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Abstract 

Background The high occurrence of treatment resistance in patients with hormone receptor-positive (HR +) breast 
cancer is a global health concern. Thus, effective immunotherapy must be developed. The public neoantigens, estro-
gen receptor 1 (ESR1) and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), shared 
by HR + and endocrine-resistant breast cancer, could be ideal targets for immunotherapy; however, their presentation 
by human leukocyte antigen class II (HLA II) and recognition by CD4 + T cells remain largely unknown.

Methods Seven mutations in ESR1 and ten mutations in PIK3CA were subjected to major histocompatibility complex 
(MHC)-peptide binding analysis and enzyme-linked immunospot (ELISPOT) assays using peripheral blood mono-
nuclear cells (PBMCs) from healthy donors carrying DRB4*01:03, or DRB4*01:03 and DPA1*02:02-DPB1*05:01 (DP5). 
DRB4*01:03- or DP5-restricted peptides were inferred from binding measurements and ELISPOT assays. Other DRB1 
alleles that can also present these mutant peptides were identified using binding measurements.

Results Positive IFN-γ responses by CD4 + T cells were detected for most peptides. The peptides that contain 
ESR1 (E380Q) and PIK3CA (N345K, E542K, E545K/A, E726K, H1047R/L/Y, and G1049R) are presumably restricted 
by DRB4*01:03, which is frequently found globally (carrier frequency: 35–63%), or by DRB4*01:03 and DRB1*04 alleles. 
Some PIK3CA (H1047R/L/Y) peptides can also be presented by DRB1*01:01, DRB1*09:01, DRB1*11:01, and DRB1*15:02. 
ESR1 (Y537S/N, D538G) peptides are potentially restricted by DP5, a frequently found allele in East Asian populations, 
and DRB1*01:01 and DRB1*15:01.

Conclusions Mutations in ESR1 and PIK3CA were recognized by CD4 + T cells from healthy donors through potential 
restriction by common HLA II alleles. Further studies are warranted to elucidate the landscape of HLA II presentation 
and validate the clinical applicability of these mutations for the immunotherapy of patients with endocrine-resistant 
breast cancer.
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Background
Breast cancer is the leading cause of cancer-related 
deaths worldwide [1]. Hormone receptor-positive (HR +) 
breast cancer accounts for approximately 70% of all cases 
of breast cancer [2]. Despite advances in endocrine thera-
pies, treatment resistance remains a challenge, resulting 
in limited treatment options and poor prognosis in a sub-
stantial number of patients [3]. HR + breast neoplasm has 
been considered a “cold” tumor with low tumor muta-
tional burden (TMB) [4], and thus, is a challenging target 
for immunotherapy [5]. However, TMB does not always 
correlate with response to immune checkpoint inhibi-
tors (ICIs) [6], and mRNA-based neoantigen vaccines 
can enhance immunotherapy in combination with ICIs 
in cancers with low TMB cancers [7–9], indicating that 
public neoantigens in HR + breast cancer might be tar-
geted by immunotherapy.

Mutations in estrogen receptor 1 (ESR1) and phos-
phatidylinositol-4,5-bisphosphate 3-kinase catalytic 
subunit alpha (PIK3CA) are major drivers of treatment 
resistance in HR + breast cancer [10]. ESR1 mutations 
are observed in 30–40% of patients resistant to endo-
crine therapies such as aromatase inhibitors [11]. ESR1 
encodes estrogen receptor alpha (ERα), a member of the 
nuclear hormone receptor family, and regulates the genes 
involved in cell proliferation and differentiation [3]. ERα 
is crucial for hormone-sensitive tumor growth of breast 
and endometrial cancers [12, 13]. Mutation hotspots in 
ESR1 are found within the ligand-binding domain and 
contribute to hormone-independent tumor growth [14]. 
PIK3CA mutations are found in approximately 30% of 
breast cancers and in endometrial and colorectal cancers 
[15, 16]. PIK3CA encodes for the p110α subunit of class 
I phosphatidylinositol 3-kinase (PI3K), an important fac-
tor of the PI3K/AKT/mammalian target of rapamycin 
(mTOR) pathway [17]. Mutations in PIK3CA accumulate 
within the kinase and helical domains [18].
ESR1 and PIK3CA mutations are often shared by 

patients with HR + breast cancer with poor progno-
sis and are considered public neoantigens because they 
contribute to the formation of a “hot” immune environ-
ment [19–21] through recognition by T cells. In fact, 
CD8 + T cell responses for ESR1 (E380Q, Y537S, D538G) 
in human leukocyte antigen (HLA)-A2-positive donors 
[22], ESR1 (Y537S/N) in breast cancer patients [23], 
ESR1 (Y537S/N/C, D538G) in healthy donors and breast 
cancer patients [24], and PIK3CA (H1047L) in HLA-
A*03:01 or A*11:01-positive healthy donors [25, 26] have 
been reported; however, CD4 + T cell responses and HLA 
class II (HLA II) restriction patterns of these mutations 
remain largely unknown. T helper (Th) cells play pivotal 
roles in cancer immunosurveillance [27] and the induc-
tion of strong antitumor immune responses against 

neoantigens [28–34]. Vaccines targeting both HLA I and 
II in combination with ICIs are considered one of the 
most promising immunotherapeutic approaches [35]. 
HLA II-restricted neoantigen epitopes have been identi-
fied in head and neck squamous cell carcinoma and mel-
anoma [36, 37] but not fully explored in breast cancer.

