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Abstract
Background  Metabolism and stemness-related genes (msRGs) are critical in the development and progression of 
lung adenocarcinoma (LUAD). Nevertheless, reliable prognostic risk signatures derived from msRGs have yet to be 
established.

Methods  In this study, we downloaded and analyzed RNA-sequencing and clinical data from The Cancer Genome 
Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. We employed univariate and multivariate Cox 
regression analyses, along with least absolute shrinkage and selection operator (LASSO) regression analysis, to 
identify msRGs that are linked to the prognosis of LUAD and to develop the prognostic risk signature. The prognostic 
value was evaluated using Kaplan-Meier analysis and log-rank tests. We generated receiver operating characteristic 
(ROC) curves to evaluate the predictive capability of the prognostic signature. To estimate the relative proportions of 
infiltrating immune cells, we utilized the CIBERSORT algorithm and the MCPCOUNTER method. The prediction of the 
half-maximal inhibitory concentration (IC50) for commonly used chemotherapy drugs was conducted through ridge 
regression employing the “pRRophetic” R package. The validation of our analytical findings was performed through 
both in vivo and in vitro studies.

Results  A novel five-gene prognostic risk signature consisting of S100P, GPX2, PRC1, ARNTL2, and RGS20 was 
developed based on the msRGs. A risk score derived from this gene signature was utilized to stratify LUAD patients 
into high- and low-risk groups, with the former exhibiting significantly poorer overall survival (OS). A nomogram was 
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Introduction
Lung cancer is recognized as the most lethal form of 
malignant tumor in both the United States and China, 
with around 85% of cases categorized as non-small cell 
lung cancer (NSCLC) [1, 2]. Currently, lung adenocar-
cinoma (LUAD) represents the predominant subtype of 
NSCLC, maintaining a consistently high incidence rate. 
In recent years, despite advancements in treating LUAD 
through improvements in radiotherapy, chemotherapy, 
surgery, and targeted therapies, patient outcomes remain 
largely disappointing. Over the last ten years, immune 
checkpoint blockade immunotherapy aimed at targets 
such as PDCD1, CD274, and CTLA-4, among other 
immune regulatory components, has emerged as a prom-
ising option for LUAD patients [3]. Nevertheless, a sig-
nificant number of patients exhibit resistance to these 
immunotherapy agents [4]. Hence, there is a pressing 
need to investigate more effective methods for prognos-
tic evaluation and to discover dependable biomarkers 
capable of predicting the success of anti-immune check-
point therapies, as well as to stratify those who would 
benefit from treatment. Ultimately, this could lead to the 
creation of highly personalized management and treat-
ment strategies for individuals with LUAD. Addition-
ally, in today’s digital age, the field-effect transistor (FET) 
has developed into a versatile device with a wide range 
of applications across various domains [5–7]. They have 
garnered considerable attention recently because of their 
benefits, including rapid sample analysis, label-free iden-
tification, a broad dynamic range, and economical fabri-
cation techniques, especially on flexible materials, which 
exceed the efficiency of traditional methods [8–11]. 
Nevertheless, when it comes to analyzing or detecting 
complicated real-world samples, the existence of various 
interfering agents makes it challenging to simultaneously 
identify multiple biomarkers or physiological indicators. 
Consequently, the screening and identification of partic-
ular biomarkers hold significant importance.

Metabolic reprogramming is the major hallmark of 
tumor development. Numerous recent investigations 
indicate that abnormal metabolism is linked to poor 

clinical outcomes in a variety of tumor types, including 
lung adenocarcinoma (LUAD) [12]. During cancer pro-
gression, tumor cells frequently alter the metabolic path-
ways involved in lipid production, glycolytic processes, 
oxidative phosphorylation (OXPHOS), glutaminolysis, 
and mitochondrial functions, ensuring an adequate sup-
ply of energy, redox balance, and material necessary for 
their proliferation and spreading [13].

Cancer stem cells (CSCs), a distinct subpopulation of 
tumor cells, have garnered significant interest as targets 
for cancer therapy, owing to their abilities for self-renewal 
and differentiation into multiple cell types, which play 
a crucial role in promoting tumor growth and diversity. 
Compared to regular cancer cells, CSCs exhibit greater 
aggressiveness, thereby facilitating tumor invasion and 
the spread of cancer to other parts of the body [14, 15]. 
Malta et al. discovered characteristics of stemness linked 
to oncogenic dedifferentiation through a comprehensive 
analysis of various cancers utilizing a machine learning 
approach [16]. They established stem cell indices to assess 
the stemness of each tumor sample within The Cancer 
Genome Atlas (TCGA) database, revealing that these 
indices could effectively predict metastatic occurrences 
and provide insights into intratumoral heterogeneity. 
Notably, the mRNA expression-based stemness index 
(mRNAsi) can measure cancer stemness by examining 
the transcriptomic data of cancer specimens [17–19]. 
In the study of lung adenocarcinoma (LUAD), mRNAsi 
was employed to evaluate LUAD cases from the TCGA, 
and the analysis revealed that mRNAsi was significantly 
elevated in cancer patients. The mRNAsi scores corre-
sponded with clinical stage progression, demonstrating 
that the low mRNAsi cohort exhibited a superior over-
all survival rate over a span of 5 years in the majority of 
LUAD cases [20]. In studies focusing on pancreatic can-
cer (PDAC), it was observed that patients displaying high 
mRNAsi expression had a considerably shorter over-
all survival time compared to those with low mRNAsi 
expression [21]. Recent developments in metabolomics 
reveal that the metabolic reprogramming of CSCs plays a 
crucial role in satisfying energy requirements, preserving 

constructed incorporating the risk score and other clinical characteristics, showcasing strong capabilities in estimating 
the OS rates for LUAD patients. Furthermore, we observed notable differences in the infiltration of various immune cell 
subtypes, as well as in responses to immunotherapy and chemotherapy, between the low-risk and high-risk groups. 
Results from gene set enrichment analysis (GSEA) and in vitro studies indicated that the prognostic signature gene 
ARNTL2 influenced the prognosis of LUAD patients, primarily through the activation of the PI3K/AKT/mTOR signaling 
pathway.

Conclusions  Utilizing this gene signature for risk stratification could help with clinical treatment management and 
improve the prognosis of LUAD patients.
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stemness, and supporting cancer proliferation and inva-
sion [22, 23]. However, so far, the exact mechanisms and 
roles of the interactions between metabolism and stem-
ness in the advancement and prognosis of LUAD are 
not yet fully understood. Moreover, there is a noticeable 
absence of prognostic models that incorporate metabo-
lism and stemness-related genes (msRGs) to forecast out-
comes for patients with LUAD.

In this study, we hypothesize that there is a prognostic 
relevance of the interplay between metabolism and stem-
ness in LUAD. Through comprehensive bioinformatics 
approaches, including univariate Cox regression, LASSO 
regression, and multivariate Cox regression analyses, we 
developed a novel prognostic risk signature for LUAD 
that incorporates genes related to cancer metabolism and 
stemness. This risk signature was then validated using 
a merged GEO database comprising seven indepen-
dent external cohorts. Following this, we confirmed the 
expression of the identified signature genes using GEPIA 
and HPA datasets, as well as RT-PCR analyses of clini-
cally matched tissue samples. Additionally, we conducted 
functional enrichment and somatic mutation analyses 
to investigate the underlying mechanisms contribut-
ing to survival variances across different risk subtypes. 
Finally, we assessed the relationship between risk scores 
and levels of immune infiltration, responses to immu-
notherapy, and sensitivities to chemotherapeutic agents. 
We also preliminarily examined the potential molecular 
mechanism by which the prognostic risk gene ARNTL2 
influences the prognosis of LUAD through both in vivo 
and in vitro experimental approaches. Consequently, our 
research offers new perspectives on personalized treat-
ment strategies and prognostic evaluations for LUAD 
patients, focusing on the interaction between metabo-
lism and stemness.

