%) 350 (85.8%) 349 (85.3%)
Yes 208 (12.7%) 43 (10.5%) 47 (11.5%) 58 (14.2%) 60 (14.7%)
Metastatic solid tumor, 
n (%)

0.075

No 1,058 (64.7%) 281 (68.7%) 273 (66.7%) 253 (62.0%) 251 (61.4%)
Yes 577 (35.3%) 128 (31.3%) 136 (33.3%) 155 (38.0%) 158 (38.6%)

Table 1  (continued) 
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prognostic risk indicator in sepsis patients. When 28-day 
survival in ICU patients was analyzed, Fig. 4 shows sig-
nificant differences in survival curves among the LDAR 
quartiles (p < 0.0001). The Kaplan‒Meier survival curves 
revealed the highest survival rates in Quartile 1 and the 
lowest rates in Quartile 4. By Day 28 in the ICU, Quartile 
1 patients had a survival rate close to 80%, whereas Quar-
tile 4 patients had a survival rate of approximately 50%. 
Dynamic changes in LDAR were significantly associated 
with survival.

According to the RCS analysis, the survival prob-
ability of the high-LDAR group significantly decreased 
compared with that of the low-LDAR group (Figure S2). 

The difference between the groups was highly signifi-
cant (P < 0.0001), reinforcing LDAR as a robust prognos-
tic biomarker for ICU mortality in septic patients with 
malignancies.

Figure 5 Displays the feature selection results via 
the Boruta algorithm, identifying variables in green as 
important, those in red as unimportant, and those in yel-
low as tentative. LDAR was identified as the most impor-
tant parameter.

The hyperparameters of the nine models are listed in 
Table S4, and their detailed performance metrics are 
shown in Table S5. Figure  6A presents the ROC curves 
of these models, with AUC values indicating model 

Variable group p 
value2Overall 

N = 1,6351
Quartile 1 
N = 4091

Quartile 2 
N = 4091

Quartile 3 
N = 4081

Quartile 4 
N = 4091

Hematological malign-
Tancy, n (%)

0.214

No 1360(83.180) 352(86.064) 337(82.396) 341(83.578) 330(80.685)
Yes 275(16.820) 57(13.936) 72(17.604) 67(16.422) 79(19.315)
Vasoactive, n (%) 0.119
No 745 (45.6%) 206 (50.4%) 175 (42.8%) 177 (43.4%) 187 (45.7%)
Yes 890 (54.4%) 203 (49.6%) 234 (57.2%) 231 (56.6%) 222 (54.3%)
Mechanical Ventila-
tion, n (%)

0.138

No 192 (11.7%) 56 (13.7%) 36 (8.8%) 47 (11.5%) 53 (13.0%)
Yes 1,443 (88.3%) 353 (86.3%) 373 (91.2%) 361 (88.5%) 356 (87.0%)
CRRT, n (%) < 0.001
No 1,439 (88.0%) 392 (95.8%) 371 (90.7%) 363 (89.0%) 313 (76.5%)
Yes 196 (12.0%) 17 (4.2%) 38 (9.3%) 45 (11.0%) 96 (23.5%)
AKI, n (%) < 0.001
No 204 (12.5%) 80 (19.6%) 40 (9.8%) 41 (10.0%) 43 (10.5%)
Yes 1,431 (87.5%) 329 (80.4%) 369 (90.2%) 367 (90.0%) 366 (89.5%)
28 Day ICU mortality, 
n (%)

< 0.001

No 950 (58.1%) 312 (76.3%) 253 (61.9%) 204 (50.0%) 181 (44.3%)
Yes 685 (41.9%) 97 (23.7%) 156 (38.1%) 204 (50.0%) 228 (55.7%)
ICU mortality, n (%) < 0.001
No 1,220 (74.6%) 357 (87.3%) 332 (81.2%) 286 (70.1%) 245 (59.9%)
Yes 415 (25.4%) 52 (12.7%) 77 (18.8%) 122 (29.9%) 164 (40.1%)
In hospital mortality, 
n (%)

< 0.001

No 1,030 (63.0%) 331 (80.9%) 278 (68.0%) 228 (55.9%) 193 (47.2%)
Yes 605 (37.0%) 78 (19.1%) 131 (32.0%) 180 (44.1%) 216 (52.8%)
Hospital_Los_Day, M 
(Q1, Q3)