To identify the hotspot mutations of ESR1 and PIK3CA 
that can be presented by common HLA II and recog-
nized by CD4 + T cells, we analyzed HLA II binding 
and CD4 + T cell responses of ESR1 and PIK3CA muta-
tions through MHC-peptide binding measurements and 
enzyme-linked immunospot (ELISPOT) assays, respec-
tively. The peripheral blood mononuclear cells (PBMCs) 
from healthy donors were used for the ELISPOT assays. 
HLA restriction was inferred based on penetrance, bind-
ing measurements, and the presence of binding motifs.

Methods
ESR1 and PIK3CA mutations
Hotspot mutations in ESR1 and PIK3CA were selected 
from the Catalog of Somatic Mutations in Cancer (COS-
MIC) database (https:// cancer. sanger. ac. uk/ cosmic), a 
comprehensive resource for exploring somatic mutations 
in cancer [38], based on COSMIC_Count, which indi-
cated the number of reports of specific mutations in the 
COSMIC database.

HLA II alleles
DRB4*01:03 and DPA1*02:02-DPB1*05:01 (DP5) were 
used for the MHC-density assay. These alleles are fre-
quently found in East Asians: DRB4*01:03 (allele fre-
quency: 32.7%, carrier frequency: 54.7%) [39] and 
DPB1*05:01 (allele frequency: 34.2–37.4%, carrier fre-
quency: 56.7–60.8%) [40]. The following DRB1 alleles 
were also used in the MHC-density assay: DRB1*01:01, 
DRB1*03:01, DRB1*04:01, DRB1*04:05, DRB1*07:01, 
DRB1*09:01, DRB1*11:01, DRB1*12:01, DRB1*13:01, 
DRB1*15:01, and DRB1*15:02. These alleles have been 
frequently detected in several populations. The car-
rier frequencies of these alleles were calculated from 
the following datasets in the allelefrequencies.net data-
base [41]: European (USA NMDP European Cauca-
sian (n = 1,242,890)), Hispanic (USA Hispanic pop 2 
(n = 1,999)), East Asian (China Hubei Han (n = 3,732)), 
Southeast Asian (Malaysia Peninsular Malay (n = 951)), 
South Asian (India Central UCBB (n = 4,204)), Mid-
dle Eastern (Saudi Arabia pop 6 (n = 28,927)), and Afri-
can American (USA NMDP African American pop 2 
(n = 416,581)). The frequency of DRB4*01:03 indicates 
the combined frequency of DRB4*01:01 and DRB4*01:03, 
calculated as the sum of the linked DRB1 alleles.

https://cancer.sanger.ac.uk/cosmic
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Binding prediction
The binding of HLA II and peptides was predicted using 
NetMHCIIpan-4.1 (https:// servi ces. healt htech. dtu. dk/ 
servi ces/ NetMH CIIpan- 4.1/) [42] for HLA II and NetM-
HCpan-4.1 (https:// servi ces. healt htech. dtu. dk/ servi ces/ 
NetMH Cpan-4. 1/) [43] for HLA class I (HLA I). NetM-
HCIIpan was trained on the binding affinity dataset and 
eluted ligand mass spectrometry data [42, 43]. The bind-
ing of the peptides was predicted as %Rank, with lower 
%Rank values indicating stronger binding. %Rank < 2 
and < 10 were used as the threshold values for strong and 
weak binders, respectively. The 15-mer peptide region 
was designed to contain the preferred binding motifs for 
DRB4*01:03 or A*24:02 according to NetMHCIIpan.

Measurement of HLA‑peptide binding by MHC‑density 
assay
The binding of the peptide to HLA II was measured by 
the MHC-density assay, as described previously [44]. 
Briefly, HLA-DRα subunit stable cells (DRA) were estab-
lished through the retrovirus-mediated NIH3T3 cell 
transduction using pMXs-puro [45] and the packaging 
cell line PLAT-E [46]. The DRB1- or DRB4-peptide fusion 
constructs was inserted into pMXs-IG, which carried 
IRES and GFP downstream of DRB1 [47], and were tran-
siently expressed in DRA-stable cells. HLA-DPα subunit 
stable cells were also established and transduced with a 
retrovirus that contained DPB1*05:01-peptide fusion 
constructs. Forty-eight hours after the transduction 
of the β subunit, cells were collected and stained with 
anti-pan-HLA II β mAb (clone WR18; Cat# MCA477, 
Bio-Rad Laboratories, Inc) in the dark at 4°C for 20 
min. The cells were washed in 500 μL of flow cytometry 
(FCM) buffer (PBS, 0.1% BSA), stained with Goat F(ab’)2 
anti-mouse Ig, human ads-PE (Cat# 1012–09, Southern 
Biotechnology Associates Inc), and subjected to FCM 
analysis. The median fluorescence intensity (MFI) of cell 
surface HLA II expression and cytosolic GFP was meas-
ured using SA3800 (Sony Imaging Products & Solutions 
Inc.). The ratio of MHC to GFP expression, as measured 
by the MFI, was determined. The MHC-to-GFP expres-
sion ratio for the test peptide was normalized to the ratio 
measured for the negative control peptide g15 (15-mer of 
glycine) (g15 ratio) and used as an indicator of cell sur-
face expression of the MHC-peptide complex (Miyadera 
et al. manuscript in preparation). FCS Express 6 software 
(6.06.0022; De Novo Software) was used for data analysis. 
The MHC-density assay for each peptide was conducted 
in > 3 wells. Double-stranded DNA oligonucleotides 
encoding the signal sequences and peptides were synthe-
sized by Eurofins Genomics (Tokyo, Japan). The NIH3T3 
cell line was obtained from RIKEN Bioresource Center.

