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Introduction
Renal carcinoma includes a heterogeneous group of 
malignancies from renal tubular epithelial cells that 
account for about 2.2% of all tumors and 1.8% of the total 
cancer mortality worldwide [1]. Generally, less than 10% 
of patients with RCC are diagnosed with the classic triad 
of flank pain, hematuria and palpable mass, more often 
the diagnosis occurs as incidental findings during ultra-
sonography or abdominal CT performed for another 
reason [2]. Accordingly, about 25% of patients present 
with distant metastatic disease at diagnosis [3]. Early 
detection of organ-confined RCC allows curative surgical 
resection via partial or radical nephrectomy and about 
30% of patient who undergo surgical resection develop 
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Abstract
Clear cell Carcinoma (ccRCC) is the most common and lethal subtype among renal cancers. In the present study 
we investigated the potential role of fatty acid-binding protein 4 (FABP4), also known as adipocyte FABP (A-FABP) 
or aP2 on ccRCC progression. Firstly, we found that FABP4 median serum levels were significantly higher in 
ccRCC patients compared to HD. Based on this result and to evaluate whether FABP4 plays a role on renal cancer 
malignant phenotype, we analyzed proliferation and migration in 786-O and ACHN cell lines using recombinant 
FABP4. We found that FABP4 significantly increased cell migration, whereas it had no significant effect on 
proliferation. As FABP4 is mainly expressed by adipocytes, we measured FABP4 adipocyte conditioned media (Ad-
CM) levels showing that Ad-CM from ccRCC (Ad-CM ccRCC) had significantly higher mean values compared to Ad-
CM obtained from Healthy Donors (HD). To assess the effects of adipocyte-released FABP-4, on cancer malignant 
phenotype we evaluated 786-O and ACHN proliferation and migration, using Ad-CM from ccRCC and Ad-CM 
from HD alone or in combination with FABP4 inhibitor BMS309403. Our results showed that Ad-CM enhanced cell 
proliferation in ACHN, but not in 786-O and on cell motility in both cell lines and this effect was partially reverted 
by BMS309403 in both cell lines. Moreover, in both cell lines, FABP4 effect was associated with an increased ERK 
phosphorylation. Collectively these data support the role of FABP4 in ccRCC progression and its potential use as 
noninvasive biomarker and therapeutic target for ccRCC.
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recurrence associated with high mortality rate [4]. Clear 
cell Renal Cell Carcinoma (ccRCC) is the most com-
mon and lethal subtype among renal cancers, comprising 
almost the 70% of cases [5].

Several epidemiological studies reported a strong asso-
ciation between perirenal adipose tissue (PRAT) thick-
ness measured by computer tomography scan and ccRCC 
histotype in patients with renal cortical tumor [6]. In 
addition, it has been reported that PRAT width is asso-
ciated with poor Progression Free Survival (PFS) [7] and 
Overall Survival (OS) in patients with surgical treated 
ccRCC [8]. These epidemiological data suggest that Peri-
Renal Adipose Tissue (PRAT) may affect ccRCC behavior 
through the exchange of proteins, cytokines and metabo-
lites with cancer cells [9], thanks to an extensive network 
of blood and lymph vessels connecting PRAT and ccRCC 
[10]. PRAT, in fact, is a peculiar visceral fat depot, defined 
along with pericardial Adipose Tissue (AT) and renal 
sinus fat an “ectopic fat” [11]. It is able to regulate kidney 
homeostasis in physiological conditions and involved in 
different metabolic diseases such as hypertension, ath-
erosclerosis, and insulin resistance [12]. Thus, it is pos-
sible to speculate that peri-renal mature adipocytes may 
exert their effect on tumor microenvironment through 
secretion of adipokines and/or growth factors that sup-
port tumor progression.

Although it is well known that high perirenal fat accu-
mulation is associated with increased mortality and poor 
PFS of patients with localized ccRCC [7, 8], the molecu-
lar mechanism underlying the relationship between peri-
renal adipocytes and ccRCC spread is still unclear.

The discovery of extracellular FABP4 (e-FABP4) as adi-
pocyte-released factor changed the game in research of a 
mechanistic link between cancer and AT. This small pro-
tein of 15 kDa is a fatty acid carrier, secreted by adipo-
cytes, macrophages and endothelial cells, it is involved in 
metabolic disorders associated to visceral adiposity such 
as insulin resistance and atherosclerosis. Interestingly, 
e-FABP4 has been identified as driver of cell proliferation 
and migration in breast [13], colon [14], and ovarian can-
cer [15].

