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Abstract
Background Head and neck squamous cell carcinoma (HNSCC) treatment faces significant clinical challenges. 
Lactate metabolism plays a crucial role in the initiation of many cancers and the tumor microenvironment (TME). 
However, the prognostic significance of lactate metabolism-related genes (LMRGs) and the role of TME in HNSCC 
require further elucidation.

Methods We built a prognostic multigene signature with LMRGs and systematically correlated the risk signature with 
immunological characteristics and immunotherapy efficacy. Next, a series of single-cell sequencing analyses were 
used to characterize lactate metabolism in TME. Finally, single-cell sequencing analysis, immunofluorescence analyses, 
and a series of in vitro experiments were used to explore the role of PYGL in HNSCC. Potential drugs targeting PYGL 
were screened using AutoDock 4.2.

Results A prognostic multigene signature based on LMRGs was developed, which effectively stratified patients 
into high- and low-risk groups, with significant differences in overall survival (OS) and progression-free survival (PFS). 
Patients in the low-risk group exhibited reduced lactate metabolism, higher CD8 + T cell infiltration, and improved 
response to immunotherapy. Single-cell sequencing revealed that tumor cells had the most active lactate metabolism 
compared to other cells in the TME. PYGL, identified as the most critical prognostic gene, was highly expressed in 
tumor-associated macrophages and played a role in inhibiting M1 macrophage polarization. Knockdown of PYGL 
led to reduced lactate levels, and its expression was inversely correlated with CD8 + T cell infiltration. Furthermore, 
PYGL was involved in copper-dependent cell death, highlighting its potential as a therapeutic target. Drug screening 
identified elesclomol, which showed promising results in PYGL-knockdown cells.

Integrated multi-omics reveal lactate 
metabolism-related gene signatures 
and PYGL in predicting HNSCC prognosis 
and immunotherapy efficacy
Xiaochuan Chen1†, Zhangying Jiang2†, Junping Pan1†, Wenqian Xu1, Ying Li1, Xin Chen1, Yuhui Pan1, Youliang Weng1, 
Dan Hu3* and Sufang Qiu1*

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-025-13982-8&domain=pdf&date_stamp=2025-4-24


Page 2 of 19Chen et al. BMC Cancer          (2025) 25:773 

Background
Head and neck squamous cell carcinoma (HNSCC) is the 
sixth most common malignancy worldwide [1]. There 
are about 600,000 new HNSCC patients and 350,000 
cancer-related deaths each year [2]. Despite tremendous 
advancements in medical technologies for early detec-
tion of HNSCC, over half of all patients are detected 
after the disease has progressed to an advanced phase 
[3]. Although the efficacy of HNSCC treatments (sur-
gery, radiation, and chemotherapy) has improved in 
recent years, the 5-year survival rate for HNSCC patients 
remains poor, especially for those with late-stage disease 
[4, 5]. The discovery of disease-related prognostic biolog-
ical markers in HNSCC is therefore essential in enhanc-
ing the likelihood of early detection and the development 
of innovative treatment approaches to improve the sur-
vival probability of patients.

Lactate, a byproduct of anaerobic glycolysis, has tra-
ditionally been considered merely a waste metabolite 
or endpoint in cancer metabolism [6]. Nonetheless, this 
assumption has been challenged since new research sug-
gests that lactate is a crucial player in a variety of carci-
nogenic mechanisms, including immunosuppression, 
metabolism, angiogenesis, and metastasis [7]. Research 
indicates that the tumor microenvironment (TME) sig-
nificantly influences immune responsiveness to malig-
nancies [8]. As cancer advances, nutrients and oxygen 
required for anti-tumor immunological cell activity are 
exhausted, and by-products of tumor metabolic activ-
ity including adenosine and lactate concentrations in 
the TME, repress the anti-tumor immune reaction [9]. 
A 2019 meta-analysis found that serum LDH levels can 
predict clinical response to immune checkpoint inhibi-
tors (ICIs) in non-small cell lung cancer patients, with 
elevated pre-treatment LDH levels associated with signif-
icantly shorter progression-free survival (PFS) and over-
all survival (OS) durations [10]. Lactate production, on 
the other hand, is a complex process involving numerous 
processes. Hundreds of cellular biological changes are 
implicated in this process, which is remarkably controlled 
by a group of genes known as lactate metabolism-related 
genes (LMRGs) [11, 12]. Consequently, as compared 
to a single gene, a model that incorporates numerous 
LMRGs that are suggested to perform essential functions 

in HNSCC could improve the prediction performance of 
the prognosis for patients with HNSCC. These critical 
LMRGs might possibly be utilized as therapeutic targets 
for treating HNSCC.