PBMCs from healthy individuals
The HLA of healthy donors (donor 1 to donor 8) was 
determined using the PCR-SSO method (GenoDive 
Pharma, Kanagawa, Japan). PBMCs were isolated from 
the whole blood using Vacutainer CPT™ (Becton Dickin-
son, Tokyo, Japan) and preserved in liquid nitrogen with 
CELLBANKER® 1 (ZENOGEN PHARMA, Fukushima, 
Japan). Written informed consent was obtained from all 
participating healthy donors. This study was approved 
by the Clinical Research Ethics Review Committee of the 
Tsukuba University Hospital (H29-069).

Generation of mDCs and T cell co‑culture
CD14 + cells were magnetically separated from PBMCs 
using CD14 beads (Miltenyi Biotec, Bergisch Glad-
bach, Germany) and differentiated into mature den-
dritic cells (mDCs) using a human monocyte-derived 
dendritic cell differentiation kit (R&D Systems, Minne-
apolis, MN, USA) following the manufacturer’s instruc-
tions. CD14 + cells (1 ×  106 cells/mL) were resuspended 
in serum-free differentiation medium and cultured in 
a 24-well tissue culture plate with recombinant human 
interleukin-4 (IL-4) and recombinant human granulo-
cyte–macrophage colony-stimulating factor (GM-CSF) 
at 37°C in a humidified incubator with 5%  CO2. Half of 
the medium was replaced every 2–3 days. Recombinant 
human tumor necrosis factor-alpha (TNF-α) was added 
on day 7. mDCs were harvested and used as antigen-
presenting cells on day 9. T cells were cultured in AIM-V 
medium (Gibco, Thermo Fisher Scientific, Waltham, 
MA, USA) supplemented with 5% human male AB serum 
(Sigma-Aldrich, St. Louis, MO, USA) in a 24-well tissue 
culture plate. CD8 + T cell-depleted PBMCs were pre-
pared from the PBMCs using CD8-microbeads (Miltenyi 
Biotec, Bergisch Gladbach, Germany) (1 – 5 ×  105 cells/
mL) and co-cultured with mDCs (0.1 – 2 ×  104 cells/
mL) pretreated with mitomycin C (10 μg/mL) (Nacalai 
Tesque, Kyoto, Japan) for 1 h. The synthetic mutant and 
wild-type (wt) peptides (GenScript, Piscataway, NJ, USA) 
were dissolved in DMSO and added to the co-culture at 
the final concentration of 10 μM. PBMCs were restimu-
lated with mDCs and peptides on day 8. Recombinant 
human interleukin-2 (IL-2) (10U/ml) (BioLegend, San 
Diego, CA, USA) was added after day 3. The medium 
was replaced every 2–3 days. PBMCs were harvested and 
subjected to ELISPOT assay after one to three rounds of 
restimulation.

ELISPOT assay
The ELISPOT assay was conducted using the human 
interferon-gamma (IFN-γ)/IL-2 double-color ELIS-
POT kit (Cellular Technology Limited, Cleveland, OH, 

https://services.healthtech.dtu.dk/services/NetMHCIIpan-4.1/
https://services.healthtech.dtu.dk/services/NetMHCIIpan-4.1/
https://services.healthtech.dtu.dk/services/NetMHCpan-4.1/
https://services.healthtech.dtu.dk/services/NetMHCpan-4.1/
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USA), following the manufacturer’s instructions. The 
CPI antigen pool (2.5 μg/mL; Cellular Technology Lim-
ited, Cleveland, OH, USA) and DMSO were utilized as 
positive and negative controls, respectively. The 96-well 
strip ELISPOT plates were precoated with human IFN-γ 
and IL-2 capture antibodies overnight and blocked with 
medium for at least 1 h before seeding the cells. T cells 
were washed with RPMI-1640 (FUJIFILM Wako Pure 
Chemical Corporation, Osaka, Japan) and co-cultured 
with mDCs (0.1 – 2 ×  104 cells/mL) and the peptides for 
48 h. IFN-γ and IL-2 production was detected following 
the manufacturer’s protocol. An ImmunoSpot S6 ana-
lyzer (Cellular Technology Limited, Cleveland, OH, USA) 
was used to scan the ELISPOT plates. The threshold for 
the positive response was set at > 6 spots of IFN-γ per 
100,000 PBMCs and at least a two-fold increase in spot 
number over the background [48, 49]. The assay was per-
formed up to seven times for donor 1 and once or twice 
for donors 2–8, depending on the availability of PBMCs.

