
R E S E A R C H Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​​:​/​/​​c​r​e​a​​t​i​​
v​e​c​​o​m​m​​o​n​s​.​​o​r​​g​/​l​​i​c​e​​n​s​e​s​​/​b​​y​-​n​c​-​n​d​/​4​.​0​/.

Yu et al. BMC Cancer          (2025) 25:596 
https://doi.org/10.1186/s12885-025-13996-2

BMC Cancer

†Nuo Yu, Yidong Wan, Lijing Zuo and Ying Cao contributed equally 
to this work.

*Correspondence:
Tianye Niu
niuty@szbl.ac.cn
Xin Wang
beryl_wx2000@163.com

Full list of author information is available at the end of the article

Abstract
Purpose  To establish prediction models to predict 2-year overall survival (OS) and stratify patients with different risks 
based on radiomics features extracted from magnetic resonance imaging (MRI) and computed tomography (CT) 
before definite chemoradiotherapy (dCRT) in locally advanced esophageal squamous cell carcinoma (ESCC).

Methods  Patients with locally advanced ESCC were recruited. We extracted 547 radiomics features from MRI and CT 
images. The least absolute shrinkage and selection operator (LASSO) for COX algorithm was used to obtain features 
highly correlated with survival outcomes in the training cohort. Based on MRI, CT, and the hybrid image data, three 
prediction models were built. The predictive performance of the radiomics models was evaluated in the training 
cohort and verified in the validation cohort using AUC values.

Results  A total of 192 patients were included and randomized into the training and validation cohorts. In predicting 
2-year OS, the AUCs of the CT-based model were 0.733 and 0.654 for the training and validation sets. The MRI 
radiomics-based model was observed with similar AUCs of 0.750 and 0.686 in the training and validation sets. The 
AUC values of hybrid model combining MRI and CT radiomics features in predicting 2-year OS were 0.792 and 0.715 in 
the training and validation cohorts. It showed significant differences in 2-year OS in the high-risk and low-risk groups 
divided by the best cutoff value in the hybrid radiomics-based model.

Conclusions  The hybrid radiomics-based model demontrated the best performance of predicting 2-year OS and can 
differentiate the high-risk and low-risk patients.
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Introduction
Esophageal cancer (EC) is the seventh most common 
malignancy and ranks as the sixth leading cause of can-
cer mortality worldwide [1]. Despite the reductions 
in incidence rates attributed to economic growth and 
improved dietary structure, China still bears the highest 
burden of EC, particularly esophageal squamous cell car-
cinoma (ESCC). According to NCCN guidelines, defini-
tive chemoradiotherapy (dCRT) is recommended for 
patients with unresectable or medically inoperable locally 
advanced ESCC. However, a multicenter study from 
China reported a 5-year overall survival (OS) of 30.0% 
following definitive radiotherapy for inoperable, locally 
advanced esophageal cancer and a 5-year OS of 22.0-
27.7% for stage III to IV disease [2]. To further improve 
prognosis, effective predictors are needed to guide the 
individualized treatment.

In addition to clinical characteristics and biomark-
ers, imaging data are increasingly used to provide com-
prehensive information for clinical practice. Radiomics 
involves extracting high-throughput quantitative fea-
tures from medical images and transforming these into 
mineable data to aid clinical decision-making [3, 4]. In 
EC, radiomics has advanced in clinical staging, progno-
sis prediction, treatment response evaluation and toxic-
ity prediction [5–9]. However, research on prognosis 
prediction remains insufficient, and the unstable results 
require further validation. An increasing number of stud-
ies have highlighted that Magnetic Resonance Imaging 
(MRI) has significance in the diagnosis, staging and effi-
cacy evaluation of EC [10–12]. Currently, the use of MRI-
related radiomics in EC is in its early stages. Hirata et al. 
demonstrated that the histogram analysis of the Appar-
ent Diffusion Coefficient (ADC) and basic parameters 
of Diffusion-weighted imaging (DWI) sequence in MRI 
could serve as biomarkers for pathological features and 
prognosis [13, 14]. A multi-modal radiomics model using 
MRI and CT was found to be more accurate in predicting 
tumor response after neoadjuvant chemotherapy in rec-
tal cancer compared to MRI or CT alone [15]. However, 
no radiomics studies in ESCC have yet combined MRI 
and CT to establish models for prognosis prediction. 
Therefore, we hypothesised that the hybrid radiomics 
combining MRI and CT could improve the accuracy of 
the prediction models, enabling better differentiation 
between high- and low-risk patients.