In the present study, we investigated the effect of 
FABP4 and adipocyte-released FABP4 on ccRCC cell 
proliferation and migration.

Materials and methods
Materials
Media, sera and antibiotics were purchased from GIBCO 
(Thermo Fischer Scientific, Waltham, MA, USA) and 
from BioWhittaker (Lonza, Basel, Switzerland). Antibody 
against phospho-ERK1/ERK2 was purchased from Cell 
Signaling Technology (Cell Signaling Technology, Dan-
vers, MA, USA) and antibody against ERK was obtained 
from Santa Cruz Biotechnology (Santa Cruz, CA, USA). 

Sodium dodecyl sulfate–polyacrylamide gel electropho-
resis (SDS-PAGE) reagents were acquired from Bio-Rad 
(Hercules, CA, Usa). All other chemicals were purchased 
from Sigma-Aldrich (St Louis, MO, USA). Human FABP4 
Quantikine ELISA kit was obtained from R&D Bio-
techne (Bio-Techne, Minneapolis MN, USA). Recom-
binant FABP4 was purchased from Elabscience. FABP4 
inhibitor was obtained from Sigma-Aldrich (Merck, 
Darmstadt, Germany).

Conditioned media
We prospectively collected PRAT from 19 patients who 
underwent radical nephrectomy and 10 healthy donors 
who underwent minimally invasive surgery to remove 
a living donor’s kidney at the Department of Urology 
at University of Naples “Federico II” and Department 
of Andrology and Kidney Transplantation Unit of Uni-
versity of Bari “Aldo Moro” between 2022 and 2024. All 
patients consented to participate in the study and this 
procedure was approved by the Ethical Committee of 
University of Naples “Federico II” (protocol number 
380/20) and the University of Bari “Aldo Moro” (proto-
col number 5648/2018). Clinical and pathological char-
acteristics including age, sex, BMI, Fuhrman grade and 
pathological stage were prospectively collected. Surgical 
specimens were processed and evaluated by genitouri-
nary pathologists to assess tumor histotype and tumor 
staging according to 2018 American Joint Committee on 
Cancer (AJCC) [16]. Only patients with a ccRCC histo-
type were included in this study. To obtain mature adi-
pocytes from PRAT, human specimens were processed 
under a sterile laminar flow hood, where AT was washed 
twice with sterile Phosphate Buffer Salin (PBS) to remove 
red blood cells and debris and dissected into 1 mm seg-
ments. The resulting homogeneous mixture was digested 
with Collagenase Type IV (1 mg/mL) and kept in a shak-
ing incubator at 37 °C for 1 h. After digestion, the adipo-
cytes released from the tissue floated on cell suspension 
forming a yellow layer on top. The adipocyte suspension 
was washed twice with PBS and the adipocytes obtained 
were incubated with RPMI or EMEM supplemented with 
100 IU/mL penicillin and 100 IU/mL streptomycin and 
0.25% Bovine Serum Albumin (BSA) for 16  h to obtain 
Adipocytes Conditioned Medium (Ad-CM). The Ad-CM 
was collected and stored at -80 °C until the analysis.

Cell culture
786-O and ACHN human ccRCC cells were kindly pro-
vided by Professor Camillo Porta (University of Bari Aldo 
Moro, Italy) and cultured in RPMI (GIBCO) and EMEM 
(GIBCO) respectively supplemented with 10% Fetal 
Bovin Serum (FBS), 100 IU/mL penicillin and 100 IU/mL 
streptomycin in a humidified incubator a 37  °C with 5% 
CO2.
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Cell proliferation assay
Cell proliferation was assessed using Cell Prolifera-
tion ELISA BrdU colorimetric kit (Roche Basle, Swiss). 
786-O and ACHN were seeded in 96 well plates at a den-
sity of 1 × 103 cells per well and incubated with medium 
containing 10% FBS, 0.25% BSA, recombinant FABP4 
and Ad-CM obtained from ccRCC patients (Ad-CM 
ccRCC) or HD (Ad-CM HD) alone or in combination 
with BMS309403. In the last 2 h of incubation cells were 
labeled with 10 µM bromodeoxyuridine (BrdU). There-
after, cells were fixed and the incorporated BrdU was 
detected by colorimetric ELISA according to manufac-
turer’s instructions.