Flow cytometry analysis
Antigen-specific CD4 + T cells collected from ELISPOT 
plates were expanded in the presence of Dynabeads 
human T-activator CD3/CD28 (Thermo Fisher Scientific, 
Waltham, MA, USA). T cells were cultured in AIM-V 
medium supplemented with recombinant human IL-2 
(BioLegend, San Diego, CA, USA) for 2–3 weeks, follow-
ing the manufacturer’s protocol. For FCM analysis, the 
cells were incubated with Clear Block (Human Fc recep-
tor blocking reagent; MBL, Aichi, Japan) and stained with 
PE anti-human CD4 antibody (clone OKT4) (BioLegend, 
San Diego, CA, USA) and FITC anti-human CD8a anti-
body (clone RPA-T8) (BioLegend, San Diego, CA, USA) 
in the dark at 4 °C for 30 min. The cells were washed in 
500 μL of FCM buffer (PBS, 0.1% BSA) and stained with 
7-AAD (BioLegend, San Diego, CA, USA) before FCM 
analysis.

Statistical analysis
The difference in the g15 ratio between the wt and 
mutant peptides in the MHC-density assay was assessed 
using the t-test. Statistical significance was set at p < 0.05.

Results
Measurement of HLA II peptide presentation
Seven peptides for ESR1 (Fig.  1A, Table  S1) and 10 
peptides for PIK3CA (Fig.  1B, Table  S2), each contain-
ing highly frequent mutations according to the COS-
MIC database, were designed to form a 15-mer peptide 
based on the %Rank predicted by NetMHCIIpan-4.1 (for 
DRB4*01:03) and NetMHCpan-4.1 (A*24:02) (Table  1) 
and used for the MHC-density and ELISPOT assays. The 
MHC-density assay was used to measure the cell-surface 

expression of the MHC II β subunit-peptide fusion com-
plex, which is expressed on the surface of MHC II α 
subunit-stable cell line. The amount of cell-surface MHC 
II-peptide complex (for the test peptide) was determined 
by flow cytometry, and its ratio to the amount of MHC 
II-peptide complex (for the negative control peptide, 
g15) was calculated. This ratio (the g15 ratio) was used 
as an indicator of MHC II-mediated antigen presentation 
(Miyadera, et  al. manuscript in preparation). A peptide 
with a g15 ratio > 2.0 was considered a strong binder.

The MHC-density assay for DRB4*01:03 revealed the 
binding of two ESR1-peptides and eight PIK3CA-pep-
tides with a g15 ratio > 2.0. Strong binding to DP5 was 
observed for five ESR1-peptides and none of PIK3CA-
peptides (Fig.  2A). Among the mutant peptides with 
a g15 ratio > 2.0, a significantly higher g15 ratio than 
that of the wt peptides was observed for ES#1_K303R, 
ES#2_E380Q, PIK#3_E542K, PIK#4_E545K, PIK#5_
E545A (DRB4*01:03), and ES#3_S463P (DP5) (Fig. 2B–E, 
marked with asterisks).

ELISPOT assay and estimation of HLA II restriction
Next, we performed an ELISPOT assay to identify the 
peptides that can be recognized by CD4 + T cells, using 
PBMCs from HLA-typed healthy donors (eight donors 
carrying DRB4*01:03, among whom four donors also car-
ried DP5) (Table  S3). The CD8 + cells-depleted fraction 
was co-cultured with autologous mDCs, restimulated 
with mDCs and peptides, and subjected to an ELIS-
POT assay. The assay was performed up to seven times 
for donor 1 and once or twice for donors 2–8. Repre-
sentative ELISPOT data for ES#2_E380Q, PIK#5_E545A, 
PIK#8_H1047L, and PIK#9_H1047Y are displayed in 
Fig.  3A. The reproducibility of the positive response, 
assessed for donor 1, was 1/7 to 6/6 (0.14–1.0, average 
0.53), with substantial inter-experimental variation in 
the spot count, presumably reflecting day-to-day vari-
ation in the immune condition (Fig.  3A, Table  S4). The 
penetrance of ELISPOT positive peptides (for donors 
1–8) was 1/4 to 3/4 (0.25 to 0.75, average 0.50) (Table S5). 
The peptide pairs (wt and mutant peptides) that con-
tained peptide(s) with a penetrance ≥ 0.4 in the ELISPOT 
assay and g15 ratio > 2.0 for DRB4*01:03 and DP5 are 
presented in Fig.  3B and C, respectively. Most peptides 
with a g15 ratio > 2.0 (Fig. 3B) contained an anchor motif 
for DRB4*01:03 (P1 (Ile, Leu, and Val), P4 (Gln and Glu), 
P6 (Leu, Val, and Ile), and P7 (Asp and Glu)) [42], except 
for ES#1_K303R. The DRB4*01:03 anchor motif was also 
found in PIK#6_E726K, which showed penetrance ≥ 0.4 
and g15 ratio = 1.5 (Fig. 4A). Based on these findings, the 
peptides shown in Fig. 4A (ES#2_E380Q, PIK#1_N345K, 
PIK#3_E542K, PIK#4,5_E545K/A, PIK#6_E726K, 
PIK#7–9_H1047R/L/Y, and PIK#10_G1049R) were 
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regarded as potential DRB4*01:03-restricted epitopes. 
The %Rank values for these peptides were < 10, with the 
exception of ES#2_E380Q (%Rank: 14.9) and PIK#10_
G1049R (%Rank: 14.3).

