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Abstract
Background This study aimed to assess the predictive value of radiomic analysis derived from primary lesions and 
ipsilateral axillary suspicious lymph nodes (SLN) on dynamic contrast-enhanced MRI (DCE-MRI) for evaluating the 
response to neoadjuvant therapy (NAT) in early high-risk and advanced breast cancer (BC) patients.

Methods A retrospective analysis was conducted on 222 BC patients (192 from Center I and 30 from Center II) 
who underwent NAT. Radiomic features were extracted from the primary lesion (intra- and peritumoral regions) 
and ipsilateral axillary SLN to develop radiomic signatures (RS-primary, RS-SLN). An integrated signature (RS-Com) 
combined features from both regions. Feature selection was performed using correlation analysis, the Mann-
Whitney U test, and least absolute shrinkage and selection operator (LASSO) regression. A diagnostic nomogram 
was constructed by integrating RS-Com with key clinical factors. Model performance was evaluated using receiver 
operating characteristic (ROC) and decision curve analysis (DCA).

Results RS-Com demonstrated superior predictive performance compared to RS-primary and RS-SLN alone. The 
DeLong test confirmed that axillary SLNs provide supplementary information to the primary lesion. Among clinical 
factors, N staging and HER2 status were significant contributors. The nomogram, integrating RS-Com, N staging, and 
HER2 status, achieved the highest performance in the training (AUC: 0.926), validation (AUC: 0.868), and test (AUC: 
0.839) cohorts, outperforming both the clinical models and RS-Com alone.

Conclusion Radiomic features from axillary SLNs offer valuable supplementary information for predicting NAT 
response in BC patients. The proposed nomogram, incorporating radiomics and clinical factors, provides a robust tool 
for individualized treatment planning.

Keywords Breast cancer, Neoadjuvant therapy, Radiomics, MRI

DCE-MRI radiomics of primary breast lesions 
combined with ipsilateral axillary lymph 
nodes for predicting efficacy of NAT
Yiyao Sun1†, Qingxuan Liao1†, Ying Fan2†, Chunxiao Cui3, Yan Wang1, Chunna Yang1, Yang Hou4* and Dan Zhao5*

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-025-14004-3&domain=pdf&date_stamp=2025-3-31


Page 2 of 16Sun et al. BMC Cancer          (2025) 25:589 

Introduction
Breast cancer (BC) is the most common malignancy in 
women worldwide [1], with around 40% of advanced-
stage initial diagnoses found to harbor ipsilateral axil-
lary suspicious lymph nodes (SLNs) [2]. Currently, the 
preferred treatment for early high-risk BC and locally 
advanced BC is neoadjuvant therapy (NAT) [3], referring 
to a series of systemic treatments received prior to sur-
gery, which include neoadjuvant chemotherapy, targeted 
therapy, endocrine therapy and radiotherapy [4].

The pathological assessment systems after NAT include 
the Miller-Payne (MP) system, the Residual Cancer Bur-
den (RCB) system, and the American Joint Committee 
on Cancer (AJCC) ypTNM staging system [5, 6]. The MP 
system, commonly used in pathology, primarily evaluates 
the cellularity of residual tumors in the primary breast 
lesion after neoadjuvant therapy [7]. Previous stud-
ies have indicated that patients who achieve a G4 or G5 
pathological response have a 5-year survival rate of 81% 
and 100%, respectively [8]. Achieving a G4-G5 response 
post-NAT indicates sensitivity to treatment, making 
breast-conserving surgery feasible, with overall good sur-
vival and prognosis for these patients [9]. As a surrogate 
endpoint for prediction of long- term prognostication, 
G4-5 has been expected to be achieved after NAT, which 
are independent predictors of response to NAT and 
favorable prognosis [10]. Therefore, there is an urgent 
need to develop an effective predictive method to accu-
rately identify G4-5 patients before NAT. Dynamic con-
trast-enhanced magnetic resonance imaging (DCE-MRI) 
is capable of providing morphological characteristics of 
tumors, offers insights into tumor perfusion and hemo-
dynamic features [11], and thus is the preferred imaging 
modality in evaluating the efficiency of NAT [12]. How-
ever, radiologists can hardly determine which patients 
will benefit from NAT by visual inspection of breast 
DCE-MRI, because there is still no specific marker.