This prospective study aimed to construct a multi-
modal radiomics model combining MRI and CT scans to 
predict the 2-year OS and stratify patients with varying 
risks after dCRT in locally advanced ESCC.

Materials and methods
Patients
This study was approved by the Ethics Committee of 
Cancer Hospital of Chinese Academy of Sciences (Clini-
calTrials.gov: NCT02988921) and conducted according 
to the Declaration of Helsinki. The clinical records and 
scan data of patients who met the inclusion criteria were 
collected from our database. Inclusion criteria: 1) ≥ 18 
years old; 2) Clinical stages T1-4, N0-3, M0-1 (AJCC ver-
sion 8, M1 stage is limited to lymph node metastasis in 
the supraclavicular area); 3) Radiation Equivalent Dose 
in 2 Gy/f (EQD2) ≥ 40 Gy was administered for primary 
site and lymph node metastases. 4) Minimum follow-up 
time was 2 years for surviving patients. Exclusion crite-
ria: (1) The presence of previous malignancies (other than 
curable non-melanoma skin cancer or cervical cancer in 
situ) within 5 years; (2) An active infection requiring sys-
temic treatment; (3) Pregnancy or lactation; (4) Patients 
with major cardiovascular and cerebrovascular arterial 
thromboembolism within 6 months prior to enrollment.

Primary treatment
All recruited patients received definitive chemoradio-
therapy. According to our previous study, simultaneous 
integrated boost radiotherapy (SIB-RT) was performed 
with two dose levels: the planning gross tumor volume 
(PGTV) and planning target volume (PTV) were admin-
istered 59.92 Gy and 50.4 Gy, respectively, at 2.14 Gy and 
1.8  Gy per fraction daily and 5 fractions per week [16]. 
The delineation of the target volume and the dose limits 
for organs at risk (OARs) were regulated by a multicenter 
phase III trial protocol [17]. Concurrent chemotherapy 
was based on a weekly regimen consisting of paclitaxel 
and platinum-based agents. This regimen included pacli-
taxel combined with either cisplatin or carboplatin.

Computed tomography (CT) and magnetic resonance (MR) 
image acquisition
The contrast-enhanced CT (CECT) images of the data-
set were obtained from the CT simulator (Philips Bril-
liance CT Big Bore, Netherlands or Siemens SOMATOM 
Definition AS 40, Germany) before radiation therapy. The 
CT scan parameters were as follows: 120  kV; 180 effec-
tive mAs; beam collimation of 16 × 1.5  mm; a matrix of 
512 × 512; a pitch of 0.813; and a gantry rotation time of 
0.75  s. A dynamic contrast-enhanced CT scan was per-
formed after intravenous administration of 2.0-2.5  ml/s 
nonionic contrast material (Ioversol Injection, 100  ml, 
320 mg/ml, Hengrui, Jiangsu, China) using power injec-
tion at a rate of 3 ml/s followed by saline flush (20 ml). 
Arterial phase images were acquired at 43  s post-injec-
tion. The slice thickness of the reconstructed CT image 
was 5.0 mm. Arterial phase CT images were retrieved for 
image feature extraction.
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Once the CT simulation was completed, the MRI 
images were performed using the MRI simulator (GE 
Discovery MR 750w 3.0T, General Electric Company, 
USA) to reduce the difference between CT and MRI 
images caused by body deformation. The MRI scan 
included high-resolution turbo T2-weighted imag-
ing (T2WI), T2-weighted imaging fat suppression 
(T2WI-FS), and diffusion-weighted imaging (DWI). 
The radiomics features were extracted from the T2WI-
FS sequence, and the parameters of this sequence were 
as follows: TR/TE = 11250ms/78ms, frequency = 352, 
FOV = 480  mm×480  mm, bandwidth (KHz) = 83.3, slice 
thickness(mm) = 5, slice spacing(mm) = 0.

Patients were included and randomized into the train-
ing and validation cohorts at a ratio of 7:3. Fig  1 shows 
the workflow of the study. After acquisition of the pre-
treatment CT and MRI images, at least two radio-
therapists with more than 10 years of experience each 
delineated the target volume, and another experienced 
radiotherapist reviewed the volume of interest (VOI). 