12.988 (7.008, 23.410) 12.051 (6.786, 
20.547)

14.390 (8.565, 
24.566)

13.929 (7.354, 
23.650)

11.733 (5.438, 
24.350)

0.004

ICU_Los_Day, M (Q1, 
Q3)

4.560 (2.320, 9.200) 3.940 (2.100, 7.510) 4.960 (2.850, 10.050) 5.230 (2.560, 11.020) 4.160 (1.980, 8.890) < 0.001

1 Median (IQR) or frequency (%)
2 Kruskal‒Wallis rank sum test; Pearson’s chi-square test

LDAR: Lactate Dehydrogenase to Albumin Ratio; BMI: Body Mass Index; MAP: Mean Arterial Pressure; SOFA: Sequential Organ Failure Assessment; APSIII: Acute 
Physiology Score III; SAPSII: Simplified Acute Physiology Score II; OASIS: Oxford Acute Severity of Illness Score; INR: International Normalized Ratio; PT: Prothrombin 
Time; PTT: Partial Thromboplastin Time; BUN: Blood Urea Nitrogen; ALT: Alanine Aminotransferase; ALP: Alkaline Phosphatase; AST: Aspartate Aminotransferase; 
LDH: Lactate Dehydrogenase; WBC: White Blood Cell Count; RDW: Red Cell Distribution Width; AADO2: Alveolar-Arterial Oxygen Difference; CRRT: Continuous Renal 
Replacement Therapy; AKI: Acute Kidney Injury

Table 1  (continued) 
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performance: XGBoost (0.711), logistic regression 
(0.661), LGBM (0.612), random forest (0.751), AdaBoost 
(0.698), MLP (0.651), SVM (0.678), GNB (0.667), and 
KNN (0.621). Figure  6B shows that the random forest 
model had the highest net benefit within a 20-60% thresh-
old probability range. The calibration curves (Figure S3) 
indicate that the random forest model closely aligned 
with the observed outcomes, achieving the best calibra-
tion performance (Brier score = 0.201). Thus, the random 
forest model was selected as the optimal model for pre-
dicting 28-day ICU mortality. Figure S4 shows its perfor-
mance in the test set (AUC = 0.727, accuracy = 0.678).

Interpretability analysis
SHAP was utilized for intuitive model interpretation. 
Figure 7A presents a scatterplot ranking features by their 
cumulative SHAP value impact, highlighting LDAR, ALP, 
age, BUN, LDH, PO2/FiO2, and others as the top 20 pre-
dictors for 28-day ICU mortality. Figure  7B illustrates a 
case study of the model’s prediction process for an indi-
vidual patient, with red indicating positive contributions 
and blue representing negative contributions. The model 
predicted a 65% probability of ICU mortality within 28 
days for this patient.

Table 2  Relationships between the LDAR index groups and 28-day ICU mortality, in-hospital mortality, and ICU mortality
Exposure model1 model2

OR (95%CI) P value OR (95%CI) P value
28-day ICU mortality
LDAR
Quartile 1
Quartile 2 1.983 (1.465,2.685) <0.001 1.757 (1.281,2.412) <0.001
Quartile 3 3.216 (2.385,4.339) <0.001 2.967 (2.166,4.065) <0.001
Quartile 4 4.052 (3.002,5.469) <0.001 3.441 (2.497,4.741) <0.001
ICU mortality
LDAR
Quartile 1
Quartile 2 1.592(1.086,2.334) 0.017 1.323 (0.890,1.967) 0.166
Quartile 3 2.929 (2.043,4.197) <0.001 2.465 (1.693,3.591) <0.001
Quartile 4 4.596 (3.233,6.533) <0.001 3.478 (2.396,5.049) <0.001
In-hospital mortality
LDAR
Quartile 1
Quartile 2 2.000 (1.448,2.761) <0.001 1.719 (1.230,2.402) 0.002
Quartile 3 3.350 (2.446,4.589) <0.001 2.919(2.102,4.054) <0.001
Quartile 4 4.749 (3.470,6.501) <0.001 3.747 (2.688,5.222) <0.001
Model 1: Unadjusted