Radiomic analysis involves the high-throughput extrac-
tion of quantitative imaging features, which characterize 
the spatial relationships and consistency of signal intensi-
ties [13]. Compared to tissue biopsies, radiomics inherits 
the non-invasive and repeatable technical advantages of 
imaging examinations, providing a safer and more reli-
able technical approach for patient follow-up and prog-
nosis. Radiomic analysis based on DCE-MRI has been 
proven effective in predicting various biological aspects 
of BC, which include prediction of receptor status [14], 
subtypes [15], and genomics [16]. Previous works have 
demonstrated that the radiomics is capable of predicting 
post-treatment response to NAT in BC patients [17]. Pre-
vious studies generally focus on the primary tumor site 
[18, 19] or combine the peritumoral region [20, 21]for 
radiomic analysis. The results highlight the importance 
of the tumor microenvironment in developing predictive 

models for early prediction of treatment response and 
outcomes. However, published works only focused on the 
primary lesion, and ignored the potential value of ipsilat-
eral axillary SLN diagnosed by baseline MRI.

Emerging evidence indicates that the tumor microen-
vironment in close proximity to the tumor may contain 
additional valuable information, such as angiogenesis 
[22], stromal response [23], and lymphangiogenesis [24] 
activities. This can lead to morphological and struc-
tural changes in SLN, exhibiting varying degrees of 
heterogeneity. Consequently, analyzing only primary 
lesions would neglect crucial information regarding the 
microenvironment of SLN, given the intricate interplay 
between peripheral breast and lymphoid tissues [25]. 
Therefore, to capture full information contained in MRI 
data, analysis should not be limited to the primary lesion 
but should also include the SLN regions.

This study aims to explore predictive value of radiomic 
features from both primary lesion and ipsilateral axillary 
SLN diagnosed by baseline MRI, then evaluate the feasi-
bility of utilizing a radiomics-clinical nomogram based 
on primary lesion, ipsilateral axillary SLNs and important 
clinical factors for predicting response following NAT in 
high-risk early-stage and locally advanced breast cancer 
(LABC).

Methods
Patients
We retrospectively collected 192 cases from Center 1 
(between March 2018 and December 2022) and 30 cases 
from Center 2 (between July 2021 and February 2023) on 
female BC patients who were pathologically diagnosed 
and underwent NAT before surgery. Patients who under-
went NAT were grouped using the Miller-Payne grading 
system. Patients with MP grades G1-3 were classified 
as the NAT-low response group, while those with MP 
grades G4-5 were classified as the NAT-high response 
group [8].

In this study, all core needle biopsy and postopera-
tive specimens underwent pathological hematoxylin and 
eosin (HE) staining as well as immunohistochemical 
(IHC) analysis. Estrogen receptor (ER) and progesterone 
receptor (PR) were considered positive if their expres-
sion was ≥ 1% and negative if < 1%. Ki-67 was classified as 
positive if ≥ 30% and negative if < 30% [26]. For the evalua-
tion of HER2 expression in breast cancer specimens, ini-
tial IHC testing was performed: IHC 3 + was defined as 
positive, while IHC 0 and 1 + were considered negative. 
Specimens with IHC 2 + required further fluorescence in 
situ hybridization (FISH) testing; a positive FISH result 
was defined as HER2-positive, whereas a negative FISH 
result was defined as HER2-negative [26]. The N stag-
ing refers to clinical staging (cN). Clinical N staging is 
primarily determined through physical examination by 
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clinicians and radiological assessments, including imag-
ing methods such as ultrasound and MRI, to evaluate 
the size and characteristics of the axillary lymph nodes 
before treatment [27]. It indicates lymph node involve-
ment: N0 indicates no regional lymph node metastasis; 
N1 indicates ipsilateral axillary lymph node metastasis, 
but the lymph nodes are mobile; N2 indicates metasta-
sis in ipsilateral axillary lymph node, fixed or matted. Or 
ipsilateral internal mammary lymph node metastasis; N3 
indicates ipsilateral infraclavicular lymph node metasta-
sis, or ipsilateral internal mammary and axillary lymph 
node metastasis, or ipsilateral supraclavicular lymph 
node metastasis.

The inclusion criteria are as follows: (1) Patients with 
clinical stage I-III BC; (2) Patients with initially diag-
nosed primary unilateral BC, without distant metasta-
sis, and no history of surgery or other BC treatments; 
(3) Patients who received at least four cycles of NAT 
and underwent surgery after the completion of NAT; 
(4) Patients who underwent breast DCE-MRI and ultra-
sound examinations before NAT; (5) Patients with ipsilat-
eral axillary positive lymph nodes before NAT, diagnosed 
comprehensively by DCE-MRI and ultrasound; (6) Com-
plete pathological data from post-surgical and pre-NAT 
biopsy; and (7) Pathological type: invasive ductal carci-
noma. The exclusion criteria are as follows: (1) Patients 
with bilateral BC; (2) Patients with distant metastasis or 
a history of other malignant tumors; and (3) Incomplete 
pathological, clinical, or imaging data, or inability to fol-
low up. Patients from Center I (n = 192) were divided 
into training and validation sets in a ratio of 2:1. Patients 
from Center II (n = 30) were used to independently test 
the models. Figure  1 depicts a flowchart of the patients 
included in this study. Figure 2 depicts a flowchart of the 
patient inclusion and exclusion.