The radiomic features were then extracted from the VOIs 
and screened. The features most associated with progno-
sis were selected to build the predictive models.

VOI acquisition and feature extraction
After patients underwent CT simulation scanning, the 
images were uploaded onto the Pinnacle system. Two 
radiologists with at least 10-year experience of imag-
ing diagnosis and segmentation manually delineated the 
gross tumor volume (GTV), representing the primary 
tumor based on the CT images independently. Radi-
ologists delineated the CT images while referencing 
corresponding MRI images to ensure accurate tumor 
boundary identification. Tumor areas were distinguished 
from normal tissues, such as the lungs, heart, and spinal 
cord, and gross tumor volumes were delineated as VOIs 
on CT images. These delineated VOIs on CT images 
were assumed to correspond with the VOIs on the MRI 
images after co-registration. Registration between CT 
and MR images was performed using the software (MIM 

Fig. 1  The workflow of this study
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SurePlan MRT, MIM Software Inc., Cleveland, USA). 
The VOIs from CT images were applied to MRI images 
following co-registration. Subsequently, to standardize 
image specifications across different CT and MR scan-
ners, all slices were resampled to a 1 × 1 × 1 mm3 voxel 
space size, and the grey levels were normalized to 64 lev-
els for radiomics feature calculation [18]. For each modal-
ity, the MATLAB 2018b (MathWorks, Natick, MA, USA) 
software extracted 547 radiomics features [19]. These 
features include 7 shape features, 7 histogram features, 
22  Gy-level co-occurrence matrix (GLCM) features, 
13 Gy-level run-length matrix (GLRLM) features, 13 Gy-
level size zone matrix (GLSZM) features, 5 neighborhood 
gray-tone difference matrix features (NGTDM), and 480 
wavelet-based features [20]. A total of 1094 radiomics 
features including CT and MR modalities were extracted 
from each patient.

Radiomics feature selection and model construction
To eliminate the redundant features, an internal associa-
tion assessment was conducted using the Pearson corre-
lation method. The redundant features with high internal 
association (correlation coefficient (CC) > 0.90) were 
excluded [21]. Furthermore, the least absolute shrinkage 
and selection operator (LASSO) for Cox algorithm was 
used to identify features highly correlated with survival 
outcomes in the training cohort. The LASSO algorithm 
controls the number of selected variables by adjusting the 
parameter λ. The objective function of the LASSO algo-
rithm is shown in Function (1), where y is the truth label, 
X is the feature matrix, β is the coefficients of features, 
and λ is the tuning parameter [22]. The LASSO method 
aims to minimize the objective function. As the value of 
λ increases, the coefficients of features decrease in mag-
nitude. Only features with coefficients larger than zero 
are selected. The optimal λ in the LASSO algorithm was 
determined using 10-fold cross-validation. The λ result-
ing in the smallest mean difference between the pre-
dicted and actual survival in the cross-validations was 
used to select final factors. A radiomics score was derived 
from the selected features and their corresponding coef-
ficients. The survival prediction model was constructed 
using the radiomics score and the Cox proportional haz-
ards model.

	
1
2

||y − Xβ||22 + λ||β||1� (1)

Prognostic performance evaluation
The predictive performance of the radiomics score was 
evaluated in the training cohort and verified in the vali-
dation cohort using the concordance index (C-index). 
The patients were stratified into a low- or high-risk group 
based on the predicted risk using the proposed model. 

The receiver operating characteristics (ROC) curves 
were used to determine the optimal cutoff risk for patient 
stratification. The Youden index was used to select the 
best cutoff value where the sum of sensitivity and speci-
ficity is maximized [23]. The Kaplan-Meier (KM) survival 
analysis and log-rank test were used to compare the dif-
ference between the survival curves of the two groups. 
The C-index and the area under the ROC (AUC) values 
for 2-year survival were used to compare the perfor-
mance of the radiomics models based on MR, CT and 
hybrid modalities in the validation cohorts. Additionally, 
a clinical model was constructed for further comparison.

Statistical analysis
The endpoint of this study was the 2-year OS, which was 
defined as the time from the first day of radiotherapy to 
death or last follow-up. Statistical analysis was performed 
using R software (R Core Team. R: A language and envi-
ronment for statistical computing. R Foundation for Sta-
tistical Computing, Vienna, Austria. URL: ​h​t​t​p​:​/​/​w​w​w​.​R​
-​p​r​o​j​e​c​t​.​o​r​g​​​​​, 2016). The Mann–Whitney U test and chi-q 
test were used to compare the difference in patient clini-
cal characteristics in the two cohorts. Overall survival 
(OS) was calculated by the Kaplan-Meier method and 
compared using the log-rank test. Statistical significance 
was set at P < 0.05.