According to the predicted binding register, the 
mutated residue in the peptide binding pocket 
is located at position −1 (PIK#3_E542K), posi-
tion 2 (PIK#1_N345K), position 3 (PIK#6_E726K), 

position 6 (PIK#4,5_E545K/A), position 9 (ES#2_
E380Q, PIK#7–9_H1047R/L/Y), and position 11 
(PIK#10_G1049R) in the peptide binding groove 
(Fig.  4A). In these registers, the mutated residues 
in PIK#1_N345K, PIK#3_E542K, and PIK#6_E726K 
are accessible from T cell receptor. Some of the pep-
tides could use registers alternative to those shown in 
Fig. 4A.

Fig. 1 Overview of ESR1 and PIK3CA mutation sites used in this study. A, B Positions and COSMIC_Count of mutations in ESR1 (A) and PIK3CA (B) 
reported in the COSMIC database. COSMIC_Count represents the number of reports in the COSMIC database. The positions of the peptides are 
indicated by the horizontal bars in ESR1 (A) and PIK3CA (B). NTD/AF1, N-terminal domain/activation function 1; DBD, DNA-binding domain; LBD, 
ligand-binding domain; and CTD, C-terminal domain (A). ABD, adaptor-binding domain; RBD, RAS-binding domain; C2, C2 domain; HD, helical 
domain; and KD, kinase domain (B)
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ES#5–7_Y537S/N, D538G were potentially restricted 
by DP5, given the high g15 ratio (2.1–3.7) and presence 
of the DP5 anchor motif [50] (Figure S1). Besides, DP5 
was the only allele, in addition to DRB4*01:03, that was 
shared among ELISPOT-positive donors (donors 2, 3, 
and 4) (Table S3, S6). However, DP5 was predicted as a 
non-binder by NetMHCIIpan-4.1 (%Rank 48.7–55.0). 
An inconsistency between the g15 ratio and %Rank for 
these peptides was also observed for DRB1*12:01, but 
not for DRB1*04:05 or DRB1*15:01 (Figure S2). The posi-
tive ELISPOT responses for ES#5–7_Y537S/N, D538G, 
detected in the DP5-negative donor (donor 1), indicated 
that these peptides can be presented by HLA II other 
than DP5 in donor 1 (Table S6).

The T cells stimulated with ES#5_Y537S mainly con-
sisted of CD4 + T cells (Figure S3A), whereas T cells 
stimulated by ES#6_Y537N and ES#7_D538G contained 
CD8 + T cells (3.8–11.8%) in addition to CD4 + T cells 

(Figure S3B, C), possibly because of the incomplete 
depletion of CD8 + T cells before co-culture and their 
expansion in the presence of IL-2 and peptides. The HLA 
I allele (HLA-A*02:07) carried by donor 3 was predicted 
to bind ES#6_Y537N and ES#7_D538G (%Rank; 0.58 and 
0.45, respectively), indicating that these peptides are rec-
ognized by both CD4 + and CD8 + T cells. This finding 
is consistent with a previous report that detected ESR1 
(Y537S/N and D538G)-specific CD8 + T cells in HLA-A2 
positive healthy donors [24].

Potential restriction of ESR1 and PIK3CA mutations 
by other DR and DP alleles
The alleles that restrict ES#1_K303R were not iden-
tified in this study because of the small sample size 
and absence of anchor motifs for DRB4*01:03 and 
DP5. ES#3_wt, S463P was presumably restricted by 
DPA1*01:03-DPB1*02:02 (DP2), which was shared by 

Table 1 ESR1 and PIK3CA peptides analyzed in this study

a Mutant amino acids are bold
b Predicted by NetMHCIIpan-4.1 (DRB4*01:03) and NetMHCpan-4.1 (A*24:02)