MRI image acquisition
Pre-treatment DCE-MRI scans were performed within 
one week prior to NAT treatment. All enrolled cases 
underwent contrast-enhanced breast MRI scans before 
NAT. For the DCE-MRI scans, Center I utilized a GE 1.5T 
superconducting MRI scanner, while Center II employed 
both SIEMENS 3.0T and GE 3.0T superconducting MRI 
scanners. After contrast administration, Center I’s GE 
1.5T MRI collected continuous data for 8 consecutive 
scans without intervals, Center II’s SIEMENS 3.0T MRI 
collected continuous data for 5 consecutive scans with-
out intervals, and Center II’s GE 3.0T MRI collected con-
tinuous data for 5 consecutive scans without intervals. 
The detailed MRI sequence parameters can be found in 
the Supplementary Materials (Appendix A). All images 
were downloaded and analyzed in DICOM format from 
the PACS system.

ROI segmentation
The region of interest (ROI) corresponding to the entire 
tumor and ipsilateral axillary SLN was delineated slice-
by-slice on DCE-MRI (peak phase) images by a radiolo-
gist (AA) with 5 years of experience, utilizing ITK-SNAP 
(version 4.0.1). The ROIs encompassed the entirety of the 
primary tumor region and ipsilateral axillary SLN. In this 
experiment, when multiple SLNs are present, the imag-
ing of the SLN with the maximum short-axis diameter is 
used [28]. Underwent validation by a senior radiologist 
(AA) with 15 years of professional experience. The ROI of 
the peritumoral area surrounding the tumor (peritumoral 
ROI) were derived from manually delineated ROIs. To 
achieve this, the original ROIs were radially expanded to 
4 millimeters [29] outside the tumor with Python (v.3.7), 
resulting in the creation of dilated ROIs. Figure  3 illus-
trates the generated ROIs of the primary lesion and ipsi-
lateral axillary SLN in the MRI image.

Feature extraction and selection
The Pyradiomics software package [30] ( h t t p  s : /  / p y r  a 
d  i o m  i c s  . r e a  d t  h e d  o c s  . i o /  e n  / v 3 . 0 . 1 /) was employed to 
compute radiomic features from the tumor region, peri-
tumoral region and ipsilateral axillary SLN. Features 
were extracted from the original peak-phase DCE-MRI 
images [31], encompassing first-order, shape-based 
(2D/3D), and textural features. Furthermore, detailed 
descriptions of post-filtering features are provided 
in the Pyradiomics documentation. Subsequently, a 
total of 5901(1967 × 3 = 5901) features were extracted 
for each patient across three locations, encompass-
ing features from both intra- and peritumoral regions 
(1967 × 2 = 3934), as well as ipsilateral axillary SLN 
(1967 × 1 = 1967). Each set of extracted features under-
went the following procedures: firstly, intraclass cor-
relation coefficient (ICC) analysis was performed on 
the features, retaining those with ICC values exceed-
ing 0.85 [32], the detailed ICC content can be found in 
Appendix C of the Supplementary Materials. Then, the 
Mann–Whitney U test was applied to compare the fea-
tures between two patient groups, which were defined 
based on their response to NAT: NAT-low (patients 
with MP grades G1-3) and NAT-high (patients with MP 
grades G4-5). Features with a p-value greater than 0.05 
were considered statistically insignificant and discarded. 
Lastly, the least absolute shrinkage and selection opera-
tor (LASSO) regression with 10-fold cross-validation was 
carried out using the glmnet package in R (version 3.6.1, 
Boston, MA, USA).