Results
Patient characteristics
The clinical characteristics of all patients are summarized 
in Table 1. 210 patients were recruited for this trial, and 
18 patients were excluded, resulting in 192 patients being 
included (Fig. 2). A total of 132 patients received concur-
rent chemoradiotherapy, of whom 100 received paclitaxel 
and cisplatin and 32 received paclitaxel and carboplatin. 
Of the 192 patients, 135 were randomly assigned to the 
training cohort and 57 to the validation cohort in a 7:3 
ratio. The median age of the two groups was 62 (range, 
47–83 years) and 66 (range, 48–92 years), respectively. 
There was no difference between the training and vali-
dation groups in terms of gender, tumor location, tumor 
length, T stage, N stage, or total TNM stage, with or 
without concurrent chemotherapy and pre-treatment 
neutrophil to lymphocyte ratio (pre-NLR).

For the entire cohort, the median follow-up was 39.9 
months. The median OS was 19.7 months (95% CI, 
16.3 to 23.1 months), and the 2-year OS was 42.1%. The 
median OS in the training group was 19.5 months (95% 
CI, 15.5 to 23.4 months), and 19.8 months (95% CI, 11.9 
to 27.8 months) in the validation group. The 2-year OS 
in training and validation groups was 41.5% and 43.7%, 
respectively.

http://www.R-project.org
http://www.R-project.org
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Feature selection and model evaluation
Firstly, 540 radiomics features were extracted from CT 
images. 241 features were retained after correlation 
analysis, and 8 features were used to construct a CT-
based prediction model after LASSO feature selection 
through a ten-fold cross validation experiment (Fig S1). 
Secondly, 540 radiomics features were extracted from the 
MRI modality to construct a 2-year OS prediction model. 
We used the correlation analysis method to select 230 

features. Then, the ten-fold LASSO algorithm selected 4 
radiomics features to construct the MRI-based predic-
tion model (Fig S2). In addition to single-modality analy-
sis, we examined the performance of modality fusion. We 
fused two types of features for radiomics modeling. A 
total of 471 handcrafted features were retained after the 
correlation analysis process. Then, 6 features, including 
2 CT-based features and 4 MRI-based features (CT_ZP_
LHL, CT_Strength_HHH, MR_inf1h_LLL, MR_Busy-
ness_LHL, MR_cprom_LHH, and MR_LZHGE_HHL) 
were retained through the LASSO algorithm (Fig S3). 
Considering the clinical predictive potential, we also ran 
the clinical model based on the clinicopathologic char-
acteristics of the patients. A total of 21 clinical charac-
teristics collected in this study (sex, age, tumor position, 
distance from the incisor to the upper boundary of the 
tumor, tumor length, clinical T, N, M and total stage, pre-
treatment and nadir lymphocyte, neutrophil, neutrophil 
to lymphocyte ratio (NLR), hemoglobin, albumin and 
total protein) were selected using the LASSO method 
(Fig S4).

In the training cohort, the CT-based prediction model 
achieved a C-index score of 0.677 (95%CI: 0.562–0.791), 
and in the validation cohort, the prediction model pro-
duced a C-index score of 0.608 (95%:0.413–0.802). 
The C-index value of the MRI-based model was 0.685 
(95%CI: 0.573–0.798) and 0.667 (95%CI: 0.484–0.851) 
for the training and validation cohorts, respectively. For 
the hybrid radiomics model, the training set achieved a 
C-index value of 0.716 (95% CI: 0.606–0.826), and the 
validation set achieved a C-index value of 0.667 (95% 
CI: 0.497–0.837). The proposed clinical model showed a 
lower prediction performance than all radiomics mod-
els, with a C-index of 0.656 (95%CI: 0.541–0.771) for the 
training cohort and 0.555 (95%CI: 0.340–0.769) for the 
validation cohort.