Model 2: Adjusted for age, sex, BMI, vital signs (heart rate, mean arterial pressure, respiratory rate, oxygen saturation, and body temperature), SOFA score, and the 
presence of metastatic solid tumors

LDAR: Lactate Dehydrogenase to Albumin Ratio

Table 3  Comparison of clinical characteristics between patients with nonmetastatic and metastatic solid tumors
Variable Group P Value

Overall (n = 1635) Nonmetastatic solid tumor (n = 1058) metastatic solid tumor (n = 577)
LDAR, M (Q1, Q3) 122.80 (81.62, 229.46) 118.54 (80.07, 220.83) 135.00 (85.91, 244.44) 0.004
Albumin, M (Q1, Q3) 2.70 (2.30, 3.10) 2.80 (2.40, 3.20) 2.60 (2.20, 3.00) < 0.001
LDH, M (Q1, Q3) 321.00 (228.00, 574.00) 316.50 (230.00, 543.75) 334.00 (225.00, 634.00) 0.399
ICU-mortality, n (%) 415 (25.4) 239 (22.6) 176 (30.5) < 0.001
In-hospital mortality, n (%) 605 (37.0) 362 (34.2) 243 (42.1) 0.002
28-Day ICU mortality, n (%) 685 (41.9) 385 (36.4) 300 (52.0) < 0.001
ICU_Los_Day, M (Q1, Q3) 4.56 (2.32, 9.19) 4.88 (2.43, 9.88) 4.09 (2.16, 7.69) 0.001
Hospital_Los_Day, M (Q1, Q3) 12.99 (7.01, 23.35) 13.94 (7.58, 26.82) 11.73 (6.32, 19.50) < 0.001
M: Median, Q1: 1st quartile, Q3: 3rd quartile

LDAR: Lactate dehydrogenase to albumin ratio; LDH: Lactate dehydrogenase
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Relationships between LDAR and other prognostic 
assessment indices
The ROC curve analysis (Fig.  8) demonstrated that the 
LDAR score consistently outperformed the other scor-
ing systems and indices in predicting patient outcomes, 
achieving the highest AUC values of 0.651 and 0.663 for 
the two clinical outcomes, respectively. In comparison, 
SAPSII (AUC = 0.636 and 0.650) and SOFA (AUC = 0.584 
and 0.607) showed moderate predictive capability, 
whereas the indices PNI, SIRI, and SII exhibited lower 
predictive performance, with AUC values below 0.58 in 
both analyses. This highlights the superior discriminative 
ability of LDAR in this context.

Discussion
This study provides a comprehensive evaluation of LDAR 
as a prognostic biomarker in septic patients with malig-
nancies. The findings highlight the unique value of the 
LDAR in predicting 28-day mortality, with a significant 
nonlinear relationship identified and a critical threshold 
of log2(LDAR) = 6.940 established. The nonlinear pat-
tern suggests that once lactate dehydrogenase and albu-
min values shift beyond a critical ratio, it may reflect 
irreversible organ dysfunction, severe tissue hypoxia, or 
profound metabolic disturbance—particularly relevant 
in cancer patients whose disease burden and treatment 
side effects accelerate these pathophysiological pro-
cesses. Early recognition of high LDAR (≥ 6.940 in log₂ 

scale) may help clinicians identify patients at risk of dete-
rioration. Aggressive interventions—such as optimizing 
hemodynamics, improving nutritional support, and close 
monitoring—could potentially mitigate mortality in this 
subgroup.

The Boruta algorithm is a popular tool for feature 
selection, employing a randomness-based approach to 
determine which variables are most pertinent to predict-
ing a target outcome [16]. In the present study, Boruta 
identified LDAR as the top-ranking feature within the 
green zone, with the highest Z score among all selected 
variables. This finding suggests that LDAR could play a 
critical role in the study and is strongly associated with 
the research objectives. The analysis underscored the 
relevance of LDAR in predicting 28-day all-cause mor-
tality among sepsis patients. Nonetheless, it is essen-
tial to acknowledge that LDAR might not serve as the 
sole determinant. First, although the Boruta algorithm 
is a powerful tool for feature selection, its results can 
be influenced by correlations between variables. Conse-
quently, while LDAR’s significance within the model is 
notable, it does not necessarily indicate that it is the most 
critical factor. Second, logistic regression analysis fur-
ther demonstrated that higher LDAR levels are linked to 
an increased risk of 28-day mortality in sepsis patients, 
which aligns with Boruta’s classification of LDAR as an 
essential feature. This finding reinforces the evidence 