Construction of radiomics model and clinical model
The LASSO method was used for the preliminary feature 
selection of RS from the primary lesion and ipsilateral 
axillary SLN. To address the issue of feature collinearity, 

https://pyradiomics.readthedocs.io/en/v3.0.1/
https://pyradiomics.readthedocs.io/en/v3.0.1/
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the variance inflation factor (VIF) was evaluated. The 
goodness-of-fit of the model was assessed using the 
Hosmer-Lemeshow test and calibration curve analy-
sis. Subsequently, backward stepwise elimination based 
on the Akaike Information Criterion (AIC) was applied 
to remove redundant features and enhance model fit-
ting [33]. Finally, logistic regression was used to assign 
weights to the model and construct a clinical model 
incorporating the most critical clinical factors, which 

were selected based on their statistical significance 
(p-value less than 0.05) and clinical relevance. These fac-
tors were identified through an initial univariate analysis 
followed by multivariate regression to ensure that only 
the most impactful variables were included in the final 
model [34]. The Spearman rank correlation coefficient 
was used to test the correlation between features [35]. 
Features with a correlation coefficient greater than 0.7 
were considered correlated and removed. A diagnostic 

Fig. 1 Diagram of the study design for predicting efficacy of NAT
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nomogram model incorporating the radiomic signatures 
and clinical factors was constructed using the rms pack-
age in R [36].

Outcomes
The primary outcome of this study was to assess the 
ability of the radiomics model to predict the response 
to NAT in BC patients using features from DCE-MRI. 
The model’s performance was evaluated based on accu-
racy (ACC), sensitivity (SEN), specificity (SPE), and area 
under the receiver operating characteristic curve (AUC) 
across the training, validation, and test cohorts. A sec-
ondary outcome was the development and validation of a 
nomogram combining the model’s results with key clini-
cal factors. The nomogram’s performance was evaluated 
for its predictive accuracy and clinical decision-making 
support. Additionally, subgroup analyses were performed 
to assess the model’s performance in HER2-positive and 
HER2-negative patients, aiming to explore how HER2 

status impacts the response to NAT and enhance the 
model’s clinical applicability for personalized treatment.

Statistical analysis
Statistical analysis was performed using SPSS software 
(version 26.0, Chicago, IL) and R software. The nor-
mality and homogeneity of variance assumptions were 
assessed using the Kolmogorov-Smirnov test and Bartlett 
test, respectively. Quantitative data were analyzed using 
independent samples t-test or Mann-Whitney U test, 
while categorical data were analyzed using chi-square 
test or Fisher exact test. Receiver operating character-
istic (ROC) curves were plotted, and optimal cutoff 
values were determined using the maximum Youden 
index [37]. Subsequently, the area under the ROC curve 
(AUC) was calculated to evaluate model performance. 
DeLong’s test was utilized for statistical comparisons of 
each model [38]. For nested models, we used the likeli-
hood ratio test (LRT) to assess AUC differences [39]. To 

Fig. 2 Flowchart of the patient inclusion and exclusion
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assess the clinical utility of the models, decision curve 
analysis (DCA) was applied, and net benefits for a range 
of threshold probabilities were computed using the rmda 
package in R. All tests were two-tailed, and p < 0.05 was 
considered statistically significant.

Results
Patient characteristics
Table l shows the patients’ statistical analysis of the clini-
cal characteristics, including age, clinical T stage, clinical 
N stage, ER status, PR status, HER2 status, Ki67 status, 
and MP grade. N staging and HER2 status were signifi-
cantly associated with response to NAT (p < 0.05) in both 
primary and external cohorts. Age, T staging, ER, PR, 
and Ki-67 were found to be not significantly different 
(P > 0.05). The exact p values of each characteristic were 
listed in Table 1.

Features selection and RS development
Radiomic features were extracted from both primary 
lesion (tumor and peritumoral regions) and ipsilateral 
axillary SLN. Supplementary Figure S1 presents selec-
tion of features relevant to NAT responses using LASSO. 
Table  2 details performances of each selected feature. 

Among the selected features, seven were derived from 
the primary lesion, including three from the tumor 
region and four from the peritumoral region. Addition-
ally, three features were derived from the ipsilateral axil-
lary SLN region. The optimal sets of features identified 
from primary lesion and ipsilateral axillary SLN were 
used to construct radiomic signatures (RSs) named RS-
Primary and RS-SLN, respectively. The combined RS 
(RS-Com) was developed integrating the most predictive 
features from primary lesion and ipsilateral axillary SLN. 
The formula for RS, which integrates the features with 
their corresponding coefficients, can be found in the Sup-
plementary Materials (Appendix B). The Spearman rank 
correlation coefficient results (Figure S2) show that there 
is no correlation among the final features.