Peptide Gene Amino acid substitution Peptide  sequencea %Rankb

DRB4
*01:03

A
*24:02

ES#1_K303R ESR1 K303R WPSPLMIKRSKRNSL 25.9 19.8

ES#2_E380Q ESR1 E380Q DLTLHDQVHLLQCAW 14.9 6.5

ES#3_S463P ESR1 S463P GVYTFLPSTLKSLEE 65.7 0.0

ES#4_L536H ESR1 L536H VVPHYDLLLEMLDAH 31.4 0.4

ES#5_Y537S ESR1 Y537S CKNVVPLSDLLLEML 46.2 2.2

ES#6_Y537N ESR1 Y537N CKNVVPLNDLLLEML 43.6 2.4

ES#7_D538G ESR1 D538G CKNVVPLYGLLLEML 62.9 0.4

PIK#1_N345K PIK3CA N345K TYVKVNIRDIDKIYV 3.4 10.3

PIK#2_C420R PIK3CA C420R EEHRPLAWGNINLFD 53.4 8.5

PIK#3_E542K PIK3CA E542K PLSKITEQEKDFLWS 5.0 10.5

PIK#4_E545K PIK3CA E545K PLSEITKQEKDFLWS 3.9 3.4

PIK#5_E545A PIK3CA E545A PLSEITAQEKDFLWS 2.7 1.7

PIK#6_E726K PIK3CA E726K LTDILKQEKKDKTQK 1.8 45.5

PIK#7_H1047R PIK3CA H1047R LEYFMKQMNDARHGG 3.4 34.0

PIK#8_H1047L PIK3CA H1047L LEYFMKQMNDALHGG 3.0 7.1

PIK#9_H1047Y PIK3CA H1047Y LEYFMKQMNDAYHGG 3.5 8.8

PIK#10_G1049R PIK3CA G1049R YFMKQMNDAHHRGWT 14.3 5.6

(See figure on next page.)
Fig. 2 Summary of the binding prediction and measurement of DRB4*01:03 and DP5. A The %Rank predicted by NetMHCIIpan-4.1 and g15 ratio 
measured by the MHC-density assay for mutant and wt peptides. %Rank < 10 is highlighted in yellow. The g15 ratio > 2.0 is highlighted in light blue. 
B, C The g15 ratio for ESR1 (B) and PIK3CA peptides (C) for DRB4*01:03. D, E The g15 ratio for ESR1 (D) and PIK3CA peptides (E) for DP5. The g15 ratio 
indicates a fold increase in MHC-peptide expression relative to the negative control peptide g15. Data of the g15 ratio < 1.0 are not displayed. In B–E, 
data for wt (white) and mutant (mut) (gray) (mean ± SD). The red horizontal lines indicate the threshold for a strong binder (g15 ratio = 2.0). Asterisks 
indicate significant differences between the wt and mutant peptides (*: p < 0.05, **: p < 0.01, t-test)
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Fig. 2 (See legend on previous page.)
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ELISPOT-positive donors (donors 1 and 2) (Table  S6). 
ES#3_wt, S463P peptides were predicted to bind strongly 
to DP2 (%Rank 1.4–2.3) and contain an anchor motif for 
DP2 [42, 50]. Similarly, ES#4_L536H was presumably 
restricted by DRB1*04:05, which was shared by ELIS-
POT-positive donors (donors 1 and 2). ES#4_L536H was 
predicted to contain an anchor motif for DRB1*04:05 
(Fig. 4B) and bind strongly to DRB1*04:05 (g15 ratio: 2.7–
5.3; %Rank: 9.7–18.8) (Table S6).

Among the DRB4*01:03-restricted peptides, PIK#7–9_
H1047R/L/Y also contained binding motifs shared by 
DRB1*04 alleles (P1 (Phe, Tyr, Leu, and Ile) and P6 (Thr, 
Asn, Asp, and Ser)) (Fig. 4B, C). Some ELISPOT-positive 
donors for PIK#7–9_H1047R/L/Y (donors 1, 3, 4, 6, and 
8) carried these DRB1*04 alleles (DRB1*04:03, *04:05, or 

*04:10) (Table  S7). The g15 ratios of PIK#7–9_H1047R/
L/Y for DRB1*04:01 and DRB1*04:05 were 1.9 to 4.2 
(Table  S8), and the %Rank values for other DRB1*04 
alleles were 1.9 to 9.1 (Table  S9). From these data, we 
inferred that PIK#7–9_H1047R/L/Y can be presented by 
DRB1*04:03, DRB1*04:05, and DRB1*04:10, in addition 
to DRB4*01:03.

HLA II of the donors used in the ELISPOT assay were 
skewed toward alleles frequently found in East Asian pop-
ulations. To elucidate the presentation of hot spot muta-
tions on alleles commonly found in global populations, 
we extended the MHC-density assay to include addi-
tional DRB1 alleles that are not present in donors 1–8. 
For ESR1, a g15 ratio > 2.0 was achieved by DRB1*01:01 
(ES#6_Y537N) and DRB1*15:01 (ES#5–6_wt, Y537S/N) 