Subsequently, the AUC values for predicting 2-year 
OS were evaluated for two cohorts. The result showed 
an AUC of 0.733 for the training cohort and an AUC of 
0.654 for the validation cohort in the CT-based model 
(Fig. 3A and B). The MRI-based model showed the AUCs 
of 0.750 and 0.686 for the training and validation cohorts, 
respectively (Fig. 3C and D). The hybrid model displayed 
the best performance among all models, with AUC values 
of 0.792 and 0.715 for the training and validation cohorts, 
respectively (Fig. 3E and F). The AUC values of the clini-
cal model were lower than those of the radiomics-based 
models, with AUCs of 0.737 and 0.538 for the training 
and validation sets, respectively (Fig. 3G and H).

At the same time, we calculated a cutoff value based 
on Youden index with a radiomics score of 0.041, 0.013 
and 0.005 in CT, MRI and hybrid radiomics models, 
respectively. The patients were divided into high-risk 
and low-risk groups based on the cutoff value. The KM 

Table 1  Baseline characteristics
Characteristics Training 

cohort
Validation 
cohort

p-
val-
ue

All 135 (70.3) 57 (29.7)
Gender 0.083
  Male 110 (81.5) 40 (70.2)
  Female 25 (18.5) 17 (29.8)
Age (years) 0.002
  Mean 62 66
  Range 47–83 48–92
Tumor location 0.693
  Cervical 3 (2.2) 3 (5.3)
  Upper 28 (20.7) 10 (17.5)
  Middle 71 (52.6) 28 (49.1)
  Lower 33 (24.4) 16 (28.1)
Tumor length (cm3) 0.414
  ≤5 75 (55.6) 28 (49.1)
  >5 60 (44.4) 29 (50.9)
T stage 0.335
  T2 11 (8.1) 1 (1.8)
  T3 78 (57.8) 38 (66.7)
  T4a 39 (28.9) 16 (28.1)
  T4b 7 (5.2) 2 (3.5)
N stage 0.576
  N0 5 (3.7) 2 (3.5)
  N1 52 (38.5) 16 (28.1)
  N2 62 (45.9) 31 (54.4)
  N3 16 (11.9) 8 (14.0)
M stage 0.015
  M0 117 (86.7) 41 (71.9)
  M1 18 (13.3) 16 (28.1)
cTNM stage 0.112
  II 8 (5.9) 3 (5.3)
  III 62 (45.9) 22 (38.6)
  IVA 47 (34.8) 16 (28.1)
  IVB 18 (13.3) 16 (28.1)
Concurrent 
Chemotherapy

0.122

  Yes 89 44
  No 46 13
Pre-NLR 0.194
  Mean ± SD 2.67 ± 1.14 2.43 ± 1.15
  Range 0.89–7.42 0.95–6.14
Abbreviation: Pre, pre-treatment; NLR, neutrophil to lymphcyte ration; SD, 
standard deviation
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curves for OS showed a significant difference between 
the two groups of patients in the training and validation 
cohorts. The OS of the CT-based model for two groups 
are shown in Fig. 4A and B (low-risk and high-risk in the 
training group, P < 0.001: 2-year OS 67.2% vs. 27.1%; vali-
dation group: 2-year OS 62.0% vs. 30.3%, P = 0.024). For 
the MRI-based model, the p-value for OS between low-
risk and high-risk patients was less than 0.05 in both the 
training and validation cohorts. The detailed OS curves 
are shown in Fig.  4C and D (low-risk and high-risk in 
training group: 2-year OS 71.2% vs. 22.9%, P < 0.001; 
validation group: 2-year OS 57.7% vs. 26.9%, P = 0.012). 
As for the hybrid model, a significant difference in OS 
was observed between low-risk and high-risk groups in 
both cohorts. The detailed OS KM curves involving two 
groups are also shown in the Fig. 4E and F (low-risk and 
high-risk in training group: 2-year OS 68.9% vs. 18.9%, 
P < 0.001; validation group: 2-year OS 55.3% vs. 23.8%, 
P = 0.018). The significant difference in OS between low-
risk and high-risk patients was not observed in the clini-
cal model with a p-value of 0.210. The OS was presented 
in Fig.  4G and H (low-risk and high-risk in training 
group: 2-year OS 59.7% vs. 20.6%, P < 0.001; validation 
group: 2-year OS 48.5% vs. 37.5%, P = 0.210).

Discussions
Our study constructed a multi-modal CT and MRI 
radiomics prediction model of CT and MRI features, 
which demonstrated potential to predict 2-year OS of 
ESCC patients. It showed that our radiomics model con-
tributed more than the clinical model to the stratification 
of low-risk and high-risk patients in terms of overall sur-
vival. To our knowledge, this is the first study to predict 
the OS of ESCC patients using integrated CT and MRI 
radiomics features.