Evaluation of the developed RSs
As shown in Table 3, the developed RS derived from ipsi-
lateral axillary SLN (RS-SLN) demonstrated the lowest 
accuracy. The RS derived from primary lesion (RS-pri-
mary) outperformed RS-SLN with regards to AUC, ACC, 
SPE and SEN. By integrating features from both SLN and 
primary lesion, the combined model (RS-Com) generated 
the highest AUC, ACC and SPE. More importantly, we 

Fig. 3 Examples of generated ROIs delineating the primary lesion and ipsilateral axillary SLN in MRI images. Panels (a, b, e, and f ) show a 59-year-old 
patient with NAT-low, featuring the primary lesion (a, e) and ipsilateral axillary SLN (b, f ). Panels (c, d, g, and h) depict a 41-year-old patient with NAT-high, 
illustrating the primary lesion (c, g) and SLN (d, h). The yellow regions represent manually delineated tumor ROIs covering the entire tumor, while the red 
regions indicate peritumoral ROIs. The green regions show manually delineated ROIs of the ipsilateral axillary SLN
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found that in the Delong test of RS-Primary vs. RS-SLN, 
the p-values were all less than 0.05, indicating significant 
differences between the feature information based on the 
primary lesion region and the SLN region. This suggests 
that SLN provides supplementary information to the pri-
mary lesion of BC, thereby enhancing the overall predic-
tive capability (from 0.841 to 0.918). ROC curves of each 
RS were shown in Fig. 4. Table 4 presents the results of 
the subgroup analysis for HER2-positive and HER2-neg-
ative patients. The results show that the AUC and ACC 
for HER2-positive patients are higher than those for 
HER2-negative patients in the RS-primary and RS-com 

models, but no significant difference was observed in the 
RS-SLN model.

Establishment and validation of radiomics nomogram
N staging and HER2 were identified to be predictive on 
response to NAT according to the smallest AIC infor-
mation statistics (p < 0.05) in both primary and external 
cohorts. A clinical-radiomics nomogram was established 
by integrating RS-Com, N staging and HER2 (Fig.  5a). 
Values of each predictor (RS-Com, N staging and HER2) 
were mapped to the “Point” axis and can be converted 
to “Total Point”. The sum of the points of the predictors 

Table 1 Characteristics for all patients from primary and external cohorts
Characteristic Training cohort

(n = 128)
P Validation cohort

(n = 64)
P Test cohort

(n = 30)
P

NAT-low
(n = 70)

NAT-high
(n = 58)

NAT-low
(n = 35)

NAT-high
(n = 29)

NAT-low
(n = 16)

NAT-high
(n = 14)

Age, year (Mean ± SD) 51.34 ± 10.92 53.03 ± 10.17 0.488 53.59 ± 8.95 51.26 ± 10.66 0.206 47.41 ± 8.93 48.50 ± 9.44 0.892
T staging, No (%) 0.192 0.184 0.126
 T1 3 (4.28) 4 (6.89) 2 (88.24) 1 (3.44) 0 (0.00) 1 (7.14)
 T2 54 (77.14) 49 (84.48) 26 (11.76) 25 (86.20) 13 (81.25) 11 (78.57)
 T3 5 (71.42) 2 (3.44) 3 (8.57) 2 (6.89) 1 (6.25) 0 (0.00)
 T4 8 (11.42) 3 (5.17) 4 (1.42) 1 (3.44) 2 (12.50) 2 (14.28)
N staging, No (%) 0.012* 0.039* 0.046*
 N0 21(30.00) 7 (12.06) 14 (40.00) 4 (13.79) 7 (43.75) 2 (14.28)
 N1 42 (60.00) 33 (56.89) 17 (48.57) 18 (62.06) 7 (43.75) 6 (42.85)
 N2 7 (10.00) 16 (27.58) 3 (8.57) 7 (24.13) 2 (12.50) 6 (42.85)
 N3 0 (0.00) 2 (3.44) 1 (2.85) 0 (0.00) 0 (0.00) 0 (0.00)
ER, No (%) 0.102 0.079 0.154
 Positive 48 (68.57) 30 (51.72) 21 (60.00) 17 (58.62) 12 (75.00) 9 (64.28)
 Negative 22 (31.42) 28 (48.27) 14 (40.00) 12 (41.37) 4 (25.00) 5 (35,71)
PR, No (%) 0.066 0.143 0.169
 Positive 41 (58.57) 23 (39.65) 23 (65.71) 13 (44.82) 11 (68.75) 9 (64.28)
 Negative 29 (41.42) 35 (60.34) 12 (34.28) 16 (55.17) 5 (31.25) 5 (35.71)
HER2, No (%) 0.013* 0.050* 0.048*
 Positive 17 (24.28) 29 (50.00) 13 (52.00) 19 (65.51) 6 (37.50) 11 (78.57)
 Negative 53 (75.71) 29 (50.00) 22 (62.85) 10 (34.48) 10 (62.50) 3 (21.42)
Ki-67, No (%) 0.078 0.043* 0.169
 Positive 42 (70.00) 50 (86.20) 29 (82.85) 22 (75.86) 11 (68.75) 9 (64.28)
 Negative 18 (30.00) 8 (13.80) 6 (17.15) 7 (24.14) 5 (31.25) 5 (35.72)
MP, No (%) < 0.001* < 0.001* < 0.001*
 G1 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
 G2 16 (22.86) 0 (0.00) 5 (14.29) 0 (0.00) 5 (31.25) 0 (0.00)
 G3 54 (77.14) 0 (0.00) 30 (85.71) 0 (0.00) 11 (68.75) 0 (0.00)
 G4 0 (0.00) 18 (31.03) 0 (0.00) 14 (48.27) 0 (0.00) 4 (28.57)
 G5 0 (0.00) 40 (68.96) 0 (0.00) 15 (51.72) 0 (0.00) 10 (71.42)
MP, Miller-Payne; ER, Estrogen Receptor; PR, Progesterone Receptor; HER2, Human Epidermal Growth Factor Receptor 2. * P < 0.05
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indicated response to NAT. Calibration curves showed 
good agreements between actual probabilities and nomo-
gram estimated probabilities (Fig. 5b–d) in primary and 
external sets.