Fig. 2  Relationship between Log2 LDAR and 28-Day ICU Mortality Risk. The solid red line represents the estimated adjusted hazard ratios (HRs), whereas 
the shaded area indicates the 95% CI. The solid red dot corresponds to the inflection point (log2 LDAR = 6.940), representing the minimum hazard ratio. 
The horizontal dashed line indicates a hazard ratio of 1.0. Statistical significance was observed for both the overall model (P-overall < 0.001) and the non-
linear relationship (P-nonlinear < 0.001). LDAR: lactate dehydrogenase-to-albumin ratio; CI: confidence interval

 



Page 11 of 17Shen et al. BMC Cancer          (2025) 25:637 

supporting LDAR as a potential predictive marker for 
28-day all-cause mortality in sepsis patients.

Recent studies have highlighted the lactate dehy-
drogenase-to-albumin ratio as a significant prognostic 
marker in critical care settings. Xiao et al. conducted 
a retrospective study on 5,784 sepsis patients from the 

MIMIC-IV database and reported that elevated LDAR 
values were independently associated with 28-day and 
90-day all-cause mortality [17], and our identifica-
tion of an inflection point at log₂(LDAR) = 6.940 further 
refines this relationship. Similarly, Guan et al. reported 
that an increased LDH/Alb ratio (≥ 10.57) was linked to 

Fig. 3  Subgroup analysis of the associations between LDAR and ICU and hospital mortality outcomes. Each subgroup’s hazard ratio is depicted as a dot, 
with horizontal lines indicating the 95% CI. Red markers represent the adjusted HR, whereas blue markers represent the unadjusted HR. LDAR: lactate 
dehydrogenase-to-albumin ratio; HR: hazard ratio; CI: confidence interval
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increased all-cause mortality in patients with severe sep-
sis [18]. However, while these studies primarily focused 
on general sepsis populations, our work specifically 
addresses septic patients with malignancies—a group 
with unique immune–metabolic challenges.Elevated 
LDAR levels are correlated with increased mortality 
across various conditions, including cardiac arrest, acute 
pulmonary embolism, and acute respiratory distress syn-
drome [14, 19, 20]. These studies highlight the prognostic 
value of LDAR; however, subgroup analyses specifically 
for patients with malignancies have not been performed. 
Patients with malignancies often present unique patho-
physiological characteristics due to tumor progression 
or treatment-related factors, which may contribute to 
elevated LDH levels and reduced albumin levels [21–24]. 
These differences inherently distinguish their LDH and 
albumin profiles from those of the general sepsis popula-
tion, potentially altering the prognostic value of LDAR. 
Our study supports these distinctions, demonstrating 
that the average LDAR in the included cohort was greater 
than that reported in similar studies. Furthermore, In 
our study, metastatic cancer patients typically exhibited 
marked LDH elevations and lower albumin levels, result-
ing in particularly high LDAR values that were directly 
associated with poorer outcomes. By using restricted 
cubic spline analysis, we captured the nonlinear relation-
ship between LDAR and mortality—an aspect that linear 
models in previous studies overlooked. While individual 

markers provide valuable prognostic insights—elevated 
serum LDH has been identified as an independent risk 
factor for 28-day mortality in sepsis [25], and low serum 
albumin levels (for instance, below 2.5  mg/dL) along 
with high SOFA scores at discharge have been linked to 
poorer long-term outcomes in sepsis survivors [26], with 
low albumin consistently associated with increased risk 
of death in severe sepsis regardless of exogenous admin-
istration [27]—these markers alone may not fully capture 
the complex pathophysiology of sepsis in cancer patients. 
In contrast, the composite LDAR leverages the strengths 
of both markers, underscoring its robust prognostic value 
for risk stratification and tailored intervention in this 
high-risk population.