Scratch assay
786-O and ACHN ccRCC cell lines were seeded in 12 
well plates at density of 1 × 105 cells per well and allowed 
to form a monolayer, in vitro “wound” was created by a 
straight-line scratch across the cell monolayer using a 
sterile 20  µl filter tip. Cells were treated with Mytomi-
cin C 10  µg/mL to stop proliferation for 2  h before the 
experiment and throughout its duration. Then cells were 
washed three times with PBS to clear cell debris and fresh 
medium was added. Cells were incubated with medium 
containing 10% FBS, 0.25% BSA, recombinant FABP4 and 
Ad-CM obtained from ccRCC patients (Ad-CM ccRCC) 
or HD (Ad-CM HD) alone or in combination with 
BMS309403 and allowed to close the wound for 24  h. 
The images were acquired at 0 (control) and 24  h (post 
wounding) using a camera connected to the microscope. 
The distance toward the wound edges was measured at 
three fixed points for each image with three images taken 
for each well then it was analyzed using ImageJ (Bio-Rad, 
Hercules, CA, USA).

FABP4 ELISA
Ad-CM and serum FABP4 content was measured using 
ELISA assay (Bio-Techne Minneapolis MN, USA) accord-
ing to the manufacturer’s instructions.

Western blot
786-O and ACHN were seeded in 12 well plates (1 × 105 
cells/ well) and allowed to form a monolayer for 24 h and 
serum starved for 16 h. Cells were treated with indicated 
stimuli for 24 h. After treatment cells were washed with 
ice-cold PBS and harvested in a Laemmli buffer contain-
ing β-mercaptoethanol, phosphatase inhibitors (0.5 mM 
sodium vanadate, 2 mM sodium pyrophosphate, 5 mM 
β-glycerolphosphate, and 50 mM sodium fluoride) and 
the protease inhibitor and inhibitor phenylmethylsulfo-
nyl fluoride (Sigma–Aldrich). As already described [17], 
50 µg of protein samples were separated using 10% SDS 
page and blotted on a nitrocellulose membrane (Fisher 
scientific). Membranes were blocked for 1  h in TBS 

tween (10 mM Tris-HCl, pH 7.4, and 140 mM NaCl) 
containing 5% of non-fat dry milk and then incubated 
with indicated antibodies (GAPDH Santa Cruz, ERK1/
ERK2 Santa Cruz, pERK1/pERK2 cell signaling). Detec-
tion of blotted proteins was detected by ECL according 
to manufacturer’s instruction and densitometric analysis 
was performed using Image Lab software 3.0 (Bio-Rad, 
Hercules, CA, USA).

The bands were analysed by densitometric analysis 
using the imaging software Image Lab software 3.0 (Bio-
Rad, Hercules, CA, USA). Based on pixel counts, quanti-
tative data for each sample were obtained.

Sera collection
After obtaining informed consent, a brief medical history 
was recorded. Sera were collected at the time of admis-
sion of each patient using BD vacutainer blood collection 
tubes with no additives (Becton Dickinson, Oxfordshire, 
UK). All patients were asked to respect 12 h before blood 
collection. Serum samples were centrifuged and immedi-
ately stored below 80 °C until they were analyzed.

Statistical analysis
Statistical analyses were performed using the GraphPad 
Prism software (version 9.0, San Diego, CA, USA). Dif-
ference among means were compared using a Student’s 
t test, Mann-Whitney, one-way ANOVA test or Kruskal-
Wallis test. Values are reported as mean ± standard devia-
tion (SD) from at least 3 independent experiments. A 
two-sided p-value of less than 0.05 was considered statis-
tically significant.

Results
Clinical characteristics of CcRCC patients and healthy 
donors
We obtained serum samples from 35 patients who under-
went radical nephrectomy between 2022 and 2024 in the 
Department of Urology at the University of Naples “Fed-
erico II” and from 23 Healthy Donors (HD). The clini-
cal characteristics of enrolled subjects are reported in 
Table 1.