As shown in Table  5, the RS-Com outperformed the 
clinical model in terms of AUC and ACC in both primary 
and external validation cohorts. The nomogram showed 
improved AUC and ACC compared with RS-Com and 
clinical model. Figure 6 depicts ROC curves of the devel-
oped nomogram, RS-Com and clinical model. DCA 
curves (Fig. 7) indicate that the nomogram proposed in 
this study will be more beneficial than RS-Com and clini-
cal model across most threshold probabilities.

Discussion
In this study, the peak phase of the DCE-MRI sequence 
was employed as the optimal contrast period to capture 
key features of the primary tumor. Information from 
ipsilateral axillary SLNs was then integrated to provide 
additional predictive insights, contributing to the effec-
tive prediction of NAT outcomes. Finally, the nomo-
gram, incorporating radiomic features along with HER2 
status and N stage, demonstrated good calibration and 
predictive value across primary and external cohorts 
(AUC: 0.926 − 0.839), highlighting its generalizability and 
robustness in predicting various NAT responses.

Table 2 Performance of the selected features from the primary lesion and ipsilateral axillary SLN
Feature Region Cohort Mean ± SD AUC P

low high
log.sigma.3.0.mm.3D_glcm_Imc2 (F1) Tumor Training 0.76 ± 0.07 0.72 ± 0.10 0.639 0.012*

Validation 0.77 ± 0.08 0.73 ± 0.10 0.610 0.133
Test 0.83 ± 0.10 0.77 ± 0.02 0.875 < 0.001

log.sigma.5.0.mm.3D_glcm_InverseVariance (F2) Tumor Training 0.42 ± 0.05 0.40 ± 0.07 0.606 0.039*
Validation 0.40 ± 0.06 0.39 ± 0.07 0.542 0.433
Test 0.45 ± 0.07 0.44 ± 0.11 0.545 0.112

original_shape_Elongation (F3) Tumor Training 0.80 ± 0.09 0.74 ± 0.13 0.634 0.009
Validation 0.82 ± 0.10 0.74 ± 0.14 0.687 0.011*
Test 0.79 ± 0.12 0.72 ± 0.13 0.674 0.105

exponential_glrlm_RunVariance (F4) Peritumoral Training 10.75 ± 4.36 9.17 ± 1.52 0.696 < 0.001*
Validation 10.79 ± 3.70 9.10 ± 1.36 0.667 0.022*
Test 11.07 ± 2.94 12.35 ± 4.38 0.567 0.467

logarithm_glcm_Correlation (F5) Peritumoral Training 0.56 ± 0.11 0.51 ± 0.10 0.626 0.014*
Validation 0.58 ± 0.11 0.53 ± 0.12 0.602 0.163
Test 0.56 ± 0.15 0.56 ± 0.12 0.522 0.165

wavelet.HLH_glcm_Correlation(F6) Peritumoral Training 0.03 ± 0.02 0.04 ± 0.02 0.607 0.038*
Validation 0.03 ± 0.02 0.03 ± 0.03 0.510 0.113
Test 0.06 ± 0.04 0.12 ± 0.06 0.830 0.002*