This study systematically evaluated the correlations 
between LMRGs, prognosis, and TME in HNSCC. A 
scoring system was developed using these genes to pre-
dict OS and immunotherapy efficacy. The predictive 
performance of the risk model was validated using an 
integrated Gene-Expression Omnibus (GEO) cohort of 
97 patients and an independent FuJianZhongLiu (FJZL) 
cohort of 192 patients. To understand the long-term 
impact of LMRGs on TME, the associations between 
risk model, immune cell infiltration, and immunother-
apy were meticulously investigated. Single-cell sequenc-
ing data characterized lactate metabolism across various 
cell types in the TME. Through in vitro experiments and 
sequencing analysis, we examined the regulation of lac-
tate metabolism and the immune microenvironment of 
PYGL, which is crucially enriched in macrophages and 
CD8 + T cells.

Methods
Data collection
We obtained mRNA expression profiles and clinical 
data for 501 HNSCC patients from the Cancer Genome 
Atlas (TCGA) database ( h t t p  s : /  / p o r  t a  l . g  d c .  c a n c  e r  . g o v /). 
An independent validation dataset was obtained from 
the GEO database ( h t t p  s : /  / w w w  . n  c b i  . n l  m . n i  h .  g o v / g d s) 
under the accession number GSE41613. An additional 
transcriptomic validation dataset was obtained from 
192 patients diagnosed with nasopharyngeal carcinoma, 
a subtype of head and neck squamous cell carcinoma, 
treated at Fujian Cancer Hospital between January 2015 
and January 2018. Eligible participants were those aged 
18 or older, with normal blood, kidney, and liver function, 
no history of other malignancies, and who underwent 
standard radiotherapy or chemoradiotherapy. The study 
was approved by the Ethics Committee of Fujian Can-
cer Hospital (Fuzhou, China; Approval No. K2022-084-
01). Each patient provided written informed consent for 
participation in this study. Nasopharyngeal carcinoma 
tissue samples were collected via biopsy and preserved 
in liquid nitrogen for future RNA extraction. Extracted 
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RNA samples were subsequently sent to Shenzhen Huada 
Gene Technology Co. for transcriptome sequencing 
(RNA-seq). To eliminate batch effects, we utilized the R 
function “sva” [13]. The clinical proteomic tumor analy-
sis consortium (CPTAC) databases provided information 
on how PYGL was expressed translationally in tumor and 
normal samples. Additionally, 244 LMRGs were acquired 
from the Molecular Signatures Database (MSigDB) by 
obtaining “Lactate“ (Table S1) [14].

Differentially expressed LMRGs and establishment of 
prognostic signature predicated
We employed the “limma” package in R [15] to evaluate 
the expression data and identify genes that were differen-
tially expressed between tumor and normal samples. The 
analysis criteria were set with a log2 fold change (FC)| 
>1 and an adjusted p-value < 0.05. Subsequently, we con-
structed a prognostic prediction model in the training 
cohort using the least absolute shrinkage and selection 
operator (LASSO), based on univariate Cox analysis [16]. 
Each HNSCC patient’s risk score is predicted using the 
equation given below: risk score =

∑n
i=1 (exp × coef)

, where exp signified the gene’s expression level, and coef 
signified the gene’s coefficient (Data S2). For the training 
and validation, each patient’s risk score was computed. 
In this case, the threshold level was determined to be the 
median risk score.

Gene set enrichment analysis
Gene Set Enrichment Analysis (GSEA) was per-
formed on the MSigDB collections (c2.cp.kegg, c5.go.
bp.v7.2.symbols.gmt, and h.all.v6.2.symbols.gmt) to eval-
uate whether the specified gene sets showed statistically 
significant differential expression between high-risk and 
low-risk groups. We used the normalized enrichment 
score (NES) and false discovery rate (FDR) to categorize 
the gene ontology (GO), Kyoto Encyclopedia of Genes 
and Genomes (KEGG), and hallmark pathways enriched 
in different phenotypes. Additionally, a validated set of 
31 genes related to cell cycle progression (CCP) was used 
to estimate cell proliferation rates [17]. Subsequently, we 
selected six energy metabolism-related pathways, includ-
ing hypoxia, lactate, glycolysis, lipid metabolism, pentose 
phosphate pathway, and oxidative phosphorylation, to 
explore their spatial activities in our HNSCC samples. 
The corresponding references for these gene signatures 
were obtained from previous studies [18].

Analyses of the TME’s immunological properties
By evaluating tumor samples utilizing the R program 
“ESTIMATE,” we successfully determined their tumor 
purity, immune, and estimate scores. Charoentong et al.‘s 
research provided initial data on 80 immunomodulators, 
including chemokines, receptors, and MHC (Table S2) 

[19]. Seven steps form the tumor immunity cycle, which 
represents the anticancer immune response (Table S3) 
[20]. Based on the individual specimens’ gene expres-
sions, Xu et al. utilized single sample gene set enrichment 
analysis (ssGSEA) [21] to examine these steps. Subse-
quently, various algorithms were developed to calculate 
TIIC infiltration levels in the TME using TCGA RNA-seq 
data (Table S4) [17, 21–25]. In addition, we utilized prior 
investigations to identify the TIICs’ effector genes (Table 
S5) [26].