Materials and methods
Data collection and preprocessing
The expression profiles of mRNA and clinical data were 
retrieved from both TCGA (​h​t​t​p​​s​:​/​​/​p​o​r​​t​a​​l​.​g​​d​c​.​​c​a​n​c​​e​r​​.​
g​o​v​/) and GEO (Gene Expression Omnibus, ​h​t​t​p​​:​/​/​​w​w​
w​.​​n​c​​b​i​.​​n​l​m​​.​n​i​h​​.​g​​o​v​/​g​e​o​/). The microarray datasets for 
GSE11969, GSE13213, GSE41271, GSE42127, GSE50081, 
GSE68465, and GSE72094 underwent preprocessing 
using the affy package in R, which involved background 
adjustment, normalization, and log2 transformation 
[24]. To address potential batch effects and other unde-
sired variations among the seven databases, we utilized 
the surrogate variable analysis (SVA) package from Bio-
conductor [25]. Subsequently, these seven datasets were 
combined to form an external validation cohort. The 
metabolism-related genes and the mRNA expression-
based stemness index (mRNAi) for each sample were 
sourced from earlier studies, respectively [16, 26, 27].

Screening and functional enrichment analysis of MsRGs
Clustering via unsupervised non-negative matrix factor-
ization (NMF) was conducted on the expression profiles 
of metabolism-related genes utilizing the NMF package, 
which is based on the TCGA database. The relation-
ship between all candidate genes and OS was assessed 
through the use of the “survival” package in R. The 
optimal cluster value is identified as the point at which 
the correlation coefficient begins to decline. Analyses 
for OS and progression-free survival (RFS) among the 
identified clusters were carried out using the ‘survival’ 
and ‘survminer’ packages in R. The Limma package was 
employed to examine the differentially expressed genes 
(DEGs) across LUAD subtypes, based on mRNA expres-
sion data concerning the previously mentioned metab-
olism-related genes, with thresholds set at|logFC|≥1 
and P < 0.05 for the identification of differential genes. 
Additonally, LUAD patients were categorized based on 
the median stemness index, and stemness-related genes 
were identified through differential expression analysis 
between the two groups using the Limma package. The 
overlap of differentially expressed metabolism-associated 
genes and stemness-related genes resulted in the identi-
fication of metabolism-stemness-related genes (msRGs). 
Next, to further investigate the functional significance of 
the candidate msRGs, Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analyses were conducted using the R pack-
age clusterProfiler [28]. Then, the STRING online data-
base (https://string-db.org) was utilized to assess the ​p​r​
o​t​e​i​n​-​p​r​o​t​e​i​n interaction (PPI) network of the candidate 
msRGs, applying a confidence score threshold of > 0.4 as 
the cut-off criterion.

Gene set enrichment analyses (GSEA)
Curated collections from version 7.4 of the Molecu-
lar Signatures Database served as the target sets for the 
GSEA analysis, which was conducted using the GSEA 
software version 4.2.1 (​h​t​t​p​​:​/​/​​w​w​w​.​​g​s​​e​a​-​​m​s​i​​g​d​b​.​​o​r​​g​/​
g​s​e​a). The entire transcriptome of tumor samples was 
utilized in the GSEA, and only gene sets that met the 
criteria of P < 0.05 and FDR, q < 0.05 were considered sta-
tistically meaningful [26].

MsRGs prognostic risk model construction
Initially, univariate Cox regression was carried out using 
differentially expressed msRGs (DE-msRGs) to identify 
prognosis-related genes in the TCGA_LUAD cohort. 
Subsequently, to refine the list of candidate genes and 
mitigate the dimensionality of the extensive dataset, 
least absolute shrinkage and selection operator (LASSO) 
regression was employed through the R package ‘glmnet’. 
Following this, the selected genes underwent multivariate 
Cox regression analysis to filter out additional candidate 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://string-db.org
http://www.gsea-msigdb.org/gsea
http://www.gsea-msigdb.org/gsea
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genes and create a msRGs-related prognostic risk signa-
ture aimed at predicting survival outcomes for LUAD 
patients. The risk score was computed using the equa-
tion: Risk score = ∑(Coefi * Expi). Here, Coefi denotes the 
regression coefficient obtained from the multivariate Cox 
regression analysis, while Expi indicates the expression 
levels of the identified prognostic risk genes. Based on 
the risk score formula, the median risk score was estab-
lished as the cut-off point, leading to the categorization 
of LUAD patients into low- and high-risk groups. The 
model’s sensitivity, specificity, and area under the receiver 
operating characteristic (ROC) curve (AUC) were evalu-
ated. The GEO merged dataset, which comprises seven 
GSE datasets, served as the external validation cohort.

Nomogram model construction and evaluation
Drawing from the findings of the multivariate Cox 
regression analysis along with clinical case parameters, 
a predictive nomogram model was additionally devel-
oped to quantitatively estimate the likelihood of OS at 1, 
3, and 5 years for patients with LUAD utilizing the ‘rms’ 
and ‘survival’ packages in R [29]. Calibration curves were 
produced to evaluate the model’s precision. Furthermore, 
decision curve analysis (DCA) was conducted to assess 
the net clinical benefits offered by the nomogram model 
[30].

Immune infiltration analysis
The online database GSCA (​h​t​t​p​​s​:​/​​/​g​u​o​​l​a​​b​.​w​​c​h​s​​c​u​.​c​​n​
/​​G​S​C​A​/​#​/) was utilized to determine the relationship 
between prognostic risk genes and the levels of immune 
cell infiltration in LUAD tissues. We investigated immune 
cell infiltration in LUAD samples through three distinct 
methods. Initially, we applied the Estimation of Stro-
mal and Immune cells in Malignant Tumor tissues using 
Expression data (ESTIMATE) algorithm [31], which eval-
uates each tumor sample for stromal, immune, and tumor 
purity levels. This analysis was conducted utilizing the R 
package named “estimate.” Subsequently, to gain a deeper 
insight into the specific types of immune cell infiltration 
within each tumor, we employed the Cell Type Identifica-
tion by Estimating Relative Subsets of RNA Transcripts 
(CIBERSORT) algorithm [32] to quantitatively assess the 
proportions of 22 different immune cell types in LUAD 
samples. Additionally, we implemented the Microenvi-
ronment Cell Populations (MCP)-counter algorithm [33] 
using the “MCP-counter” R package for further analysis. 
The relationship between the risk score and immune cell 
abundance was evaluated using the Spearman correlation 
test, applying a cutoff threshold of P < 0.05.

Prediction of immunotherapy and chemotherapeutic 
response
The expression levels of immune checkpoint genes and 
members of the class I human leukocyte antigen (HLA) 
family were compared between high-risk and low-risk 
groups. Somatic mutation data differences between 
these groups were analyzed and visualized using water-
fall charts generated by the ‘maftool’ R package. To assess 
the predictive value of risk scores on the immunotherapy 
response of LUAD patients, both the Tumor Immune 
Dysfunction and Exclusion (TIDE) score and Tumor 
Mutation Burden (TMB) score were utilized. TIDE 
scores for LUAD patients were obtained from the TIDE 
database (​h​t​t​p​​:​/​/​​t​i​d​e​​.​d​​f​c​i​.​h​a​r​v​a​r​d​.​e​d​u​/) [34]. Addition-
ally, the half-maximal inhibitory concentration (IC50) 
of chemotherapeutic drugs for each LUAD patient was 
assessed using the ‘pRRophetic’ R package, based on data 
from the Genomics of Drug Sensitivity in Cancer (GDSC, ​
h​t​t​p​​s​:​/​​/​w​w​w​​.​c​​a​n​c​e​r​r​x​g​e​n​e​.​o​r​g​/) [35]. The drug sensitivity 
was determined by comparing the IC50 values between 
patients with low- and high-risk scores, where a lower 
IC50 value indicated greater sensitivity.