Fig. 3 Summary of the ELISPOT assay of healthy donors. A Representative data of the ELISPOT assay for ES#2_E380Q, PIK#5_E545A, PIK#8_H1047L, 
and PIK#9_H1047Y, measured by IFN-γ (red spots) and IL-2 (blue spots). The numbers denote the spot count for IFN-γ (red). NC, negative control. 
TNTC: too numerous to count. B, C The ELISPOT profiles for DRB4*01:03 positive donors (B) and DP5 positive donors (C). The data for peptide pairs 
that showed penetrance ≥ 0.4 and g15 ratio > 2.0 are presented. HLA alleles of each donor are displayed on the top. Positive ELISPOT responses 
(IFN-γ) are highlighted in red. Numbers indicate the positive responses/total number of experiments (range of spot counts). The penetrance 
represents the number of positive donors/numbers of total donors (in red letters). The peptides with %Rank < 10 (NetMHCIIpan-4.1) is highlighted 
in yellow, and those with a g15 ratio > 2.0 (MHC-density assay) is highlighted in light blue. NA: not analyzed (shadowed in gray). TNTC: too numerous 
to count
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Fig. 4 Possible binding registers of ESR1- and PIK3CA-peptides. A-C Binding registers of peptides, inferred from known anchor residues 
for DRB4*01:03 (A), DRB1*04:05 (B), and DRB1*04:01 (C). The peptides with a g15 ratio > 2.0 are highlighted in light blue. Anchor residues (boxed 
in black) and the mutation sites (boxed in red). The amino acids are color-coded: acidic (pink), basic (green), neutral (yellow), or hydrophobic 
(brown)
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(Fig.  5A, Table  S8, S10). For PIK#7–9_H1047R/L/Y, a 
g15 ratio > 2.0 was achieved by DRB1*01:01, DRB1*04:01, 
DRB1*04:05, DRB1*09:01, DRB1*11:01, and DRB1*15:02 
(Fig.  5B, Table  S8, S10). PIK#5_E545A, but not the wt 
peptide, was presented by DRB1*03:01 (g15 ratio: 2.4) 
(Table  S8, S10). These additional DRB1 alleles are fre-
quently found in populations worldwide (Fig. 5C).

Collectively, the presentation of ES#5–7_Y537S/N, 
D538G, and PIK#7–9_H1047R/L/Y on the major HLA 
II alleles, in addition to DRB4*01:03 or DP5 (summa-
rized in Table  S10), suggests the broad applicability 
of these mutations, in terms of HLA II restriction, for 
immunotherapy. However, the binding analysis in this 
study was limited to the most frequent allele-peptide 

Fig. 5 The g15 ratio measured for various DRB1 alleles. A, B The g15 ratios for ES#5–7_wt (gray) and ES#5_Y537S (orange), ES#6_Y537N (yellow) 
and ES#7_D538G (green) (A) and for PIK#7–9_wt (gray), PIK#7_H1047R (red), PIK#8_H1047L (light blue), and PIK#9_H1047Y (dark blue) (mean ± SD) 
(B). The red horizontal line indicates the threshold for a strong binder (g15 ratio = 2.0). C Carrier frequency of the DRB4*01:03 and DRB1 alleles 
analyzed in (A) and (B). The frequencies are based on allelefrequencies.net (Methods)
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pairs. Analysis of a larger cohort of healthy donors or 
patients is required to further elucidate the HLA II 
allele specificity for each mutation, as well as to con-
firm the restriction patterns inferred from binding 
measurements.

Inconsistency of measured and predicted binding
A comparison of the MHC-density assay and prediction 
by NetMHCIIpan-4.1 revealed similarities and differ-
ences in their binding profiles (Fig.  2A). PIK3CA-pep-
tides that showed ELISPOT positivity and were inferred 
as DRB4*01:03-restricted epitopes (g15 ratio > 2.0 for 
DRB4*01:03) were predicted to be strong or weak bind-
ers (%Rank < 10), except for ES#2_E380Q and PIK#10_
G1049R (%Rank 14.9, and 14.3, respectively) (Fig.  3B). 
The %Rank for ES#2_E380Q was even larger (%Rank: 
17.9) in the latest version of NetMHCIIpan (version 
4.3), whereas the rank predicted by the other prediction 
tool, MixMHC2pred-2.0 [51, 52], was 10.2 (Table  S11). 
The potential DP5-resticted peptides ES#5–7_Y537S/N, 
D538G (g15 ratio: 2.1–4.5) were predicted to be non-
binders by NetMHCII pan-4.1 (%Rank: 48.7–66.5). The 
%Rank and g15 ratio for ES#5–7_Y537S/N, D538G were 
consistent for DRB1*04:05 and DRB1*15:01 but not for 
DRB1*12:01 (Figure S2).

Figure  6A and B show a comparison of the g15 ratio 
and %Rank for the potential DRB4*01:03-and DP5-
restricted peptides. The inconsistency between the 
measurement and prediction, in terms of the binding 
hierarchy between wt and mutant peptides, observed for 
PIK#1_N345K (for DRB4*01:03) and ES#7_D538G (for 
DP5) (Fig. 6A, B) suggests the difficulty in predicting the 
influence of mutation on presentation to HLA II.

Discussion
In the present study, we analyzed HLA II presentation 
and CD4 + T cell responses of hotspot mutations in ESR1 
and PIK3CA using PBMCs from healthy donors. Posi-
tive IFN-γ responses were detected for 16 peptides that 
contained some of the most frequent mutations: ESR1 
(E380Q), ESR1 (Y537S/N, D538G), PIK3CA (E542K, 
E545K/A) and PIK3CA (H1047R/L/Y) [53–55]. ESR1 
Y537S/N is considered a promising immunotherapy tar-
get because it elicits antitumor responses by CD8 + T 
cells in a murine model [23] and is recognized by CD8 + T 
cells from healthy donors and patients with breast can-
cer [23, 24]. Our study revealed that ES#5–7_Y537S/N, 
D538G are recognized by CD4 + T cells of healthy indi-
viduals, possibly through presentation by DP5, as well 
as DRB1*01:01 and DRB1*15:01 (Figs. 3C, 5A, Table S8, 
S10).