Next, using data from Auslander’s work, we obtained 
10 inhibitor immune checkpoints molecules with thera-
peutic promise [27]. Gene sets indicating T cell-inflamed 
gene expression profile (GEP) or immunological cytolytic 
activity (CYT) were sourced from earlier studies [28, 29]. 
Finally, we retrieved T-cell receptor (TCR) and B-cell 
receptor (BCR) Shannon entropy data from the work of 
Vésteinn Thorsson et al. [30].

To elucidate the relationship between immunological 
signatures and the effectiveness of immunotherapy, we 
obtained the Tumor Immune Dysfunction and Exclusion 
(TIDE) score, T cell exclusion score, and T cell dysfunc-
tion score from the online website  (   h t t p : / / t i d e . d f c i . h a r v a 
r d . e d u     ) [31]. We obtained patient immunophenoscores 
(IPS) from The Cancer Immunome Atlas. Patients’ 
responses to immunotherapy have been predicted using 
IPS [19]. Additionally, we gathered multiple immuno-
therapy cohorts (melanoma-GSE100797, melanoma-
PRJEB23709, and melanoma-GSE91061) from the tumor 
immunotherapy gene expression resource (TIGER) web-
site (http://tiger.canceromics.org).

Machine learning analysis
We employed the R package “ranger,” a weighted variant 
of the random forest method, to analyze the impact of 
selected gene expression on OS in patients and to calcu-
late each gene’s variable importance score (VIS). Sliding 
window sequential forward feature selection (SWSFS) 
method identified the most significant genes in the risk 
signature [32].

Single-cell level analysis and spatial transcriptome analysis
The HNSCC single-cell transcriptome data (GSE103322, 
GSE139324) were obtained from the GEO database [33, 
34]. The expression matrix was normalized by “Normal-
izeData” of the “Seurat” package. Using “FindVariableFea-
tures”, we identified the top 2,000 highly variable genes. 
Cell annotation followed a previous study [33]. Using the 
same formula, each cell from GSE103322 was assigned 
a risk score. The software CellChat v1.1.3 analyzed 
ligand-receptor interactions to determine whether cell-
cell communication took place. Cell groups with fewer 
than 20 cells were excluded from the analysis. Pairwise 
tests were used to assessed the statistical significance of 

http://tide.dfci.harvard.edu
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communication probability values. Transcription factors 
(TFs) were predicted from the 400 cells using the SCE-
NIC package [35]. A volcano plot was used to visual-
ize the TF activity scores between the high and low risk 
score strata. Tumor immune single-cell hub (TISCH,  h t t p  
: / /  t i s c  h .  c o m  p - g  e n o m  i c  s . o r g /) was utilized to assess PYGL 
expression [39]. Additionally, the SpatialDB online tool ( 
h t t p  s : /  / w w w  . s  p a t  i a l  o m i c  s .  o r g / S p a t i a l D B /) [36], a data-
base for  s p a t i a l l y resolved transcriptomes, was employed 
to analyze the spatial expression and co-localization of 
PYGL and macrophage marker CD68 in breast cancer, 
prostate cancer, and melanoma.

Cell culture and cell transfection
The HNSCC cell line murine squamous cell carcinoma 
cell (SCC7) was kindly provided by Prof.Zhu from the 
Shanghai Ninth Peoples Hospital (Shanghai, China). 
THP1 monocytes were purchased from Wuhan Saiweier 
Biotechnology Co., Ltd. PYGL shRNA knockdown cells 
were obtained by lentivirus infection, which was syn-
thesised by Shanghai Jikai Company. The Pygl-targeting 
siRNAs (siPygl) and a negative control siRNA (siNC) syn-
thesized by OBIO Technology (Shanghai, China). Lactate 
was obtained from Sigma-Aldrich (St. Louis, MO, USA).

Macrophage polarization
THP-1 cells were differentiated into M0 macrophages 
using 50 ng/ml PMA for 48  h, followed by stimulation 
with 100 ng/ml LPS and 20 ng/ml IFN-γ for an addi-
tional 48 h to induce M1 polarization. M0 macrophages 
were stimulated with 20 ng/ml IL-4 for 48  h to induce 
M2 polarization. RAW267.4 cells were stimulated with 
100 ng/ml LPS for 48  h to induce M1 polarization and 
stimulated with 20 ng/ml IL-4 for 48  h to induce M2 
polarization.