Machine learning has been widely applied in critical 
care settings to enhance risk stratification and improve 
outcome prediction for septic patients. Previous stud-
ies have demonstrated the effectiveness of Machine 
learning models in classifying sepsis subtypes, identify-
ing high-risk patient groups, and optimizing individual-
ized treatment strategies. For instance, Qin et al. utilized 
ML-driven clustering to derive four distinct pediat-
ric sepsis phenotypes based on inflammatory markers 
and organ dysfunction [28]. Their approach provided a 
refined understanding of sepsis heterogeneity, facilitat-
ing personalized therapeutic interventions. Similarly, 
Takkavatakarn et al. developed ML-based serum cre-
atinine trajectory models for acute kidney injury (AKI) 

Fig. 4  Kaplan-Meier survival curves for 28-day ICU mortality stratified by LDAR quartiles. The colored lines represent the survival probabilities for quartiles 
1 (red), 2 (blue), 3 (orange), and 4 (green). The shaded areas indicate 95% confidence intervals. Survival rates decrease progressively from Quartile 1 to 
Quartile 4, with Quartile 4 showing the lowest survival probability by Day 28. The table below displays the number of patients at risk over time for each 
quartile. The statistical significance of differences among quartiles is denoted by P < 0.0001. LDAR: Lactate dehydrogenase to albumin ratio
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in septic patients [29]. Gao et al. developed a random 
forest model using a reduced set of clinical features to 
enhance interpretability [30]. In contrast, our study 
focuses on the prognostic value of the LDAR, a read-
ily available biomarker for mortality risk stratification in 
septic patients with malignancies. Our model’s AUC was 
relatively lower than that of prior studies, which may be 
attributed to several factors. First, many previous ML-
based sepsis prediction models incorporated a broader 
range of inflammatory biomarkers (e.g., procalcitonin, 

interleukins, or C-reactive protein), which were not avail-
able in our dataset because of high missing data rates, as 
well as the unique characteristics of septic patients with 
malignancies, who exhibit distinct immune‒metabolic 
responses that may not align with those of general ICU 
populations.

From a mechanistic perspective, LDAR encapsulates 
the combined effects of LDH and albumin levels, two 
well-established markers of metabolic and inflammatory 
disturbances. Elevated LDH reflects tissue injury and 

Fig. 5  Variable importance identified by the Boruta algorithm. The variables are ranked by importance from left to right, with boxplots representing the 
distribution of importance scores for each variable. Green indicates variables deemed important, yellow represents tentative variables, and red signifies 
unimportant variables. PVD: peripheral vascular disease; CKD: chronic kidney disease; MAP: mean arterial pressure; CPD: chronic pulmonary disease; CVD: 
cardiovascular disease; CHF: congestive heart failure; HR: heart rate; BMI: body mass index; SLD: severe liver disease; WBC: white blood cell; MI: myocardial 
infarction; T: temperature; RDW: red cell distribution width; ALT: alanine aminotransferase; AST: aspartate aminotransferase; INR: international normalized 
ratio; PTT: partial thromboplastin time; PT: prothrombin time; RR: respiratory rate; MST: metastatic solid tumor; SOFA: Sequential Organ Failure Assessment; 
CCI: Charlson Comorbidity Index; ALP: alkaline phosphatase; LDH: lactate dehydrogenase; BUN: blood urea nitrogen; LDAR: lactate dehydrogenase-to-
albumin ratio
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metabolic dysregulation, which are commonly observed 
in sepsis and malignancy due to increased oxidative stress 
and anaerobic glycolysis [21, 31]. Concurrently, hypoal-
buminemia indicates nutritional deficits and immune 
dysfunction, further exacerbating systemic vulnerability 
[32–34]. LDAR, as a composite index, integrates these 
pathological processes, offering a holistic reflection of 
the interplay between inflammation and metabolic fail-
ure. The pronounced mortality risk at higher LDAR 
levels suggests that oxidative stress and immune suppres-
sion may reach critical thresholds, triggering irrevers-
ible organ failure. Our study further revealed that when 
the log2(LDAR) exceeded 6.940, the ICU 28-day mortal-
ity rate significantly increased, highlighting a potential 
threshold beyond which the risk of adverse outcomes 
escalated markedly. This finding underscores the critical 
role of LDAR in reflecting disease severity and its poten-
tial utility as a predictive marker for clinical outcomes in 
sepsis patients.