Collection of paired clinical lung adenocarcinoma tissues
Tissues from paired LUAD and adjacent normal lung 
samples were sourced from both Huaihe Hospital 
of Henan University and Puyang Hospital of Tradi-
tional Chinese Medicine, China. Informed consent 
was obtained from all patients prior to the collection of 
samples. The Ethics Committee of the Medical School at 
Henan University, China, approved this study (HUSOM-
2018-282). All procedures conducted in this research 
adhered to the established guidelines provided by the 
approval.

Cell culture and stable transfection of ShRNA
Cell culture and plasmid construction were performed as 
previously studies [36]. Details of relevant contents are 
described in the Supplementary Materials and Methods.

Transwell assay and in vivo lung metastasis
Cell invasion and migration were assessed using both 
transwell assays and in vivo analysis of lung metastasis 
[36]. Transwell filters (Costar) with pore sizes of 8.0 μm 
were treated with Matrigel (BD Biosciences), diluted at 
a ratio of 1:6 in serum-free medium. A total of 2.5 × 105 
cells in 200 µl of serum-free media were introduced into 
the upper chamber coated with Matrigel. The lower 
chamber was filled with 500  µl of complete medium. 
Following a 36-hour incubation period, cells remaining 
in the upper chamber were gently removed using cot-
ton swabs, while those that migrated through the filters 
into the lower wells were fixed using 3.7% formaldehyde 
and stained with 1% crystal violet (Sigma). The number 

https://guolab.wchscu.cn/GSCA/#/
https://guolab.wchscu.cn/GSCA/#/
http://tide.dfci.harvard.edu/
https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
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of cells in 3 randomly chosen fields (×200 magnification) 
from each well was counted. For lung metastasis assay, 
five-week-old female BALB/C nude mice were procured 
from Weitong Lihua Animal Co. (Beijing, China) and 
kept in a designated pathogen-free environment at our 
institution. A549 cells that were persistently infected 
with lentiviruses containing either shARNTL2 or con-
trol shRNA were harvested for the analysis of pulmonary 
metastasis. A single-cell suspension with 2 × 106 cells in 
200 µL of PBS was injected into the tail veins of BALB/C 
nude mice (n = 5). All mice were euthanized by injecting 
excessive pentobarbital sodium [37, 38], and lung sam-
ples were taken six weeks post-injection. The experimen-
tal protocol received approval from the Animal Care and 
Research Committee of Henan University.

Real-time qPCR and western blot analysis
Total RNA was isolated from frozen matched tissues uti-
lizing Trizol reagent (Takara, Dalian, China) following the 
instructions provided by the manufacturer. The extracted 
RNAs underwent reverse transcription (RR036A, Takara) 
to synthesize cDNA. Real-time PCR was conducted using 
the TB GreenTM premix Ex TaqTM (RR420A, Takara) 
and the ABI Prism 7900 System, adhering to these proce-
dures: the denaturation phase occurred for 10 s at 95 °C, 
the annealing phase lasted for 20  s at 60  °C, the exten-
sion phase continued for 30 s at 72 °C, and a total of 40 
cycles were completed. The gene expression levels were 
determined using the 2−ΔΔCt method, with GAPDH serv-
ing as the endogenous control. The primer sequences are 
provided in Table S1. Each independent experiment was 
conducted a minimum of three times. For the western 
blot analysis, frozen tissues or cell lines were lysed on ice 
utilizing RIPA lysis buffer containing 500 mM NaCl, 50 
mM Tris pH 8.0, 1 mM EDTA, 1% NP-40, and 1× cock-
tail of protease inhibitors (Roche, Lewes, UK). Protein 
concentrations were measured in accordance with the 
manufacturer’s guidelines (Pierce, Rockford, IL). Equal 
amounts of protein from each sample were separated 
using sodium dodecyl sulfate-polyacrylamide gel electro-
phoresis (SDS-PAGE) and subsequently transferred onto 
polyvinylidene fluoride (PVDF) membranes. Following 
this, the membranes were incubated with the specified 
primary antibodies and horseradish peroxidase (HRP)-
conjugated secondary antibodies, in accordance with the 
recommended protocols. Finally, signals were visualized 
using the enhanced chemiluminescence (ECL) detection 
kit (Amersham Pharmacia Biotech, Inc., NJ) and a chemi-
luminescent imaging system (Tanon-5200). The targeted 
bands presented in the main figures are derived from the 
corresponding regions of the uncropped original immu-
noblots after antibody hybridization (Additional file 4). 
Immunoblots were conducted in two independent exper-
iments. Further details regarding the relevant content 

have been previously described [36, 39]. Information on 
the antibodies utilized can be found in Table S2.

Statistical analysis
The continuous data are represented as the mean ± stan-
dard deviation (SD) unless specified otherwise. For sur-
vival analysis, the Kaplan-Meier method along with 
log-rank tests were utilized. Relationships between data-
sets were evaluated using Spearman’s correlation. Cate-
gorical variables were analyzed using either Fisher’s exact 
test or Chi-square tests. All statistical analyses were car-
ried out using R software (version 4.4.0) or the SangerBox 
platform (http://sangerbox.com/), while GraphPad was 
used for handling experimental data. All p values < 0.05 
were deemed statistically significant.

Results
Identification of metabolism and stemness-related genes 
(msRGs) in LUAD cohort
From the TCGA_LUAD data, 1,466 metabolism-related 
genes were extracted (Table S3), resulting in a transcrip-
tome matrix of a total of 1,411 genes (Table S4). Using 
the expression profiles of these 1,411 candidate genes, 
the TCGA_LUAD dataset was classified into two distinct 
groups by NMF with the optimal value of k determined 
through a comprehensive analysis of the Residual Sum 
of Squares (RSS), Cophenetic Correlation Coefficient, 
Silhouette Score, and consensus matrix classification 
(Fig.  1A and B, Fig. S1A, and Table S5). To validate the 
performance of NMF, T-SNE, PCA, and UMAP analy-
ses were conducted, which supported the classification 
into two subgroups: cluster 1 (C1, n = 200) and cluster 2 
(C2, n = 268) (Fig. S1B-D). Furthermore, survival analysis 
revealed that LUAD patients in subtype C2 experienced 
a longer median OS (P < 0.001), progression-free inter-
val (PFI) (P < 0.01), and disease specific survival (DSS) 
(P < 0.001), whereas disease-free interval (DFI) did not 
show a significant difference between the two subgroups 
(Fig. 1C-F). Differential analysis of the two subtypes was 
conducted using the ‘limma’ package in R, yielding a 
total of 1,024 metabolism-related differentially expressed 
genes (DEGs) (Fig. 1G and Table S6). Subsequently, 614 
stemness-related genes were identified based on the 
median of the stemness index through the limma pack-
age (Fig. 1H and Table S7). Finally, 415 candidate genes, 
referred to as metabolism-stemness-related genes 
(msRGs), were generated by intersecting the differential 
genes related to metabolism with the stemness-related 
genes (Fig. 1I).