Clinical samples and multiplex fluorescent 
immunohistochemical (mfIHC)
To examine the link between PYGL expression and 
CD8 + T lymphocytes in the HNSCC milieu, we utilized 
a tissue microarray (HoraC060PG01) of 48 oral cancer 
(OC) patients provided by Shanghai Outdo Biotechnol-
ogy. OC accounted for about 40% of HNSCC, which is 
a common cancer in HNSCC. The Ethics Committee of 
Fujian Provincial Tumor Hospital approved the use of 
OC tissues for this study. The mfIHC was prepared as 
described in a previous study [37]. Primary antibodies 
were used as follows: anti-PYGL rabbit antibody (15851-
1-AP, Proteintech, Wuhan, China), anti-PD-L1 rabbit 
antibody (ab205921, Abcam, US), and anti-CD8 rabbit 
antibody (66868-1-IG, Proteintech, Wuhan, China). Each 
antibody was treated using the Opal TSA fluorophores. 
Lactate levels were measured using pan anti-Kla (PTM-
1401) by immunohistochemical (IHC).

Chemotherapy sensitivity analysis and molecular Docking 
study
Using Pearson’s correlation analysis, we examined the 
relationship between PYGL expression and drug sensi-
tivity, which was obtained through the CellMiner inter-
face ( h t t p  s : /  / d i s  c o  v e r  . n c  i . n i  h .  g o v / c e l l m i n e r) [38]. The 3D 
structure of PYGL was sourced from RCSB PDB  (   h t t p s : / / 
w w w . r c s b . o r g /     ) . The binding site of PYGL was then iden-
tified using Binding Site Detect in AutoDock 4.2 [39] and 
virtual screening and docking were performed to identify 
potential drugs targeting PYGL.

Statistical analysis
All statistical data analyses shown in the figures were per-
formed using R (version 3.6.0). The Wilcoxon rank-sum 
test assessed differences in continuous variables between 
the two groups, while the chi-square test compared cat-
egorical data. The log-rank test was conducted to assess 
the prognostic significance of categorical factors. Statis-
tical significance was determined for all analyses if the 
two-paired p-value was less than 0.05. Statistical signifi-
cance was defined as *p < 0.05, **p < 0.01, ***p < 0.001, and 
****p < 0.0001.

Results
Identification of differentially expressed LMRGs and 
construction of the prognosis prediction model
Figure 1 presents a schematic workflow of our study. 
The TCGA identified 5968 differentially expressed genes 
(DEGs) in 501 tumor tissues and 44 adjacent non-tumor 
tissues. By overlapping the DEGs and LMRGs in HNSCC, 
we identified 23 LMRGs that were differentially expressed 
(Fig.  2A-B). We utilized univariate Cox regression and 
Lasso regression analysis on 16 LMRGs to construct an 
optimal risk model (Supplementary Figs.  1  A-B). The 
HNSCC specimens were divided into high-risk and low-
risk groups according to their median risk score. Kaplan-
Meier curve analysis revealed significantly poorer OS 
and PFS in the high-risk group (Fig. 2C, Supplementary 
Figs. 1 C). The GEO (GSE032062) database and the FJZL 
cohort were used to validate these findings (Fig.  2D-E). 
ROC analysis of TCGA data demonstrated that the risk 
signature reliably predicted survival, with AUC values of 
0.65, 0.68, and 0.70 for one, three, and five years, respec-
tively (Fig.  2F). Similar AUC values were observed in 
the GEO and FJZL cohorts. Univariable and multivari-
able Cox analyses demonstrated an independent asso-
ciation between the high-risk signature (HR = 3.929; 95% 
CI = 2.290–6.741; P < 0.001) and poor OS (Supplementary 
Figs. 1D-E). A nomogram was created to estimate 1-, 3-, 
and 5-year OS rates by incorporating the risk score, age, 
and clinicopathological parameters (Fig.  2G). The con-
structed nomogram’s performance in the TCGA-HNSCC 
cohort closely matched that of an ideal model (Fig. 2H). 

http://tisch.comp-genomics.org/
http://tisch.comp-genomics.org/
https://www.spatialomics.org/SpatialDB/
https://www.spatialomics.org/SpatialDB/
https://discover.nci.nih.gov/cellminer
https://www.rcsb.org/
https://www.rcsb.org/
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The ROC curves of the nomogram for predicting 3-year 
and 5-year survival rates were 0.726 and 0.718, respec-
tively (Supplementary Figs. 1 F).

Evaluation of the prognostic signature’s relationship to 
clinical parameters
Additionally, we analyzed the risk signature’s predictive 
value in TCGA HSNSCC patients with a variety of clini-
cal and pathological features (Table S6). As illustrated in 
Fig.  2I, risk scores increase with the T3-4 stage, HPV- 
status, perineural invasion (PNI) positivity, and SD/PD 
(Fig.  2I). Furthermore, the risk score demonstrated sig-
nificant prognostic differentiation performance among 
patients with TNM stage, HPV status, PNI status, 

lymphovascular invasion (LVI) status, and clinical out-
comes (Supplementary Figs. 1G-L).