Compared to MRI-based radiomics, most results in 
EC radiomics come from positron emission tomogra-
phy-computed tomography (PET-CT) and CT images 
[7, 24–27]. CT is the most basic imaging modality in 
the staging of EC. The CT images can be expediently 
obtained and reused to extract deeper information. 
Therefore, CT-based radiomics has made great prog-
ress in predicting the prognosis of patients with EC. A 
recent similar study led by Xie demonstrated the poten-
tial of CT radiomics and machine learning for diagnos-
ing occult ESCC, highlighting radiomics’ versatility 
across diagnostic and prognostic applications and con-
ducted both internal and external validation, yielding 
reliable results [28]. Another study extracted sub-region 
based radiomics features from EC patients receiving 
(chemo)radiotherapy and confirmed that the sub-region 
based radiomics model had AUC values of 0.821 in the 

Fig. 2  CONSORT diagram
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training group and 0.805 in the validation group in pre-
dicting 2-year OS, higher than the AUC values of 0.733 
and 0.654 in our study [22]. This may be due to the small 
number of patients in their experiment, only 87 in the 
training group and 46 in the validation group. Tang et 
al. further found that the combination of radiomics and 
clinical features performed better than either of them in 
predicting early recurrence of locally advanced ESCC 
(AUC values of combined group vs. radiomics group vs. 
clinical group in validation groups: 0.809 vs. 0.646 vs. 

0.658) [26]. A multicenter study further developed and 
validated the hybrid radiomics nomogram of radiomics 
signatures, deep-learning signature and clinical factors in 
predicting local recurrence of ESCC patients after defini-
tive (chemo)radiotherapy (C-index in training, internal 
validation and external validation set: 0.82 vs. 0.78 vs. 
0.76) [29]. However, our study found that the predic-
tive performance of clinical factors was lower than that 
of radiomics. Combining clinical factors with radiomics 
would reduced the accuracy of the prediction model. 

Fig. 3  The receiver operator characteristic (ROC) curves of the training cohort and validation cohort of CT based radiomics model (A, B), MRI based 
radiomics model (C, D), hybrid of CT and MRI based radiomics model (E, F) and clinical model (G, H)
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This may be due to the fact that the radiomics features 
had much better prediction performance than the clini-
cal features, so adding clinical factors did not improve 
the accuracy of the model. Therefore, we did not include 
clinical factors in the integrated model.

Unlike the flourishing CT radiomics studies, MRI-
based radiomics research is still relatively rare and in 
their infancy. Hirata et al. explored the relationship 
between apparent diffusion coefficient (ADC) related 
features and prognosis and demonstrated that histo-
gram analysis of ADC could predict recurrence-free sur-
vival and disease-specific survival in ESCC patients [13]. 
Chu et al. constructed a combined model of MRI-based 
radiomics and clinical features and showed high accu-
racy in predicting OS (C-index in training and validation 
groups: 0.730 and 0.712) and DFS (C-index: 0.714 and 

0.729) [30]. However, in our study, the clinical factors are 
less effective in predicting prognosis, but the combina-
tion of the two imaging radiomics has better predictive 
efficacy. MRI has been shown to be very useful in deter-
mining the T stage, particularly when the tumor is not 
clearly demarcated from the trachea and great vessels in 
EC [31, 32]. The combination of MRI and CT radiomics 
can provide additional information about tumor biologi-
cal characteristics and heterogeneities, which are proved 
to be associated with the prognosis of patients with rec-
tal cancer [33, 34]. Li et al. demonstrated that an MRI-
based radiomics model was more effective than CT in 
predicting therapeutic response after neoadjuvant che-
motherapy for locally advanced rectal cancer. The com-
bination of MRI and CT radiomics achieved the highest 
AUC value of 0.925 in the training group and 0.93 in 