Functional enrichment and genetic mutation landscape of 
MsRGs
We then assessed the expression levels of 415 msRGs 
in both normal and tumor samples utilizing the 

http://sangerbox.com/
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TCGA_LUAD database. Following this, we identified 301 
differentially expressed msRGs (DE-msRGs), compris-
ing 188 upregulated genes and 113 downregulated genes 
(Fig.  2A and Table S8). To explore the functional roles 
of DE-msRGs in LUAD, we conducted gene set enrich-
ment analysis (GSEA). Findings indicated that the GO 
biological processes (BP) were predominantly enriched 
in nuclear division, organelle fission, chromosome seg-
regation, and mitotic nuclear division. Notable cellular 
components (CC) related to these processes included the 
spindle, chromosomal region, and condensed chromo-
some, among others. The molecular function (MF) terms 
mainly involved tubulin binding, microtubule binding, 
and cytoskeletal motor activity (Fig. 2B). KEGG pathway 
analysis revealed that the target genes were significantly 

implicated in several cancer-related pathways, including 
the cell cycle, oocyte meiosis, motor proteins, proges-
terone-mediated oocyte maturation, and cellular senes-
cence (Fig.  2C). To further examine the involvement of 
DE-msRGs in the initiation and progression of LUAD, we 
analyzed the regulatory relationships among DE-msRGs 
and constructed a protein-protein interaction (PPI) net-
work with the STRING database. This network diagram 
included 214 nodes and 4305 edges, highlighting CDK1, 
CCNB1, KIF23, KIF11, CCNA2, BUB1B, MCM10, 
CDC45, CDC20, and TTK as the ten primary core genes 
(Fig.  2D). Finally, we utilized the TCGA_LUAD muta-
tion database to conduct an analysis of the genetic muta-
tion background for 62 out of 301 DE-msRGs genes that 
exhibited ten or more mutation cases via GSCA online 

Fig. 1  Identification of metabolism and stemness-related genes (msRGs). A The cophenetic coefficient for clusters k = 2 to 10 indicates that the most 
significant cointegration correlation coefficient is observed in cluster k = 2. B The scheme that partitions the samples into two subgroups demonstrates 
optimal performance in consensus clustering. C-F Kaplan-Meier plots of overall survival (OS) (C), progression-free interval (PFI) (D), disease-free internval 
(DFI) (E), and disease specific survival (DSS) (F) for the two metabolism subgroups of LUAD patients, as derived from the TCGA database. G, H Volcano 
plots illustrating the expression of metabolism-related DEGs (E) and stemness-related genes (F) based on the TCGA database. I Venn diagrams depict the 
overlaps between metabolism-related DEGs and stemness-related genes. DEGs, differentially expressed genes
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(​h​t​t​p​​s​:​/​​/​g​u​o​​l​a​​b​.​w​​c​h​s​​c​u​.​c​​n​/​​G​S​C​A​/​#​/​m​u​t​a​t​i​o​n) (Table 
S9 and Fig. S2A-D). Among the 401 LUAD patients 
documented in the TCGA database, 266 individuals 
(66.33%) were identified as having genetic mutations, 
with ERICH3 showing the highest mutation rate at 21%. 
This was followed by ASPM, FCGBP, ITGA8, COL6A6, 
CENPF, SLIT3, POLQ, SCN7A, and MKI67. We also 
assessed the CNV frequencies of 62 DE-msRGs in LUAD, 
noticing that ACKR1 had the most significant ampli-
fication frequency at 72.09%. In contrast, BUB1B and 
GLDC both demonstrated notable CNV loss frequencies 

of 53.68% and 53.29%, respectively (Table S10). From 
this analysis, we observed that msRGs in LUAD tissues 
exhibited significant transcriptional and genetic changes, 
which may play a role in the oncogenesis of LUAD.

Establishment and validation of a novel msRGs-related 
gene prognostic model for LUAD
To investigate the possible predictive significance of the 
301 DE-msREs in LUAD, we conducted a univariate 
Cox regression analysis. When Hazard Ratio (HR) ≠ 1, 
with p < 0.05, we identified 81 genes from the TCGA 

Fig. 2  Functional enrichment analysis of metabolism and stemness-related DEGs and the establishment of protein-protein interaction networks. A Vol-
cano plot illustrating the metabolism and stemness-related DEGs. B Representative results from gene ontology (GO) analyses of DEGs sourced from the 
TCGA database. C Representative analyses of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to DEGs in the TCGA database. D The 
protein-protein interaction network for metabolism and stemness-related DEGs, constructed using the STRING database. DEGs, differentially expressed 
genes
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database as prognostic markers influencing the OS of 
LUAD patients (Table S11). Next, we utilized LASSO 
regression with 10-fold cross-validation to ascertain the 
optimal lambda values derived from the minimum par-
tial likelihood deviance, correlating with 9 out of the 81 
prognostic genes that showed a strong association with 
OS (Fig.  3A and B and Table S12). In our analysis, we 
used the TCGA_LUAD database as the training cohort 
(n = 464) alongside a merged GEO database serving as the 
validation cohort (n = 1489). By performing multivariate 
Cox regression analysis, we pinpointed an optimal gene 
signature comprising five metabolism-stemness-related 
DEGs (msrDEGs) (S100P, GPX2, PRC1, ARNTL2, and 
RGS20), along with their respective coefficients for LUAD 
(Fig. 3C). Subsequently, we formulated a prognostic risk 
model as follows: risk score = (0.082×expression value of 
S100P + 0.078×expression value of GPX2 + 0.575×expres-
sion value of PRC1 + 0.322×expression value of 
ARNTL2 + 0.372×expression value of RGS20). The risk 
score for each patient in the TCGA database was com-
puted. Principal component analysis (PCA) indicated 
that patients with LUAD could be categorized into two 
molecular subgroups according to risk scores in both the 
TCGA_LUAD cohort and the GEO-merged cohort (Fig. 
S3A, 3B). We then employed the “survminer” R software 
package to derive the median cut-off point, which allowed 
us to separate patients from the TCGA_LUAD database 
into high- and low-risk groups based on their individual 
risk scores. Kaplan-Meier analysis indicated that the OS 
for the high-risk group was significantly poorer than that 
of the low-risk group (P < 0.001) (Fig. 3D). Figure 3E illus-
trated that individuals in the high-risk group were more 
likely to express the risk genes. In addition, we found 
that the five-gene prognostic signature exhibited higher 
AUC values in the time-dependent ROC analysis for both 
1-year and 3-year survival compared to each of the previ-
ously mentioned risk prognostic genes within the TCGA 
cohort (Fig. 3F and Fig. S3C). To further validate the pre-
dictive capability of the five-gene prognostic signature, 
we incorporated the GEO-merged cohort (n = 1489) as an 
external validation group to assess the results obtained 
from the TCGA training cohort. Aligning with the train-
ing cohort outcomes (Fig.  3G-I and Fig. S3D), the KM 
curves for the validation cohort consistently indicated 
that the high-risk group had a poorer prognosis than the 
low-risk group (Fig. 3G). The time-dependent ROC anal-
ysis revealed that the AUCs for 1-year, 3-year, and 5-year 
OS in the GEO-merged cohort were 0.724, 0.699, and 
0.672, respectively (Fig.  3I). In summary, the five-gene 
prognostic risk signature demonstrated strong perfor-
mance in predicting the OS of patients with LUAD.