Gene set enrichment analysis
Several immune-associated pathways were enriched in 
low-risk phenotypes, including T cell activation modu-
lation, antigen processing, and presentation, positive 
regulation of immune effector mechanisms, and the JAK-
STAT signaling pathway (Supplementary Figs.  2  A-B). 
Meanwhile, we found that high-risk phenotypes were 
enriched in glycolysis, glycogen synthesis process, pyrim-
idine metabolism, and MYC pathway (Supplementary 
Figs. 2 C), suggesting that high-risk score was involved in 
cancer metabolism and oncogenic biological processes. 

Fig. 1 Flowchat
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The CCP scores supported this finding, as patients in the 
high-risk group exhibited elevated CCP scores (Fig. 3A). 
The high-risk group exhibited significantly elevated 
activities in hypoxia, glycolysis, and lactic acid pathways, 
suggesting intense oxidative and aerobic glycolysis in 
proliferating cancer cells (Fig. 3B).

The relationship between the risk model and inflamed TME
In our results, low-risk HNSCC patients exhib-
ited better immune and estimate scores compared to 

high-risk HNSCC patients but had lower tumor purity 
(Supplementary Figs.  3  A). The risk signature showed a 
significant negative correlation with numerous immuno-
modulators (Fig.  3C). The activities associated with the 
cancer-immune cycle involve both direct and systemic 
actions by chemokines and other immunoregulators [40]. 
Most steps of the cycle, such as priming and activation 
(Step 3) and immune cell transportation to tumors (Step 
4), were enhanced in the low-risk group (Fig. 3D).

Fig. 2 Construction of LMRGs prognostic model and survival analysis. (A) The Venn diagram shows the intersection between LMRGs and DEGs. (B) The 
heatmap depicts the relative expression of 23 genes involved in lactate metabolic activities that were shown to vary between tumor and normal speci-
mens. (C-E) In the TCGA, GEO, and FJZL cohorts, low-risk group patients had a favorable OS rate as opposed to those in the high-risk group. (F) The ROC 
curve for HNSCC patients’ OS over 1, 3, and 5 years in the TCGA, GEO, and FJZL cohorts. (G) Construction of a nomogram based on riskscore and clinical 
characteristics. (H) Calibration curves of the nomogram for predicting OS in TCGA-HNSCC patients. (I) Correlation analysis of clinical features and risk score
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Fig. 3 The correlation of risk signature and immune microenvironment of HNSCC. (A) Patients in the high-risk group have high CCP scores. (B) Difference 
between low- and high-risk groups at six energy metabolism pathways. (C) In HNSCC, 53 immunoregulators are differentially expressed (MHC, receptors, 
and chemokines). (D) Difference between low- and high-risk groups at distinct stages of the cancer-immune cycle. (E) Relationship of the risk score with 
infiltration levels of severe TIICs, as determined by seven separate algorithms
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The risk signature was inversely correlated with DC 
cells, CD8 + T cells, and B cells across seven distinct algo-
rithms (Fig.  3E). Similar findings were observed in 20 
tumor-infiltrating immune cells (TIICs) analyzed by ssG-
SEA algorithms (Supplementary Figs. 3B). We identified 
that gene biomarkers of these immune cells were upreg-
ulated in the low-risk group (Fig.  4A, Supplementary 

Figs.  3  C-E). Studies indicate that tumor-infiltrating B 
cells and tumor-associated tertiary lymphoid structures 
(TLS) are pivotal in enhancing immunotherapy respon-
siveness [41]. TLS primarily develop in inflamed tissues, 
and our findings indicate an inverse correlation between 
risk score and TLS score (Fig.  4B). Inhibitory immune 
checkpoints, such as PD-1 and PD-L1, showed elevated 

Fig. 4 Association of the risk score with immunological subtypes and indicators associated with immunotherapy. (A) Association of risk score with 
CD8 + cell effector genes. (B) Association of risk score with TLS. (C) Relationship of risk score with 10 inhibitory immune checkpoints, including TIGIT, IDO1, 
PD-1, LAG-3, CTLA-4, PD-L1, and TIM-3. (D) Heatmap plot demonstrated enrichment of hot tumor signature genes (CXCR4, CXCL10, CXCL9, CD4, CXCR3, 
CD3E, CD8B, CXCL11, PDCD1, CD274, CD8A, and CCL5) in hot tumor specimens. (E) Risk score was considerably reduced in hot tumors, demonstrating its 
involvement in clinical responsiveness to immunotherapeutic regimens. (F) Differences in GEP and CYT between high- and high-risk groups. (G) Differ-
ences in TCR and BCR diversity values between high- and low-risk groups. (H) Differences in the enrichment scores of most immunotherapeutic-positive 
gene signatures between high- and low-risk groups. (I) Differences in the tumor stemness index between high- and low-risk groups
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expression levels in the inflamed TME [42]. The risk sig-
nature was inversely correlated with the majority of ICIs 
(Fig. 4C).