Serum FABP4 concentration in CcRCC patients compared 
to HD
Growing evidence suggests that circulating levels of 
FABP4 are increased in cancer patients. To investigate 
the circulating FABP4 levels in ccRCC patients, we col-
lected and analyzed serum samples from 35 ccRCC 
patients and 23 HD. As shown in Fig. 1A, ccRCC patients 
had a significantly higher median serum FABP4 lev-
els compared to HD [18680 pg/mL (IQ: 24930 − 13388); 
14090 (IQ: 18733 − 11288); p value 0.0292]. Moreover, to 
verify whether conditions other than cancer could lead 
to an increased serum FABP4 concentration in our study 
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cohort, we evaluated FABP4 levels stratifying patients 
according to BMI (B) (10 BMI ≤ 25 vs. 20 BMI > 25), Type 
2 Diabetes (T2D) (C) (29 TD- vs. 6 TD+), and hyperten-
sion (D) (9 Hypertension- vs. 26 Hypertension+). No 
significant differences were found between patients with 
BMI ≤ 25 and those with BMI > 25 (p= 0.54), subjects with 
hypertension vs. those without hypertension (p= 0.62) 
and subjects with T2D and those without T2D (p= 0.99).

Ad-CM effect on ACHN and 786-O cell lines proliferation
To evaluate the biological importance of circulating 
extracellular FABP4 (e-FABP4) in ccRCC progression, we 
determined whether recombinant FABP4 affected ccRCC 
cell proliferation by performing BrdU assay on 786-O and 
ACHN cell lines. Serum-starved cells were incubated 
with a medium containing 10% FBS, 0.25% BSA and 
recombinant FABP4 10000 pg/mL alone or in combina-
tion with BMS309403, a synthetic antagonist of FABP419. 
As shown in Fig. 2, FABP4 treatment had no significant 
effect on cell proliferation in 786-O and ACHN cells (p= 
0.061 and 0.995).

Human Recombinant FABP4 effect on migration of ccRCC 
cell lines
Then, we evaluated the effect of FABP4 on cancer cell 
migration, by scratch assay incubating cells with human 
recombinant FABP4 (10000 pg/mL) alone or in combi-
nation with BMS309403. As shown in Fig.  3, e-FABP4 
enhanced cell migration both in 786-O and ACHN cell 
lines.

E-FABP4 concentration in Ad-CM isolated from CcRCC 
patients compared to Ad-CM from HD
To assess the FABP4 secretion by peri-renal adipo-
cytes, we measured FABP4 concentrations in Ad-CM 
obtained from PRAT of 10 HD and 19 ccRCC patients 
(A). As shown in Fig. 4, Ad-CM from ccRCC had a higher 

e-FABP4 mean concentration compared to Ad-CM from 
HD [10150 pg/mL ± 3835; 5578 ± 2969; p value 0,0048], 
suggesting that tumor proximity affects the e-FABP4 
content of perirenal adipocytes.

In addition, to clarify whether conditions other than 
cancer could lead to an increased e-FABP4 secretion 
by peri-renal adipocytes, we analyzed the difference in 
e-FABP4 concentration by stratifying patients according 
to BMI (B) (10 BMI < 25 vs. 19 BMI ≥ 25), T2D (C) (22 
T2D + VS 4 T2D-) and hypertension (D) (16 T2D- VS 13 
T2D+). As shown in Fig. 4, in our study cohort no signifi-
cant differences were found in patients with BMI ≤ 25 and 
those with BMI > 25 (p 0.21), and with hypertension vs. 
those without hypertension (p 0.37), subjects with T2D 
and those without T2D (p 0.62).

Ad-CM from CcRCC patients effect on proliferation of 
CcRCC cell lines
To investigate the effect of extracellular FABP4 secreted 
by perirenal adipocytes on ccRCC proliferation, we per-
formed a BrdU assay by incubating cells with Ad-CM 
from HD and ccRCC with or without BMS309403. As 
shown in Fig.  5, Ad-CM treatment had no significant 
effect on cell proliferation in 786-O cells (p= 0.061 and 
0.995, respectively). Conversely, Ad-CM from both HD 
and ccRCC enhanced cell proliferation in ACHN (p= 
0.0039 and 0.0089, respectively). Notably, the Ad-CM 
effect on ACHN proliferation was not reverted by 
BMS309403, suggesting that adipocyte-released factors 
other than FABP4 may affect ACHN cell proliferation.

Ad-CM from CcRCC patients’ effect on migration of CcRCC 
cell lines
We evaluated the effect of adipocyte-released e-FABP4 
on cancer cell migration by scratch assay incubating cells 
with Ad-CM from HD and ccRCC alone or in combina-
tion with BMS309403.