Relationship between prognostic risk signature and 
clinicopathologic characteristics in LUAD
Next, we analyzed the differences in risk scores based on 
various stratified features to investigate the association 
between the prognostic risk signature and clinical and 
pathological characteristics. The violin plots illustrated 
that LUAD patients with advanced pathological stage 
(P < 0.001), lymph node metastasis (P < 0.001), higher 
T stage (P < 0.05), and those who are female (P < 0.001) 
exhibited higher risk scores in the TCGA_LUAD cohort 
(Fig.  4A-E). Furthermore, an analysis of the TCGA 
database revealed that LUAD patients with advanced 
pathological stage (P < 0.001), lymph node metastasis 
(P < 0.001), and higher T stage (P < 0.001) experienced 
shorter OS as determined by stratified survival analysis 
(Fig. 4F-J). Additionally, we further explored the indepen-
dence of the prognostic risk signature and clinicopatho-
logical factors through univariate and multivariate Cox 
regression analyses based on the TCGA cohort. Univari-
ate Cox regression analysis demonstrated that the clini-
cal features of pathological stage (HR = 1.586, P < 0.001), 
T stage (HR = 1.712, P < 0.001), N stage (HR = 2.473, 
P < 0.001), and risk score (HR = 1.805, P < 0.001) were 
significantly correlated with survival rates in LUAD. In 
contrast, multivariate Cox regression analysis indicated 
that tumor pathological stage (HR = 1.314, P < 0.05), N 
stage (HR = 1.580, P < 0.05), and risk score (HR = 1.765, 
P < 0.001) were independent predictors of OS in LUAD 
patients (Fig. 4K and L). These results suggest the poten-
tial for integrating risk score, N stage, and tumor patho-
logical stage for prognosis stratification in LUAD.

Validation of prognostic risk genes
To further validate the prognostic risk model, we initially 
examined the correlation between the expression levels of 
five prognostic risk genes and the survival rate of patients 
with LUAD. The Kaplan-Meier curves revealed that high 
expression of S100P, PRC1, ARNTL2, and RGS20 genes 
was significantly associated with shorter OS in LUAD 
patients, while high expression of GPX2 may suggest 
a poor prognosis in LUAD patients, although this was 
not statistically significant (HR = 1.19, P = 0.15) (Fig. 5A). 
Subsequently, we investigated the expression patterns 
of these five risk genes using databases and RT-qPCR. 
GEPIA analysis indicated that mRNA levels of S100P, 
GPX2, PRC1, and ARNTL2 were markedly elevated in 
LUAD compared to normal samples. The mRNA level of 
RGS20 was also higher in LUAD, but not significantly dif-
ferent (Fig. 5B). RT-qPCR analysis of eight paired clinical 
LUAD tissue samples showed increased mRNA expres-
sion of these five prognostic risk genes in LUAD tissues 
compared to control tissues, consistent with the GEPIA 
results except for RGS20 (Fig. 5C). Furthermore, immu-
nohistochemical analyses from the Human Protein Atlas 
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Fig. 3  The metabolism and stemness-related gene signature and prognostic classifier in the LUAD cohort. A LASSO coefficient analysis of the metabolism 
and stemness-related DEGs is presented. The dotted lines in the graph indicate the values selected through 3-fold cross-validation. B A three-fold cross-
validation is performed to determine the tuning parameter in the LASSO model, with partial likelihood deviation values plotted against log(λ), and the 
error bars representing standard error (SE). C A forest plot displays the hazard ratios for five metabolism and stemness-related prognostic DEGs obtained 
from multivariate Cox regression analyses. D, G Kaplan-Meier plot analyses are shown for the TCGA cohort (D) and the GEO-merged cohort (G). E, H The 
risk distribution among patients is depicted in the training cohort (E) and the GEO-merged cohort (H). F, I The ROC curves of the risk signature are illus-
trated for the training cohort (F) and the GEO-merged cohort (I). DEGs refers to differentially expressed genes
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(HPA) database demonstrated high staining intensity of 
S100P, GPX2, and PRC1 in LUAD tissues, contrasting 
with low intensity or absence of staining in normal tis-
sues, while ARNTL2 and RGS20 did not exhibit signifi-
cant differences (Fig. 5D).

Development and validation of the prognostic prediction 
nomogram
In accordance with the current clinical context and the 
results of independent prognostic analyses, we developed 
a composite nomogram that integrates the risk score, 
pathological stage, T stage, N stage, and age to predict 
the OS of LUAD patients at 1, 3, and 5 years, based on 
the TCGA_LUAD cohort (Fig. 6A). The calibration curve 
for patient survival prediction demonstrated strong per-
formance for the nomogram when compared to an ideal 
model (Fig. 6B). The area under the curve (AUC) values 

for 1-year, 3-year, and 5-year predictions of the nomo-
gram exceeded those of other clinical variables (Fig. 6C-
E). Additionally, we employed decision curve analysis 
(DCA) to assess the model’s effectiveness. The standard-
ized net benefit confirmed the predictive value of the 
nomogram for OS at 1 year and 3 years when compared 
to individual clinical variables (Fig. 6F-H).

Association of risk subtypes with tumor immune 
microenvironment
Based on the close correlation between the expression of 
risk prognostic genes and the levels of infiltration by mul-
tiple immune cells, as observed in the GSCA database, 
we found that ARNTL2 expression showed the stron-
gest positive correlation with nTreg cell infiltration levels 
(R = 0.45, P < 0.001), while exhibiting the most substantial 
negative correlation with Th17 cells (R=-0.32, P < 0.001) 

Fig. 4  The correlation between the prognostic risk signature and clinicopathological characteristics in the TCGA_LUAD cohort. A-E Comparison of the 
risk score across different subgroups stratified by clinicopathological characteristics, including age (A), gender (B), pathological stage (C), T stage (D), 
and N stage (E). F-J Kaplan-Meier curves depicting the probability of OS stratified by the same clinicopathological characteristics: age (F), gender (G), 
pathological stage (H), T stage (I), and N stage (J). K, L Cox regression analyses for univariate (K) and multivariate (L) models, incorporating age, gender, 
pathological stage, T stage, N stage, and risk score as factors. OS, overall survival; T, tumor size; N, lymph node metastasis; ns, no significance. Statistical 
significance is indicated as * P < 0.05 and *** P < 0.001
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Fig. 5  The expression patterns of prognostic risk genes and their correlation with OS in patients with LUAD. A The Kaplan-Meier plot depicts the rela-
tionship between the expression levels of S100P, GPX2, PRC2, ARNTL2, and RGS20 and OS in LUAD patients. B The expression patterns of S100P, GPX2, 
PRC2, ARNTL2, and RGS20 in LUAD and normal samples are presented based on data from the GEPIA database. C RT-qPCR analysis of S100P, GPX2, PRC2, 
ARNTL2, and RGS20 was conducted using matched clinical tissues (n = 8). D Immunohistochemical analysis of S100P, GPX2, PRC2, ARNTL2, and RGS20 was 
performed on LUAD and normal tissue samples sourced from the Human Protein Atlas (HPA) database. HR, hazard ratio; OS, overall survival; LUAD, lung 
adenocarcinoma. Statistical significance is indicated as *P < 0.05; **P < 0.01
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(Fig.  7A). GPX2 expression demonstrated the highest 
positive correlation with Th17 cells (R = 0.17, P < 0.001) 
and the most significant negative correlation with mac-
rophages (R=-0.28, P < 0.001) (Fig. S4A). Additionally, 
PRC1 expression levels correlated positively with nTreg 
cells at R = 0.61 (P < 0.001), whereas a negative correlation 
was noted with NKT cells (R=-0.43, P < 0.001) (Fig. S4B). 
RGS20 expression showed the most significant positive 

correlation with exhausted T cells (R = 0.30, P < 0.001), 
and the strongest negative correlation with Th17 cells 
(R=-0.24, P < 0.001) (Fig. S4C). Lastly, S100P expression 
exhibited a notable positive correlation with nTreg cells 
(R = 0.33, P < 0.001) and the highest negative correlation 
with macrophages (R=-0.30, P < 0.001) (Fig. S4D).