As previously stated, solid tumors can be categorized 
into two types: hot and cold tumors, with hot tumors 
being more sensitive to immunotherapeutic regimens 
[43]. We employed an unsupervised clustering method 
to categorize 501 HNSCC specimens from the TCGA 
cohort into hot and cold tumor samples, based on hot 
tumor signature genes (Fig. 4D, Supplementary Figs. 3 F). 
In hot tumors, the low-risk group showed significantly 
higher expression compared to cold tumors (Fig.  4E), 
indicating its involvement in the clinical responsiveness 
to immunotherapy. The risk signature showed a strong 
correlation with CYT and GEP in HNSCC, with both 
being elevated in the low-risk group (Fig. 4F).

Furthermore, we analyzed TCR and BCR repertoires 
from the TCGA HNSCC cohort. Shannon entropy mea-
surements indicated that TCR and BCR diversity values 
were highest in the low-risk groups (Fig. 4G). According 
to our findings, CYT, the percentage of tumor-infiltrating 
lymphocytes (TILs), T-cell co-stimulation levels, inflam-
mation-promoting factors, HLA, and checkpoint lev-
els decreased in the TCGA cohort as the risk increased 
(Fig.  4H). Another potential predictor of TME is carci-
nogenic dedifferentiation, characterized by cancer stem 
cell (CSC) features. The mRNAsi and EREG-mRNAsi are 
quantitative measure that assesses the “stemness” charac-
teristics of tumor cells by analyzing their gene expression 
profiles. EREG-mRNAsi not only reflects the stemness 
of tumor cells but also highlights the role of growth fac-
tor signaling in maintaining these characteristics. High 
mRNAsi and EREG-mRNAsi values are often associated 
with increased tumor aggressiveness, metastasis, and 
reduced immune infiltration. Both mRNAsi and EREG-
mRNAsi indicators were significantly elevated in the 
high-risk group (Fig.  4I). We found significant enrich-
ment in inflammation and modulation of inflammation 
pathways in the low-risk score group (Supplementary 
Figs. 3G). In summary, the low-risk score group may have 
formed an inflammatory TME.

The investigation revealed that the low-risk group 
showed significantly higher responsiveness to immu-
notherapy compared to the high-risk group (Fig.  5A-
C). Patients with low-risk scores demonstrated higher 
responsiveness to PD-1 and CTLA4 antagonists based on 
IPS and three melanoma cohorts, suggesting they would 
benefit from immunotherapy (Fig. 5D-G).

Single-cell immune landscapes and cellular 
communication
19 distinct cell types were identified in the GSE103322 
cohort using two-dimensional spatial visualization 
through sTNE analysis (Fig. 6A). Major cell subsets were 

identified as malignant cells, endothelial cells, immune 
cells, and fibroblasts (Fig.  6B). The lactate metabolism 
risk score was highest in malignant cells, followed by 
fibroblasts (Fig.  6C). Malignant cells exhibited signifi-
cantly elevated activities in oxidative phosphorylation, 
glycolysis, and lactic acid pathways, suggesting a hyper-
metabolic state (Fig. 6D). To investigate lactate metabo-
lism differences in infiltrating immune cells within the 
TME, 5905 HNSCC cells from 21 specimens were clus-
tered into 10 cell types: Myofibroblast, Malignant, Treg, 
CD8 T cell, Fibroblast, Endothelial, Macrophage, B cell, 
Mast, Dendritic, and Myocyte (Fig.  6E). The detailed 
annotation results are shown in Supplementary Figs. 4 A. 
Violin plots depict the riskscore of each sample (Supple-
mentary Figs.  4B). Samples were categorized into high 
and low groups based on median values. The low-risk 
group contained higher levels of infiltrating Tregs, higher 
CD8 + T cell ratios, and lower levels of malignant cells 
(Fig. 6F, Supplementary Figs. 4 C). Subsequently, we con-
ducted functional exploration. The primary pathways 
enriched for differential genes between high- and low-
risk groups involved intercellular adhesion and immune 
cell activation (Fig. 6G). Active pathways differed between 
high- and low-risk groups, with LIFR, GRN, CCL, GAS, 
LIGHT, and SPP1 pathways active in the high-risk group, 
and IL-1, TGFb, and IL10 pathways active in the low-
risk group (Supplementary Figs. 4D, Fig. 6H). Figure 5F 
illustrates the interaction between malignant cells and 
other cells via ligand-receptor binding. Intercellular com-
munication involving WNT and SPP1 was upregulated 
in the high-risk group compared to the low-risk group. 
The SPP1 signaling pathway was enriched in malignant 
cells in the high-risk group, whereas SPP1 was enriched 
in macrophages in the low-risk group (Fig.  6I). TF dys-
regulation significantly influences tumor progression. We 
subsequently identified upstream transcription factors 
involved in lactate metabolism. High risk group exhib-
ited activated TFs (including FLI1, IRF4, RUNX3, FOXP3 
extended, ZNF467 extended, IKZF1) and inhibited TFs 
(including MYC extended, HTATIP2, SREBF2, NFE2L2; 
Fig. 6J-K, Supplementary Figs. 4E-F).