Our study demonstrated that LDAR outperforms tra-
ditional scoring systems (SAPSII, SOFA) and other bio-
markers (PNI, SIRI, and SII) in predicting both 28-day 
ICU mortality and in-hospital mortality. However, relying 
on a single indicator for prognostic prediction may lack 
accuracy; therefore, LDAR can be integrated into ICU 
scoring systems such as SOFA or SAPSII to improve early 
risk prediction and resource allocation. Early recognition 
of high LDAR (≥ 6.940 in log₂ scale) may help clinicians 
identify patients at risk of deterioration. Aggressive inter-
ventions—such as optimizing hemodynamics, improving 

nutritional support, and close monitoring—could poten-
tially mitigate mortality in this subgroup. Monitoring 
LDAR trends may offer insights into disease progression 
and treatment response; for example, a sustained increase 
could indicate worsening conditions, suggesting the need 
for intensified interventions, whereas a decrease might 
signal recovery, supporting de-escalation decisions. Thus, 
LDAR serves as both a prognostic marker and a dynamic 
indicator of the clinical course.

While this study establishes the significance of LDAR, 
several limitations warrant discussion. The retrospec-
tive, single-center design limits the generalizability of the 
findings. Although rigorous statistical adjustments were 
employed to account for confounders, prospective stud-
ies are needed to confirm the causal relationship between 
LDAR and outcomes. Additionally, the study’s focus on 
baseline LDAR values excludes an exploration of longitu-
dinal trends, which could further enhance its prognostic 
utility. Another limitation lies in the absence of external 
validation, particularly across diverse patient populations 
with varying healthcare practices. Future multicenter 
studies are needed to confirm its broader applicability, 
refine dynamic monitoring, and explore integration with 
other biomarkers for improved predictive models.

Conclusion
This study highlights LDAR as an independent prog-
nostic biomarker for 28-day mortality in septic patients 
with malignancies. Prospective multicenter studies are 

Fig. 6  Model validation: ROC and decision curve analyses. (A) ROC curves for various models in the validation dataset. The AUC values demonstrate the 
predictive performance of each model. (B) Decision curve analysis for the models in the validation dataset. The “Treat None” and “Treat All” strategies are 
represented by the red dotted and black dashed lines, respectively. LightGBM: Light Gradient Boosting Machine; MLP: Multilayer Perceptron; SVM: Sup-
port Vector Machine; GNB: Gaussian Naive Bayes; KNN: K-Nearest Neighbors; XGBoost: Extreme Gradient Boosting; AdaBoost: Adaptive Boosting. ROC: 
Receiver Operating Characteristics; AUC: Area under the curve
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needed to confirm these findings and evaluate longitudi-
nal trends.

Fig. 7  SHAP Analysis for Model Explainability. (A) SHAP (Shapley additive explanations) summary plot demonstrating the impact of each feature on the 
predictive output of the random forest model for 28-day ICU mortality. The features are ranked by their importance. Each dot represents a single predic-
tion, and the color gradient indicates the feature value (red for high and blue for low). SHAP values on the x-axis quantify the impact of each feature on the 
model’s output. (B) SHAP force plot visualizing a specific case in detail. The red bars indicate positive contributions to the prediction of 28-day ICU mortal-
ity, whereas the blue bars represent negative contributions. The base value represents the average prediction probability, and the final output probability 
(f(x)) for this case is 0.65, indicating a 65% predicted probability of mortality. The key contributing features for this prediction include LDAR, ALP, BUN, and 
glucose levels. SHAP: specific additive explanations; LDAR: lactate dehydrogenase to albumin ratio; ALP: alkaline phosphatase; BUN: blood urea nitrogen; 
LDH: lactate dehydrogenase; CCI: Charlson comorbidity index; PTT: partial thromboplastin time; PT: prothrombin time; AST: aspartate aminotransferase; 
SOFA: sequential organ failure assessment; RR: respiratory rate; RDW: red cell distribution width; INR: international normalized ratio
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