PIK3CA (H1047R/L/Y) is one of the most frequent 
hotspot mutations in breast cancer [56] and solid tumors, 

including uterine/endometrial, cervical, and ovarian 
tumors [57]. PIK3CA (H1047R/L/Y) elicits antitumor 
responses by CD8 + T cells in murine xenograft models 
[25] and in cytotoxic assays [25, 26]. Notably, PIK3CA 
(H1047R/L/Y) peptides can be presented by DRB4*01:03, 
which is carried in approximately 35–63% of various 
populations (Fig. 5C), and by major DRB1 alleles, includ-
ing DRB1*04:01, DRB1*04:05, DRB1*09:01, DRB1*11:01, 
and DRB1*15:02 (Table  S10). These findings suggest 
that PIK3CA (H1047R/L/Y) peptides can be presented 
abundantly in individuals with the DRB1*04:01- or 
DRB1*04:05-DRB4*01:03 haplotypes.

An important limitation of this study is the use of 
healthy donors, not patients with breast cancer, for the 
ELISPOT assay. Owing to the immunosuppressive con-
dition of the tumor microenvironment, the penetrance 
in the patient cohort could be lower than that observed 
in healthy donors, as reported for the CD8 + T cell ELIS-
POT assay for ESR1 Y537S/N/C [24]. Further studies are 
warranted to confirm the CD4 + T cell responses to ESR1 
and PIK3CA mutations, including indels that were not 
analyzed in this study, in HR + endocrine-resistant breast 
cancer patients to identify the most targetable sites.

Another limitation was the small number of donors 
used for the ELISPOT assay. The number of DRB4*01:03-
positive donors (n = 8) appeared to be sufficient to 
detect potential DRB4*01:03-restriction, but not other 
less frequent DRB1 alleles; a larger-scale analysis will be 
required to confirm their restrictions. The restriction of 
ES#5–7_Y537S/N, D538G by DP5 should also be inter-
preted with caution, given the small number of DP5-pos-
itive donors and inconsistency between the measurement 
and prediction (Figure S2).

We found discrepancy between MHC-peptide binding 
measured by MHC-density assay and prediction. While 
the g15 ratio was consistent with NetMHCIIpan-4.1 pre-
diction for most peptides, the high g15 ratio (> 2.0) and 
%Rank below the threshold (%Rank > 10) observed for 
ES#2_E380Q and PIK#10_G1049R (for DRB4*01:03) and 
ES#5–7_Y537S/N, D538G (for DP5 and DRB1*12:02) 
suggested an inconsistency between the measure-
ment and prediction (Figure S2), as reported for HLA 
I-restricted epitopes in triple-negative breast cancer [58]. 
This inconsistency may be ascribed to the quality and/or 
quantity of the training dataset for certain alleles, which 
remains to be confirmed. The difficulty in fully predicting 
immunogenic peptides implies that there may be neoan-
tigens not detectable by prediction.

Although the tumor microenvironment of HR + breast 
cancer makes this subtype a difficult immunotherapy 
target [5, 59, 60], growing evidence from preclinical 
models has revealed the recognition of ESR1 (E380Q, 
Y537S/N/C) and PIK3CA (H1047R/L/Y) mutations 
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by CD8 + T cells [22, 23, 25, 26]. The potential clinical 
efficacy of vaccines targeting common driver muta-
tions, including PIK3CA E545K, in renal cell carci-
noma [61], demonstrates that key driver mutations can 
induce antitumor immunity in low TMB cancers. The 
selective presentation of ESR1 and PIK3CA mutations 

on common HLA II alleles shown in this study sug-
gests that the HLA II presentation of driver mutations 
can vary between individuals and supports further sys-
tematic analysis to identify favorable HLA types for 
each mutation, leading to the design of effective multi-
epitope vaccines applicable to a broad population.

Fig. 6 Comparison of the measured and predicted binding patterns. A, B g15 ratio and %Rank of DRB4*01:03 for ESR1 (left panel) and PIK3CA 
peptides (right panel) (A) and of DP5 for ESR1 peptides (B). The data of g15 ratio < 1.0 are not displayed. The horizontal dot lines (black) denote 
the threshold (%Rank = 10) for a weak binder predicted by NetMHCIIpan-4.1. The horizontal dot lines (red) denote the threshold for a strong binder 
(g15 ratio = 2.0) by the MHC-density assay. Asterisks indicate significant differences between the wt and mutant peptides (*: p < 0.05, **: p < 0.01, 
t-test)
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Conclusions
Our study revealed that public neoantigens in ESR1 and 
PIK3CA are recognized by CD4 + T cells upon the pres-
entation on common HLA II alleles. Further studies are 
warranted to elucidate the landscape of HLA II presen-
tation and clinical applicability of these mutations in 
immunotherapy for endocrine-resistant breast cancer.
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