Next, we further investigated the relationship between 
the risk score and immunological infiltrates using the 

Fig. 6  Construction and validation of a nomogram utilizing the TCGA database. A The nomogram developed predicts the probabilities of OS at 1, 3, and 
5 years. The red line exemplifies the method for prognostic prediction. B Calibration curves demonstrate the nomogram’s performance in predicting 1-, 
3-, and 5-year OS by comparing observed and predicted outcomes. C-E ROC curve analyses assess the predictive efficiency of the nomogram for 1-, 3-, 
and 5-year OS based on the TCGA database. F-H Decision curve analysis (DCA) is employed to evaluate the model’s effectiveness. OS, overall survival; AUC, 
area under the curve; ROC, receiver operating characteristic
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Fig. 7  The infiltration of immune cells in high-risk and low-risk groups. A The correlation analysis of the prognostic risk gene ARNTL2 expression and im-
mune cell infiltration was conducted using the GSCA database. B The ESTIMATE algorithm was employed to compare the ESTIMATE score, immune score, 
and stromal score between the high-risk and low-risk groups. C, D The levels of immune cell infiltration in LUAD patients were compared between high-
risk and low-risk groups using the MCPcounter (C) and CEBERSORT (D) algorithms. Statistical significance is indicated as *P < 0.05, **P < 0.01, ***P < 0.001
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ESTIMATE algorithm. The findings revealed that the 
low-risk group exhibited higher ESTIMATE, stromal, 
and immune scores compared to the high-risk group 
(Fig.  7B, P < 0.001), indicating a greater abundance of 
immune and stromal cells in LUAD patients with the 
low-risk signature. Additionally, we estimated the abun-
dance of two stromal cells and eight immune-related cells 
in each sample using the MCP-counter algorithm. When 
comparing the high-risk group with the low-risk group, 
the box plot of immune cell infiltration fraction showed 
significant increases in T cells, myeloid dendritic cells, 
neutrophils, and endothelial cells in the low-risk group, 
whereas cytotoxic lymphocytes and NK cells exhibited 
marked decreases (Fig. 7C).

Subsequently, we also employed the CIBERSORT 
method to further investigate the relative proportion of 
22 tumor-infiltrating immune cells. As shown in Fig. 7D, 
there were significant differences in immune cell infiltra-
tion between the high- and low-risk groups. The low-risk 
group exhibited a relatively high proportion of B cells 
naïve, plasma cells, T cells CD4 memory resting, mono-
cytes, dendritic cells resting, and mast cells resting, while 
showing low infiltration of T cells CD8, T cells CD4 
memory activated, NK cells resting, and macrophages 
M0 and M1.

Association of risk subtypes with immunotherapies and 
chemotherapeutic responses in LUAD
Recently, some LUAD patients have been found to bene-
fit significantly from immunotherapy, especially immune 
checkpoint inhibitors. Currently, various biomarkers, 
such as the expression levels of immune checkpoint 
proteins, class I human leukocyte antigen (HLA) family 
members, and tumor mutational burden (TMB), have 
shown potential in predicting the response to immu-
notherapy. Therefore, we first compared the expres-
sion of different immune checkpoints between the 
high- and low-risk groups. Figure  8A showed that the 
high-risk group had significantly higher expression lev-
els of TNFSF4, CD276, LAG3, and ARHGEF5 compared 
to the low-risk group. On the other hand, the low-risk 
group exhibited higher expression levels of GEM, CD27, 
BTLA, and CD47. Next, we examined the expression of 
human leukocyte antigen (HLA) class I family members. 
This is because HLA participates in neoantigen presen-
tation and the cytolytic activity of T cells by presenting 
intracellular peptides on the cell surface. HLA deficien-
cies impair the ability of cells to present neoantigens and 
may lead to immune tolerance. As expected, excluding 
HLA-A, -B, -C, -H, and -G, the low-risk group exhibited 
a significantly higher level of gene expression for various 
members of the HLA family, including HLA-L, HLA-J, 
HLA-F, HLA-E, HLA-DRB1, HLA-DRB5, HLA-DRB6, 
HLA-DRA, HLA-DQB1, HLA-DQB2, HLA-DQA1, 

HLA-DQA2, HLA-DPB1, HLA-DPB2, HLA-DPA1, 
HLA-DOA, HLA-DOB, HLA-DMA, and HLA-DMB, 
compared to the high-risk group (Fig. 8B). Next, through 
an extensive mutation analysis of the TCGA_LUAD data-
base, we explored the mutation profiles of LUAD patients 
categorized into high-risk and low-risk groups. As illus-
trated in Fig.  8C, the most prevalent variant classifica-
tion was missense mutation, with a significantly higher 
proportion of mutations in genes such as TP53, TTN, 
MUC16, CSMD3, and RYR2 observed in the high-risk 
group compared to the low-risk group. The tumor muta-
tional burden (TMB) in the high-risk group was also sig-
nificantly elevated relative to that in the low-risk group 
(P < 0.001) (Fig. 8D). Furthermore, we assessed the poten-
tial response to immunotherapy in each patient using the 
tumor immune dysfunction and exclusion (TIDE) algo-
rithm, revealing that patients in the high-risk group (90%, 
209/232) were more likely to respond to immunotherapy 
than those in the low-risk group (73%, 169/232) (Fig. 8E 
and F).

In recent decades, chemotherapy has emerged as a cen-
tral approach in cancer treatment. However, the hetero-
geneity of tumors has posed a challenge, as the response 
to the same chemotherapy can vary among patients. We 
utilized the R package pRRophetic to calculate inhibitory 
concentration (IC50) of indicated drugs and analyze the 
correlation between risk scores and clinical responses 
to chemotherapy drugs. We selected two targeted drugs 
(gefitinib and axitinib) and six chemotherapy drugs (cis-
platin, paclitaxel, gemcitabine, doxorubicin, etoposide, 
and docetaxel) that have been commonly used in the 
treatment of lung adenocarcinoma. Based on the Can-
cer Genome Project (CGP) database, differences were 
observed in the drug response between the high-risk 
and low-risk groups. Specifically, the chemotherapy drug 
cisplatin, paclitaxel, gemcitabine, doxorubicin, etopo-
side, and docetaxel exhibited a high drug response in the 
high-risk group. Conversely, in the low-risk group, the 
targeted drug axitinib showed a favorable response (Fig. 
S5A-H). Overall, the risk score-related msRGs developed 
in our study demonstrate considerable potential for pre-
dicting prognosis and the benefits of immunotherapy and 
chemotherapy.

The prognostic risk gene ARNTL2 affects the prognosis of 
LUAD patients and involves the activation of the PI3K/AKT/
mTOR signaling pathway
Aryl hydrocarbon receptor nuclear translocator like 2 
(ARNTL2) serves as a transcription factor linked to the 
prognosis and metastasis of various tumors and is one 
of the PAS superfamily [40, 41]. Previous research has 
indicated that ARNTL2 correlates with poor survival 
rates and levels of immune infiltration in breast can-
cer, LUAD, and clear cell renal cell carcinoma [42–44]. 
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Fig. 8  Analysis of immune checkpoints, HLA, TMB, and TIDE. A It illustrates the differences in immune checkpoint gene expression between high- and 
low-risk groups. B This panel compares the expression levels of HLA members across the two risk groups. C Mutation mapping of LUAD patients high-
lights the top 20 genes with the highest mutation frequencies, differentiated by risk group. D A comparison of tumor mutation burden (TMB) among 
distinct risk groups is shown. E, F These panels display the TIDE values and immunotherapy response results for LUAD patients categorized by risk group. 
HLA, human leukocyte antigen; TMB, tumor mutation burden; TIDE, tumor immune dysfunction and exclusion. Statistical significance is indicated as 
*P < 0.05, **P < 0.01, ***P < 0.001
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Our observations also highlighted a significant impact 
of ARNTL2 on the OS of LUAD patients (Fig. 5A). Fur-
thermore, analyses from multiple independent GEO 
databases (GSE68465, GSE37745, GSE30219, GSE31210, 
and GSE67639) reinforced the notion that ARNTL2 
acts as a negative regulatory factor for survival among 
patients with LUAD, utilizing the LOGpc online tool (​h​
t​t​p​​s​:​/​​/​b​i​o​​i​n​​f​o​.​​h​e​n​​u​.​e​d​​u​.​​c​n​/​​D​a​t​​a​b​a​s​​e​L​​i​s​t​.​j​s​p) (Fig. ​S​6​​A​-​E​)​
. Nonetheless, the molecular mechanisms underlying the 
impact of ARNTL2 on malignant biological behaviors 
and the prognosis of LUAD are currently unclear. There-
fore, ARNTL2 was chosen for further investigation.