Table 1 Clinical characteristics of the study population
ccRCC patients Healthy Donors (n 23)

(n 35)
Sex
Male, n (%) 26 (74) 12 (52)
Female, n (%) 9 (26) 11 (48)
Age (years) 63 ± 11 55 ± 10
BMI (Kg/m^2) 27 ± 4 25 ± 3
Comorbidity n (%) 27 (77) 0
Diabetes mellitus n (%) 6 (17) 0
Hypertension n (%) 26 (74) 0
Others 0
Pathology stage n (%) pT1 pT2 pT3 ND

16 (46) 3 (9) 4 (11) 12 (34)
Fuhrman grade, n (%) G1 G2 G3 G4

7 (20) 13 (37) 10 (29) 5 (14)
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Fig. 1 Serum FABP4 levels of ccRCC patients were higher compared to HD (A), whereas no significant differences were observed stratifying patient ac-
cording to BMI (B), diabetes (C) and hypertension (D). Box plots denote median and 25th to 75th percentiles (boxes) and Tukey whiskers. The p value was 
evaluated using Mann–Whitney test. Ns indicates a p-value > 0.05 and *Indicates a p value < 0.05
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We showed that Ad-CM from ccRCC enhanced cell 
migration in both 786-O and ACHN. In addition, we 
found that treatment with FABP4 inhibitor partially 
reverts the effect of Ad-CM from ccRCC on cell motility 
(Fig.  6). Collectively, these results suggest that e-FABP4 
could be one of the drivers of the motility-promoting 
effect of Ad-CM from ccRCC on 786-O and ACHN.

Adipocyte-released FABP4 effect on ERK phosphorylation
Since many authors have reported that ERK kinases play 
a pivotal role in extracellular FABP4 signal transduction, 
we evaluated ERK phosphorylation after treatment with 
FABP4 and Ad-CM with or without BMS309403. As 
shown in Fig.  7, both Ad-CM from ccRCC and FABP4 
treatment significantly increased ERK phosphoryla-
tion in 786-O and ACHN. In addition, FABP4 inhibitor 

mitigated ERK phosphorylation induced by Ad-CM from 
ccRCC and recombinant FABP4 in both cell lines.

Discussion
White visceral AT plays a key role in promoting tumor 
spread, especially in cancers developing in abdomi-
nal area such as ovarian, colorectal and RCC [18]. Sev-
eral studies have shown that AT behaves as endocrine 
organ, releasing a plethora of active compounds that may 
affect the tumor cell malignant phenotype [18, 19]. This 
crosstalk may partially explain the correlation between 
visceral adiposity and OS or PFS in cancer patients [7, 
8, 20, 21]. There is growing evidence that AT promotes 
malignant behavior of ccRCC cells. Zi and coworkers 
showed that PRAT CM isolated from ccRCC patients sig-
nificantly increased migration in ACHN and CAKi-2 cell 
lines through the activation of Wnt β-catenin pathway 

Fig. 2 Human recombinant FABP4 does not affect cell proliferation in 786-O and ACHN. 786-O (A) and ACHN (B) cells were seeded (1 × 103cells/ well) in 
96-well. and incubated with medium containing 10% FBS, 0.25% BSA and recombinant FABP4 10000 pg/mL alone or in combination with BMS309403 
40 µM for 24 h. Cell proliferation was calculated as percentage of BrdU incorporation compared to control. Data represent the mean ± SD of 5 inde-
pendent experiments for 786-O and 3 independent experiments for ACHN. The p-value was calculated using the one-way ANOVA test. Ns indicates a 
p-value > 0.05, * Indicates a p value < 0.05
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[22]. Campo-Verde-Arbocco and colleagues evaluated 
the effects of CM from human AT explants from renal 
cell carcinoma near or far from the tumor, demonstrating 
that AT educated by ccRCC acquired the ability to pro-
mote cell migration and invasion [23]. In a second study, 
the same authors investigated the intracellular pathway 
involved in the enhanced motility of ccRCC, identifying 

pERK and pPI3K as downstream mediators [24]. More 
recently, it has been demonstrated that PRAT explants 
from ccRCC patients underwent browning process that 
may partially explain the different secretory profile of 
ccRCC PRAT compared to HD PRAT [25, 26]. Although 
these studies collectively showed an established cross-
talk between PRAT and ccRCC, adipocyte-released 