PYGL expression, survival, and metabolism analyses
For better clinical application, PYGL, which was the most 
important prognostic gene in 16 LMRG risk signatures, 
was screened by the SWSFS algorithm and Ranger algo-
rithm (Fig. 7A). Correlation analysis indicates that PYGL 
is significantly positively correlated with the risk score, 
showing stronger association compared to other lactate-
related genes (Supplementary Figs. 5 A-B). Furthermore, 
PYGL has a close relationship with LDHA, a key mole-
cule in lactate metabolism, highlighting the importance 
of PYGL in this metabolic pathway (Supplementary 
Figs. 5 C). Therefore, PYGL can, to some extent, serve as 
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a representative marker for the risk score. In the TCGA 
cohort, PYGL expression was considerably reduced in 
paired paracancerous tissues as opposed to tumor sam-
ples (Fig.  7B). Additionally, through the TIMER web-
site, we discovered that PYGL is expressed at high levels 
in most cancers (Supplementary Figs.  6  A). Moreover, 
CPTAC dataset and our IHC cohort both revealed that 
tumor tissue PYGL expression level was greater than 
that of normal tissue (Fig. 7C-E). In the TCGA and GEO 
cohort, individuals with HNSCC who had lower PYGL 
expression levels exhibited substantially lower OS times 
as opposed to those who had elevated PYGL expression 
levels (Fig.  7F). Subsequently, the function of PYGL in 
HNSCC was explored. Figure 7G demonstrates a signifi-
cant association between PYGL and the clinical T stage 
(T1-2 vs. T3-4) in the TCGA sample.

Next, we study the relationship between PYGL and 
lactate metabolism. The expression level of PYGL is 
positively associated with global lactylation in our IHC 
cohort (Fig.  7H). We discovered that hypoxia, glycoly-
sis, and lactic acid pathways positively correlated with 
PYGL, indicating high PYGL was significantly involved 
in energy metabolism in tumor progression (Fig. 7I). To 
further verify this result, we performed PYGL knock-
down in SCC7 cells (Fig. 7J). Lactate concentration in the 
medium supernatant decreased following PYGL knock-
down (Fig.  7K). Moreover, PYGL and LDHA expres-
sion was remarkably increased at mRNA (Fig.  7L-M) 
under hypoxic conditions. PYGL and HIF1A expres-
sion was significantly increased at protein levels under 
hypoxic conditions (Fig.  7N). Collectively, the data 

Fig. 5 The response of immunotherapy of low- and high-risk groups. (A) Differences in TIDE score between high- and elevated-risk groups in the TCGA 
cohort. (B) Differences in TIDE score between high- and low-risk groups in the GEO cohort. (C) The anticipated immunotherapy (TRUE/FALSE) response 
rate to anti-PD-L1 in high- and low-risk groups in the TCGA cohort. (D) Differences in IPS between high- and low-risk groups. (E-G) Differences riskscore 
in melanoma- GSE91061, melanoma-PRJEB23709, and melanoma- GSE100797
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Fig. 6 (See legend on next page.)
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suggest that hypoxia induces PYGL expression and lac-
tate accumulation.

Effect of PYGL on infiltrating immune cells of TME
The TIICs of HNSCC specimens were utilized to addi-
tionally study the interaction between PYGL expression 
and the TME. We obtained PYGL expression data for 
single-cell subtypes from TISCH. PYGL was expressed 
by macrophages or malignant cells in BRCA, Glioma, 
and HNSC (Fig.  8A, Supplementary Figs.  6B-C). In 
detail, the scatter plot displays the distribution of PYGL 
within each celltype in HNSC single-cell sequencing 
database (GSE103322, GSE139324; Fig. 8B-C). We identi-
fied PYGL expression in M2 or undefined macrophages 
in GSE135324. Pseudotime trajectory analysis revealed 
the temporal sequence of cell differentiation, positioning 
M1 and M2 macrophages predominantly at the termi-
nal stage of the differentiation pathway (Fig. 8D). PYGL 
was predominantly located in the early macrophages and 
impeded M1 polarization (Fig.  8E). Spatial transcrip-
tional data from SpatialDB were utilized to illustrate 
the spatial overlap of PYGL and macrophage biomarker 
CD68 in BRCA, PRCA cancer, and melanoma tissues 
(Supplementary Figs.  7  A). PYGL and CD68 markers 
exhibited similar spatial distributions, suggesting poten-
tial co-expression. We quantified the gene expression of 
various macrophage markers in M0, M1, and M2 macro-
phages using THP-1 and RAW267.4 cells to further char-
acterize PYGL and polarized macrophages (Fig.  8F-G, 
Supplementary Figs. 7B). RT-PCR analysis revealed a sig-
nificant decrease in PYGL expression in M1 macrophages 
compared to M0 and M2 macrophages. Additionally, 
we observed that CD86 protein expression was signifi-
cantly increased in PYGL-knockdown THP-1 M0 and 
RAW267.4 M0 cells (Fig.  8H). Furthermore, RNA-seq 
analysis of PYGL-knockdown THP-1 M0 macrophages 
revealed an upregulation of HLA-DPA1, HLA-DQB1, 
HLA-DRA, and HLA-DRB5 in the knockdown group. 
These findings suggest that PYGL may influence M1 
macrophage polarization through MHC class II-depen-
dent mechanisms. (Supplementary Figs. 7 C).