We first investigated the potential roles of ARNTL2 in 
individual LUAD cells utilizing the CancerSEA database 
(​h​t​t​p​​:​/​/​​b​i​o​c​​c​.​​h​r​b​​m​u​.​​e​d​u​.​​c​n​​/​C​a​n​c​e​r​S​E​A​/). Our analysis 
revealed that the functions of ARNTL2 were primar-
ily linked to angiogenesis, differentiation, epithelial-
mesenchymal transition (EMT), invasion, metastasis, 
quiescence, and stemness (Fig.  9A). Research by Kim 
KT (EXP0066) indicated a positive correlation between 
elevated ARNTL2 expression and metastasis, angiogen-
esis, and quiescence, with Spearman coefficients of 0.72, 
0.62, and 0.48, respectively (P<0.001) (Fig. 9B). Moreover, 
tumor samples from patient-derived xenografts (LC-PT-
45) also showed enrichment in functions related to DNA 
damage, metastasis, and invasion (Fig.  9C). Through 
GSEA analysis, we identified several crucial regulatory 
genes linked to the PI3K/AKT/mTOR signaling pathway 
that were consistently enriched in LUAD patients dem-
onstrating high ARNTL2 expression across the TCGA_
LUAD, GSE68465, and GSE31210 databases, suggesting 
a positive relationship between ARNTL2 expression and 
the PI3K/AKT/mTOR signaling pathway (Fig. 9D). Sub-
sequently, we assessed the protein levels of ARNTL2 
in the A549, H1373, H1573, H1299, and BEAS-2B cell 
lines using Western blotting. Notably, ARNTL2 was sig-
nificantly overexpressed in A549 and H1299 cells com-
pared to normal lung tissues and the BEAS-2B cell line 
(Fig. 9E). To silence endogenous ARNTL2, we performed 
lentiviral transfection of shRNA targeted at ARNTL2 in 
A549 and H1299 cells. Our results demonstrated that 
ARNTL2 knockdown significantly reduced the migra-
tion of both cell lines in transwell assays, compared to 
the control group (Fig.  9F, G). Furthermore, an in vivo 
lung metastasis assay indicated that mice with A549/
sh2ARNTL2 exhibited fewer pulmonary metastasis nod-
ules and weight of lungs than the mock control (Fig. S6F 
and Fig. 9H-J). Additionally, analysis using Western blot 
demonstrated that the knockdown of ARNTL2 resulted 
in reduced levels of p-PI3KTyr458, p-AKTSer473, and 
p-mTORSer2448 in A549 and H1299 cell lines (Fig.  9K). 
Prior research indicated a strong correlation between 
the activation of PI3K/AKT/mTOR pathway and the 
malignant transformation of various tumors, along 

with the metastatic behavior of cancer cells [45–47]. 
Consequently, we investigated the expression levels of 
crucial proteins linked to epithelial-mesenchymal tran-
sition (EMT). Our findings revealed that the silencing of 
ARNTL2 in A549 and H1299 cells significantly lowered 
the expression of N-cadherin and Vimentin, while simul-
taneously elevating the levels of E-cadherin and γ-catenin 
(Fig. 9K). These results imply that ARNTL2 might influ-
ence several biological characteristics of lung adenocar-
cinoma cells through the activation of the PI3K/AKT/
mTOR signaling pathway.

Discussion
Metabolic reprogramming has emerged as a critical char-
acteristic of cancer cells in recent times. Once believed to 
be solely a consequence of accelerated cell division, new 
evidence has changed this perspective by showing that 
metabolic reprogramming can actually promote tumor 
formation [48]. Cancer stem cells (CSCs) represent a dis-
tinct subset of tumor cells endowed with stem-like fea-
tures that enable them to persist despite conventional 
therapeutic approaches, which contributes to the devel-
opment of metastatic disease and tumor relapse [49, 50]. 
Given the diverse prognoses among patients with LUAD 
and the interdependent relationship between metabolic 
reprogramming and CSCs in the tumor microenviron-
ment, creating an effective classification system to strat-
ify patients by varying risk levels based on msRGs would 
be advantageous. Furthermore, such a system could facil-
itate a thorough evaluation of prognosis, immune status, 
and therapeutic responses in LUAD patients. This study 
marks the first systematic examination of the expression 
levels of 415 msRGs in LUAD tissues. Through a multi-
step selection process, a prognostic risk model includ-
ing five DE-msRGs was developed that is significantly 
linked to OS, responses to immunotherapy and chemo-
therapy, as well as the tumor microenvironment of LUAD 
patients, potentially serving as a valuable tool for assess-
ing the effectiveness of immunotherapy and chemother-
apy in this context.

In recent years, a growing body of research has dem-
onstrated that metabolic reprogramming significantly 
influences the growth and function of CSCs [51, 52]. As 
reported by Park et al., elevated levels of pyruvate kinase 
M2 (PKM2), a vital enzyme within the glycolytic meta-
bolic pathway, frequently correlate with tumor invasion 
and unfavorable patient outcomes across various cancers. 
This relationship arises from PKM2’s involvement in gly-
colytic metabolic reprogramming, which enhances the 
survival and proliferation of tumor stem cells [53]. In a 
study conducted in 2022, Luo et al. utilized genetic mouse 
mammary tumor models alongside human breast cancer 
samples to identify that the histone reader ZMYND8 was 
uniquely expressed in breast cancer stem cells (BCSCs). 