Fig. 3 Ad-CM ccRCC enhances migration in 786-O and ACHN cells through FABP4 release. 786-O (A) and ACHN (B) cells were seeded (1 × 105cells/ well) 
in 12-well. In vitro “wound” was created by a straight-line scratch across the cell monolayer and cells were incubated with medium containing 10% FBS, 
0.25% BSA, and human recombinant FABP4 10000 pg/mL and BMS309403 40 µM. The images were acquired at 0 and 24 h using a camera connected to 
the microscope. The distance toward the wound edges was photographed and measured (magnification 10x). Cell motility was calculated as percentage 
of wound healing rate. Data represent the mean ± SD of 6 independent experiments for 786-O and 6 independent experiments for ACHN. The p-value was 
calculated using the one-way ANOVA test. Ns indicates a p-value > 0.05, *Indicates a p value < 0.05, **indicates a p-value ≤ 0.01, and **** a p-value ≤ 0.0001
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Fig. 4 (See legend on next page.)
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factors affecting cancer aggressiveness remain to be clari-
fied. To address this issue, we focused our attention on 
FABP4, a small protein highly expressed in adipocytes, 
greatly induced during adipocyte differentiation and 
able to activate lipolysis [27]. In adipocytes and macro-
phages, FABP4 is involved in metabolic and inflamma-
tory pathways of insulin resistance, diabetes mellitus, and 
atherosclerosis [28]. Guaita-Esteruelas and colleagues 
demonstrated an association between serum FABP4 lev-
els and breast cancer independent of BMI, it could be 
speculated that tumor cells may influence FABP4 secre-
tion in surrounding adipocytes, suggesting a role for this 
protein in the cross-talk between cancer cells and adipo-
cytes [29].

We showed that FABP4 significantly increased cell 
migration, suggesting that it could be a driver of the AT 
cancer-promoting effect.

Differently from previous studies based on ex-vivo AT 
explant, we isolated adipocytes from PRAT. This model 
allows us to isolate the role of factors specifically released 
by adipocytes.

Using a CM approach, we demonstrated for the first 
time that adipocyte-released FABP4 increases ccRCC 
cancer cell motility. Accordingly, it has been reported 
that FABP4 is involved in the motility-promoting effect of 
Ad-CM on colon cancer cell [14] and in prostate cancer 
invasiveness [30]. Interestingly, these tumors were highly 
affected by lipid accumulation, suggesting that FABP4, as 
lipid chaperone, could act as free fatty acids transporter 
from tumor microenvironment to cancer cells [31, 32]. In 
addition, e-FABP4 effect on ccRCC cells can be driven by 
ERK phosphorylation regardless of free fatty acid trans-
port. Chen and coworkers, in fact, reported that FABP4 
alone affects MCF7 cell proliferation by binding Desmo-
glein 2 and inducing the Erbin release and ERK phos-
phorylation [33]. Here, we showed that the inhibition of 
FABP4 by BMS309403 decreased the effect of Ad-CM 
on migration, indicating that FABP4 is a pivotal factor in 
the reculation of ccRCC cell motility by adipocytes. We 
further demonstrated that e-FABP4 effect on ccRCC cell 
migration was mediated by pERK in 786-O and ACHN 
cell line. Several authors reported that ERK is a crucial 
transductor of extracellular signal regulating cell shape 
and motility. In this regard, it was demonstrated that 
during collective cell migration occurring on the wound 
edge, waves of ERK activity are propagating across cells, 
coordinating cells movement in response to extracellular 
stimulation by serum or growth factors [34, 35].

Despite our data obtained only on in vitro models and 
needing in vivo validation, we provided insights into 
the molecular basis underlying the correlation between 
PRAT thickness and poor PFS, suggesting that cancer-
associated adipocytes may drive ccRCC spread through 
the release of molecules with endocrine and paracrine 
effect. In addition, our findings support the clinical rel-
evance of measuring PRAT thickness to assess patient’s 
recurrence risk. Notably, novel molecular imaging 
opportunities for the clinical management of renal cell 
carcinoma are now available [36].

As previously demonstrated in other cancers [8, 29, 37], 
we found that circulating FABP4 levels were significantly 
higher in ccRCC patients compared to HD. Accordingly, 
Yang and coworkers previously demonstrated that FABP4 
concentration was higher in urine of ccRCC patients 
compared to HD, whereas no difference was detected in 
FABP4 expression between cancer and benign renal tis-
sue [38].