wavelet.LHL_glszm_SmallAreaEmphasis (F7) Peritumoral Training 0.42 ± 0.04 0.41 ± 0.04 0.616 0.024*
Validation 0.43 ± 0.04 0.41 ± 0.05 0.610 0.133
Test 0.51 ± 0.10 0.58 ± 0.07 0.701 0.061

lbp.3D.k_gldm_DependenceEntropy (F8) SLN Training 3.91 ± 0.34 4.11 ± 0.27 0.660 0.002*
Validation 3.97 ± 0.32 4.14 ± 0.23 0.677 0.015*
Test 3.95 ± 0.33 4.1 ± 0.27 0.638 0.198

wavelet.LHH_gldm_SmallDependenceLowGrayLevelEmphasis (F9) SLN Training 0.00 ± 0.00 0.01 ± 0.00 0.619 0.020
Validation 0.00 ± 0.00 0.01 ± 0.00 0.659 0.029*
Test 0.00 ± 0.00 0.01 ± 0.01 0.612 0.299

wavelet-HLH_glcm_Imc1 (F10) SLN Training 0.08 ± 0.04 0.07 ± 0.02 0.632 < 0.001*
Validation 0.08 ± 0.01 0.07 ± 0.03 0.544 0.397
Test 0.08 ± 0.02 0.07 ± 0.05 0.631 0.240

SLN, suspicious lymph node; SD, standard deviation. *P < 0.05
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DCE-MRI, in addition to providing morphological 
characteristics of tumors, can also offer insights into 
tumor perfusion and hemodynamic properties, mak-
ing it one of the most sensitive modalities for breast dis-
ease detection [40]. Although numerous studies [41, 42] 
have demonstrated that radiomic features derived from 
DCE-MRI can effectively predict the efficacy of NAT in 
BC, most of these studies are small-scale retrospective 
analyses, lacking a standardized approach for selecting 
enhancement time points and scanning sequences. This 
study selected the peak phase as the research period 
primarily because it provides the clearest visualization 
of both the primary breast lesion and suspicious lymph 
nodes, facilitating image segmentation and assessment 
of tumor heterogeneity, thereby offering more predictive 
information [43]. Additionally, selecting the peak phase 
based on the DCE-MRI enhancement time-intensity 
curve helps to better standardize the study methodology 
[44].

To extract more information from the primary lesion, 
previous studies on predicting NAT response extended 
the primary lesion automatically by four millimeters 
[45] but did not analyze the lymph node regions in 
patients who had already undergone SLN. In this study, 
we enhanced the final Com-RS AUC to 0.918 by supple-
menting the training with features of the SLN and incor-
porating intertumoral and peritumoral characteristics. 
Additionally, we compared the predictive values of the 
primary lesion and the SLN for NAT response. We found 
that the RS-Primary derived from the primary lesion 
showed higher prediction capabilities in terms of AUC 

and accuracy compared with RS-SLN. The DeLong and 
LRT test results indicate that the inclusion of SLNs pro-
vided additional supplementary information, suggesting 
that SLNs contain valuable information related to pre-
dicting the response to NAT treatment. A total of 7 and 3 
most important features were selected from the primary 
tumor and SLN, respectively. Most selected features (9 of 
10) belong to the textural features. This indicate that the 
heterogeneity within both the primary tumor and SLN 
were related strongly to the therapeutic efficiency in BC.

Studies have shown that the axillary SLN receives 
about 70% of the lymphatic drainage from BC [46], and 
it is an essential prognostic factor for BC, influencing 
treatment decisions [47]. Research [48] has also indi-
cated that there may be receptor (ER, PR, HER2) dis-
cordance between the core needle biopsy tissue of the 
primary tumor and the axillary SLN. One explanation 
[49] for receptor changes between the axillary SLN and 
the primary tumor is the clonal selection hypothesis, 
which posits that the primary tumor consists of multiple 
clonal subpopulations capable of metastasis, leading to 
different tumor cell phenotypes. This demonstrates the 
heterogeneity between the primary tumor and axillary 
SLN, suggesting that there may be supplementary infor-
mation between them. Therefore, by combining the most 
important features from both the primary tumor and the 
SLN, the developed RS-Com achieved better prediction 
performance in terms of AUC and ACC. Our RS-Com 
was validated with an external cohort and generated con-
sistent results, which may suggest good potential of the 
RS-Com as a new biomarker to contribute to identifying 

Fig. 4 Receiver operating characteristic (ROC) curves of the RSs derived from primary lesion, SLN and in combination for predicting response to NAT in 
training (a), validation (b) and test (c) sets
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patients who are more likely to benefit from NAT. In the 
subgroup analysis for HER2-positive and HER2-negative 
patients, we found that the RS-Com demonstrated a 
stronger ability to distinguish between effective and inef-
fective responses to NAT in HER2-positive BC patients. 
This may be due to the more predictable and consistent 
response of HER2-positive tumors to targeted therapy, 
as these tumors exhibit unique imaging features related 
to treatment outcomes, making it easier for the model to 
identify treatment responses [50].