https://bioinfo.henu.edu.cn/DatabaseList.jsp
https://bioinfo.henu.edu.cn/DatabaseList.jsp
http://biocc.hrbmu.edu.cn/CancerSEA/
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Fig. 9  Functional analysis and validation of ARNTL2. A The correlation of ARNTL2 with functional state in LUAD based on the CancerSEA database is il-
lustrated through an interactive bubble chart. B, C Detailed functional correlations are presented for the LUAD chip (B) and a patient-derived xenograft 
model (C). D Enrichment analysis was conducted using Gene Set Enrichment Analysis (GSEA) to compare high and low expression levels of ARNTL2 across 
the TCGA, GSE68465, and GSE31210 databases. E Western blot analysis was performed to assess ARNTL2 protein expression levels in normal lung tissues 
and the indicated cell lines. F, G A Transwell assay was utilized to evaluate the invasive ability of A549 and H1299 cells following ARNTL2 silencing, with 
a scale bar of 100 μm. H-J The impact of ARNTL2 silencing on invasion and metastasis in A549 cells was analyzed using a lung metastasis model. The 
metastatic tumor lesions in each mouse lung were assessed through Hematoxylin and eosin (H&E) staining (H). Representative images of H&E-stained 
lung sections from mice injected intravenously with the indicated cells are shown (H). The number of lung metastatic nodules (I) and the lung weight of 
mice (J) in the indicated groups were measured and analyzed. K Western blot analysis was conducted to evaluate the expression levels of the indicated 
proteins. The target bands are derived from the corresponding region of the original blot images. **p < 0.01, ***p < 0.001
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This protein facilitates the epithelial-mesenchymal 
transition (EMT), supports BCSC preservation and 
self-renewal, and contributes to oncogenic transforma-
tion by elevating cholesterol biosynthesis and oxidation 
while inhibiting cholesterol efflux and the catabolism of 
27-Hydroxycholesterol (27-HC). This imbalance results 
in the accumulation of 27-HC within BCSCs, ultimately 
initiating breast tumors [54]. Furthermore, findings by Lv 
et al. indicated that specifically knocking down HIF-1α 
to target hypoxia not only restrains cell proliferation 
and spheroid formation but also reduces the expres-
sion of CSC-related genes and diminishes the activity 
of the Wnt/β-catenin signaling pathway [55]. Despite 
these insights, there remains limited understanding of 
metabolism-stemness-related genes (msRGs) and their 
specific contributions in LUAD. In the current study, 
we conducted a comprehensive bioinformatics analysis 
using the TCGA_LUAD dataset to assess metabolism-
related and stemness-related genes. We identified a 
total of 81 genes, including ABCA8, ADH1B, CX3CR1, 
OIP5, among others, that exhibited significant associa-
tions with OS in LUAD patients. Following this, a five-
gene prognostic risk signature comprising S100P, GPX2, 
PRC1, ARNTL2, and RGS20 was created through LASSO 
regression and multivariate Cox regression analysis. To 
the best of our knowledge, this represents the first prog-
nostic gene signature linked to DE-msRGs in LUAD. This 
five-gene model may offer a novel approach for assessing 
patients with LUAD, aiding in prognosis prediction as 
well as influencing decisions regarding immunotherapy 
and chemotherapy treatments.

Previous studies have underscored the critical impor-
tance of risk signature genes identified in this research 
across multiple cancer types. S100P, which consists of 
95 amino acids and belongs to the S100 protein fam-
ily, is found to be overexpressed in various solid tumors 
[56–58]. Experimental findings indicate that elevated lev-
els of S100P can facilitate cancer progression and reduce 
patient survival rates through its specific functions in 
cell proliferation, angiogenesis, and metastasis [59, 60]. 
GPX2 (Glutathione peroxidase 2), an enzyme that acts as 
an antioxidant, is predominantly expressed in the gastro-
intestinal system, particularly within the esophagus and 
liver [61]. This gene is also found to be upregulated in 
several cancers, including colorectal, gastric, esophageal, 
and breast cancer [62–66]. A recent study revealed that 
GPX2 contributes to the epithelial-mesenchymal tran-
sition (EMT) and invasion of non-small cell lung can-
cer (NSCLC) cells by activating the PI3K/AKT/mTOR/
Snail signaling pathway through the elimination of reac-
tive oxygen species (ROS) [67]. PRC1 (protein regulator 
of cytokinesis-1) acts as a factor associated with micro-
tubules and plays a role in cytokinesis. Its overexpres-
sion has been shown to significantly enhance both the 

proliferation and metastasis of hepatocellular carcinoma 
cells, correlating with early recurrence and unfavorable 
patient outcomes by modulating the oncogenic effects 
of the Wnt signaling pathway [68]. Conversely, silencing 
PRC1 has been found to markedly decrease monolayer 
colony formation and inhibit the proliferation, invasion, 
and migratory capacities of gastric carcinoma cells [69]. 
Additionally, another risk gene, ARNTL2 (aryl hydrocar-
bon receptor nuclear translocator like 2), functions as a 
biologically relevant partner of circadian and hypoxia 
factors [70, 71]. Increasing evidence indicates that 
ARNTL2 is closely linked with poor prognosis in diverse 
tumors, contributing to the activation of the PI3K/AKT 
signaling pathway as well as the TGF/BETA pathway, 
while also inhibiting both apoptosis and ferroptosis [72–
74]. Moreover, RGS20, a crucial regulator of neuronal G 
protein-coupled receptor signaling pathways within the 
brain, belongs to the RGS subfamily. Elevated expression 
of RGS20 has been linked to nodal metastasis in triple-
negative breast cancer and promotes NSCLC cell growth 
by initiating autophagy through the suppression of PKA-
Hippo signaling [75, 76]. These findings align with the 
results of the current study, where S100P, GPX2, PRC1, 
and ARNTL2 were shown to be upregulated in LUAD 
tissues. Furthermore, the overexpression of S100P, PRC1, 
ARNTL2, and RGS20 demonstrated a significant correla-
tion with poor clinical outcomes in LUAD patients. How-
ever, the above-mentioned signature genes have seldom 
been investigated regarding their roles in the context of 
combined metabolism and cancer stemness. In the pres-
ent research, a new prognostic risk model featuring five 
genes, developed through extensive bioinformatics analy-
sis and experimental investigations, may offer insights 
for novel molecular subtyping and prognostic evaluation 
of LUAD, as well as for the personalized treatment and 
management of patients in the future.

The signaling pathway involving phosphatidylinosi-
tol 3-kinase (PI3K), AKT, and the mammalian target of 
rapamycin (mTOR) is crucial for cellular survival and 
growth, often showing disruptions in malignant diseases 
[77]. This pathway is influenced by a variety of upstream 
signaling proteins and, in turn, regulates numerous 
downstream effectors through interactions with differ-
ent compensatory signaling pathways, notably the RAF/
MEK/ERK pathway [78, 79]. Currently, the limited clini-
cal effectiveness of existing targeted therapies, along 
with the challenges posed by tumour heterogeneity in 
various cancer types, highlights the necessity for a deeper 
understanding of the regulatory mechanisms govern-
ing the PI3K/AKT/mTOR pathway. This knowledge is 
essential for formulating effective personalized treat-
ment approaches. In our study, we found that height-
ened expression of ARNTL2 was significantly associated 
with the activation of the PI3K/AKT/mTOR pathway, 
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as demonstrated by GSEA analysis. The knockdown 
of ARNTL2 resulted in a decrease in the phosphoryla-
tion levels of PI3K, AKT, and mTOR, while promoting 
the expression of E-cadherin and γ-catenin, and dimin-
ishing levels of N-cadherin and Vimentin in H1299 and 
A549 cell lines. Our results indicate that the activation 
of the PI3K/AKT/mTOR signaling pathway may be a 
key mechanism in the advancement of tumors char-
acterized by ARNTL2 overexpression. However, it is 
important to acknowledge the limitations of the current 
work. Our research predominantly relies on retrospec-
tive analyses of publicly available databases, which may 
introduce bias, and features limited in vitro and in vivo 
experiments. If circumstances permit in the future, the 
subsequent integration of single-cell sequencing, spatio-
temporal sequencing, large-scale tissue chip analysis, and 
serological detection of prognostic risk genes will aid in 
the validation and enhancement of the stability and reli-
ability of risk models. Furthermore, the robustness and 
reproducibility of this five-gene risk signature warrant 
further validation in extensive prospective real-world 
studies, utilizing predictive algorithms in FET biosensors 
[80–82].

Conclusion
In this research, we successfully developed a novel risk 
stratification model that correlates with metabolism and 
stemness-related genes, derived from comprehensive 
analysis and experimental research. This model has the 
potential to enhance clinical classification and manage-
ment of lung adenocarcinoma, thereby improving patient 
prognosis.
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