Collectively, these data suggest that FABP4 could be 
used as noninvasive prognostic biomarker for ccRCC, as 
showed in breast, cervical and gastro-intestinal cancers 
[29, 39, 40].

Further studies on a larger population are needed to 
assess the benefit of FABP4 assessment in clinical man-
agement of ccRCC patients.

Conclusion
Cancer cell migration is a key step in the metastatic 
spread. To the best of our knowledge, our study showed 
for the first time that FABP4 released by peri-tumoral 
adipocytes promotes renal cancer cell migration, increas-
ing ERK phosphorylation (Fig.  8). Our findings indi-
cated that FABP4 could represent a therapeutic target in 
ccRCC patients.

(See figure on previous page.)
Fig. 4 Ad-CM ccRCC displayed a higher concentration of e-FABP4 (A) while no significant differences were observed by stratifying patient according to 
BMI (B), hypertension (C) and type 2 diabetes (D). Peri-renal adipocytes were seeded (200 µL of adipocytes suspension/well) and incubated with 500 µL 
of medium containing 0,25% BSA to isolate the Ad-CM. After 16 h the Ad-CMs were collected below 80 °C until the assay. Box plots denote median and 
25th to 75th percentiles (boxes) and Tukey whiskers. The p-value was evaluated using Mann-Whitney test. Ns indicates a p-value > 0.05 and **indicates a 
p-value ≤ 0.01



Page 10 of 14La Civita et al. BMC Cancer          (2025) 25:575 

Fig. 5 Ad-CM affect cell proliferation in ACHN, whereas no effect was observed in 786-O cell line. 786-O (A) and ACHN (B) cells were seeded (1 × 103cells/ 
well) in 96-well. and incubated with medium containing 10% FBS, 0.25% BSA and recombinant FABP4 10000 pg/mL alone or in combination with 
BMS309403 40 µM for 24 h. Cell proliferation was calculated as percentage of BrdU incorporation compared to control. Data represent the mean ± SD of 5 
independent experiments for 786-O and 3 independent experiments for ACHN. The p-value was calculated using the one-way ANOVA test. Ns indicates 
a p-value > 0.05, * Indicates a p value < 0.05
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Fig. 6 Ad-CM ccRCC enhances migration in 786-O and ACHN cells through FABP4 release. 786-O (A) and ACHN (B) cells were seeded (1 × 105cells/ well) 
in 12-well. In vitro “wound” was created by a straight-line scratch across the cell monolayer and cells were incubated with medium containing 10% FBS, 
0.25% BSA, Ad-CM obtained from mature adipocytes both from HD (Ad-CM) and from ccRCC patients (Ad-CM ccRCC), and BMS309403 40 µM. The im-
ages were acquired at 0 and 24 h using a camera connected to the microscope. The distance toward the wound edges was photographed and measured 
(magnification 10x). Cell motility was calculated as percentage of wound healing rate. Data represent the mean ± SD of 6 independent experiments for 
786-O and 6 independent experiments for ACHN. The p-value was calculated using the one-way ANOVA test. Ns indicates a p-value > 0.05, *Indicates a 
p value < 0.05, **indicates a p-value ≤ 0.01, and **** a p-value ≤ 0.0001, Ns indicates a p-value > 0.05, *Indicates a p value < 0.05, **indicates a p-value ≤ 0.01, 
***indicates a p-value < 0.001 and **** a p-value ≤ 0.0001
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Fig. 7 Effect of Ad-CM on the MAPK pathway in ccRCC cancer cells. 786-O and ACHN cells were seeded (1 × 105 cells/well) and incubated with medium 
containing 0.25% BSA, Ad-CM from HD, Ad-CM from ccRCC, alone or in combination with BMS309403 40 µM and human recombinant FABP4 10000 pg/
mL. GAPDH was used as loading control. A representative blot for 4 experiments for 786-O and 6 experiment for ACHN is presented in figure (A) and (B) 
respectively. Quantification of Western Blot is reported for 786-O (C) and ACHN (D). The p value was calculated using Kruskal-Wallis test. Ns indicates a 
p-value > 0.05, *Indicates a p value < 0.05. Full-length blots/gels are presented in Supplementary Fig. 1

 



Page 13 of 14La Civita et al. BMC Cancer          (2025) 25:575 

Abbreviations
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