Previous works [51, 52] have demonstrated that ER 
status, PR status, HER2 status, Ki-67, and axillary lymph 
node status are powerful independent predictors of 
patient response (MP4-5), suggesting that NAT-high 
response may be related to these indicators, particu-
larly the grading of HER2 and axillary SLN. Since HER2 
receptor-positive targeted drugs were incorporated into 
neoadjuvant chemotherapy regimens, especially the use 
of epratuzumab in conjunction with trastuzumab, the 
efficacy of NAT in patients has significantly improved 
[53]. Similarly, a meta-analysis [54] has shown that HER2 
is an independent predictor of axillary lymph node 
response to neoadjuvant chemotherapy. Therefore, in this 
experiment, incorporating HER2 and N stage as effective 
clinical indicators enhanced the predictive performance 
of the nomogram for NAT response. The nomogram 

developed in this study can better assist clinicians in pre-
dicting patient response to NAT.

The limitations of the study are evident in several 
aspects. Firstly, the use of a small patient sample and a ret-
rospective study design introduces the possibility of patient 
selection bias, which could affect the generalizability of the 
findings. To strengthen the validity of the results, it would 
be beneficial to conduct a more extensive study involving 
a larger number of patients from multiple centers. Sec-
ondly, the experiment was performed with a single MRI 
sequence, the inclusion of multiple MRI sequences could 
provide a more comprehensive understanding of the imag-
ing characteristics and enhance the robustness of the study. 
Thirdly, this investigation involves the suspicious axillary 
lymph nodes on the same side as the primary lesion, which 
are identified through clinical diagnosis rather than con-
firmed as metastatic lymph nodes by biopsy. Fourth, future 
work could integrate longitudinal imaging data from mul-
tiple time points to further improve model performance. 
Fifth, future experiments could develop models to predict 
ypT0/Tis ypN0 and identify pathological lymph node-neg-
ative cases in patients with clinically positive lymph nodes. 
Lastly, most of the selected features were high-dimensional 
features, which results in lack of a clear biological explana-
tion for the features and their variations poses a challenge 
in terms of interpretability.

Fig. 5 The clinical-radiomics nomogram integrating RS-Coms, N staging and HER2 for assessing the efficacy of NAT. (a) Nomogram. (b), (c) and (d) Cali-
bration curve analyses of the nomogram in training (b), validation (c) and test (d) sets
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Conclusion
Features from SLN can provide supplementary informa-
tion to the primary BC. The nomogram developed in 
conjunction with N staging and HER2 can effectively pre-
dict response to NAT and may assist clinicians in making 
individual treatment decisions for patients with BC.

Abbreviations
AIC  Akaike information criterion
AJCC  American Joint Committee on Cancer
AUC  Area under the curve
BC  Breast cancer
DCA  Decision curve analyses
DCE-MRI  Dynamic contrast-enhanced magnetic resonance imaging

ER  Estrogen receptor
HER2  Human Epidermal Growth Factor Receptor
ICC  Inter-class correlation coefficient
LASSO  Least absolute shrinkage and selection operator
MP  Miller-Payne
NAT  Neoadjuvant therapy
PR  Progesterone receptor
RCB  Residual Cancer Burden
ROC  Receiver operating characteristic
ROI  Regions of interest
RS  Radiomic signature
SD  Standard deviation
SLN  Suspicious lymph node
VIF  Variance inflation factor

Fig. 7 Decision curve analyses of the nomogram, RS-Com and clinical model. X-axis and y-axis showed the threshold probability and net benefit, respec-
tively. The red, blue, and green lines represent decisions made by the nomogram, clinical model and RS-Com, respectively. The black line represents the 
assumption that all patients were NAT-low and not treated, whereas the gray line represents the hypothesis that all patients are NAT-high and received 
treatment

 

Fig. 6 ROC curves of the nomogram, clinical model and RS-Com in training (a), validation (b) and test (c) sets
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