Fig. 4  The Kaplan-Meier curves of Overall Survival of training cohort and validation cohort of CT-based radiomics model (A, B), MRI-based radiomics 
model (C, D), the hybrid of MRI and CT based radiomics model (E, F) and the clinical model (G, H)
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the validation group [15]. However, no similar study on 
hybrid MRI and CT radiomics has been conducted in EC. 
MRI is rarely used in the diagnosis of EC due to respi-
ratory movement and heartbeat affecting the sharpness 
of MRI imaging. Additionally, the coils used to scan the 
cervical and chest esophagus are different, making it pos-
sible to scan the entire esophagus once [35]. However, 
advancements in MRI technology have made long-range 
and whole-body MRI scans clinically available [36, 37]. 
Moreover, techniques such as the ultrasound-driven 4D 
MRI method and sensor systems have been developed 
for respiratory motion imaging and respiratory gating in 
thorax and abdomen scans [38, 39]. Additionally, MRI 
has certain advantages in staging T3 and T4 patients and 
determining resectability for surgeons in ESCC, mak-
ing it an increasingly important tool in the diagnosis and 
treatment of EC.

This study found that the hybrid model had the best 
predictive ability compared to the MRI or CT models. 
Additionally, the MRI model performed slightly better 
than the CT model in predicting the 2-year OS of ESCC 
patients after dCRT, achieving an AUC of 0.715 in the 
validation group, which is better than some single-modal 
image studies [7, 27]. Moreover, the radiomics models 
were far more accurate than the clinical factors in terms 
of prediction accuracy. It is hypothesized that pre-treat-
ment imaging captured more detailed and individual 
features of the patient group, thus better reflecting the 
tumor heterogeneity and providing the predictive value. 
Furthermore, the hybrid radiomics model was used to 
significantly stratify high-risk and low-risk patients, pro-
viding valuable guidance for the follow-up treatment of 
ESCC patients.

Recent studies have shown that combining radomics 
with biomarkers such as HER2 and CD44 may lead to 
promising results in predicting prognosis [40]. Xie’s study 
suggested a significant correlation between copy number 
alterations (CNA) and radiomics features [22]. The com-
bination of genomics and radiomics may have greater 
predictive potential in clinical practice and may reveal 
biological pathways associated with cancer. In recent 
years, it has been confirmed that certain features in the 
image of pathological tissue can be used to predict sur-
vival in non-small cell lung cancer [41]. In rectal cancer, 
a combination of histopathological and radiomics fea-
tures can predict tumor response better than three sin-
gle-modality prediction models in terms of AUC values 
(0.812, 95%CI 0.717–0.907 vs. 0.630, 95%CI 0.507–0.754; 
0.716, 95%CI 0.580–0.852; 0.733, 95%CI 0.620–0.845) 
[42]. In the future, the combination of multi-disciplin-
ary omics may provide more prognostic information for 
survival prediction and model construction in ESCC. 
In addition, theranostics, integrating diagnostic imag-
ing with therapy, exemplifies future imaging-based 

treatment strategies. For instance, PET-CT radiomics 
combined with metabolic parameters has shown poten-
tial in assessing treatment responses and guiding person-
alized care for esophageal cancer [43–45]. Furthermore, 
artificial intelligence (AI)-driven radiomics models are 
advancing survival prediction and treatment stratifica-
tion, enhancing diagnostic and therapeutic precision 
[46]. Future directions should focus on multi-omics 
integration and advanced machine learning techniques 
to enhance radiomics’ clinical utility. These efforts may 
bridge diagnostic imaging with therapeutic applications, 
offering a comprehensive approach to esophageal cancer 
management.

Our study has some limitations. Firstly, it was a sin-
gle-center clinical trial and lacked external validation. 
Secondly, the small patient cohort and limited imag-
ing data may affect result accuracy. Another limitation 
of our study is the use of manual segmentation, which 
may be subject to variability. The segmentation method 
is crucial, as differences in manual segmentation among 
different physicians can be significant, leading to lower 
consistency. Future work could include a comparison of 
semi-automatic or automatic segmentation methods, as 
suggested by studies like Cairone et al., to improve accu-
racy and efficiency in tumor delineation and radiomics 
analysis [47]. Finally, to ensure high repeatability of 
images and positions, we acquired images of MRI posi-
tioning on the same day as CECT scans. As a result, con-
trast-enhanced MRI images were unavailable for analysis. 
Moreover, we did not include the ADC calculated from 
the DWI phase in our analysis. Further analysis of this 
data may enhance model prediction accuracy in the 
future.

In conclusion, multi-modal radiomics combining MRI 
and CT improved 2-year OS prediction in ESCC patients, 
outperforming single-modality radiomics and clinical 
features, and enabling better risk stratification.
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