In addition to macrophages, we investigated other con-
tributors to immunosuppression. The findings confirmed 
a strong association between CD8 + T cells, B cells, and 
PYGL (Fig.  9A-B). Moreover, immunohistochemistry 
(IHC) testing indicated that an elevation in the PYGL 
protein expression levels contributed to a decrease in the 

CD8 protein level (indicating tumor-infiltrating CD8 + T 
cells), confirming the results at the transcriptional level 
(Fig.  9C). Furthermore, multicolor immunofluorescence 
analysis revealed that CD8 and PD-L1 were co-local-
ized in HNSCC tissues. Following that, we discovered 
that PYGL was expressed at the lowest levels within 
the inflamed phenotype, which was negatively linked 
to CD8 + T-cell infiltrates (Fig.  9D-E). Given the role of 
chemokines and their receptors in immune cell mobility 
within the TME, particularly the recruitment of CD8 + T 
cells into tumors, we found a strong inverse correlation 
between PYGL expression and the expression of CXCR3, 
CXCR9, CCL4, CCR5, and CCR2 in HNSCC (Fig. 9F-G).

The clinical responsiveness of ICBs was subsequently 
investigated. IHC staining demonstrated a reduction 
in the protein level of PD-L1 with the increase of PYGL 
protein expression (Fig.  9H). An inverse correlation 
between PYGL and the expression of LAG3, PDCD1 
(PD-1), CD274 (PD-L1), and CTLA-4 was validated 
in the TCGA cohort (Fig.  9I, Supplementary Figs.  8B). 
Furthermore, in the TCGA cohort, PYGL was shown 
to be positively linked to the enrichment scores of the 
majority of immunotherapeutic-positive gene profiles 
(Supplementary Figs.  8  C). Elevated TIDE scores were 
shown to be remarkably linked to higher PYGL expres-
sion levels (Fig.  9J). The final mulberry plot suggested 
that PYGL could represent the lactate metabolism risk 
model (Fig. 9K), monitoring clinical efficacy and Screen-
ing patients who benefit from immunotherapy.

Identifying potential drugs targeting PYGL
We investigated the expression of PYGL in NCI-60 cell 
lines to identify genes predictive of drug sensitivity and 
analyzed its correlation with drug response. The find-
ings indicated a significant correlation between PYGL 
and the IC50 of eight drugs (Fig. 10A), guiding the treat-
ment of patients with high PYGL expression. AutoDock 
4.2 was utilized for virtual screening to identify poten-
tial PYGL-targeting drugs. Strong interactions were 
observed between PYGL and raloxifene (docking score 
= -5.83), elesclomol (docking score = -8.223), and iroful-
ven (docking score = -5.497) (Fig. 10B-D). Elesclomol, an 
anticancer drug, targets mitochondrial metabolism and 
induces copper-dependent cell death [44]. We found that 
elesclomol combined with copper ions caused increased 
cell death in PYGL-knockdown cells. Furthermore, 
PYGL exhibited a negative correlation with LIPT1, a 

(See figure on previous page.)
Fig. 6 Immune landscapes and cellular communication at the single-cell level. (A) t-distributed stochastic neighbor embedding (t-SNE) of 19 clusters in 
GSE103322 cohort. (B) t-SNE of major cell subsets in GSE103322 cohort. (C) The lactate metabolism riskscore in major cell subsets by violin plot. (D) Differ-
ences in six energy metabolism pathways among major cell subsets. (E) t-SNE of 10 cell types in GSE103322 cohort. (F) The proportion of cell composition 
in high- and low-risk groups. (G) The major pathways enriched for differential genes between the high- and low-risk groups. (H) The up-regulated and 
down-regulated signaling between malignant cells and other cells. (I) SPP1 signaling pathways in high- and low-risk groups. (J) Differential TFs between 
high- and high-risk groups. (K) Top 10 TFs target genes between high- and high-risk groups
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Fig. 7 PYGL expression and survival Analyses. (A) By Ranger and SWSFS algorithm, PYGL was identified as the most important hub gene in the risk 
signature. (B) PYGL expression in paired 44 paracancerous and tumor tissues from the TCGA cohort. (C) PYGL protein expression in tumor and normal 
samples in the CPTAC cohort. (D-E) IHC staining images and PYGL protein levels in adjoining non-tumor tissue and OC tissue. (F) Kaplan-Meier curves 
of OS for PYGL in the TCGA and GEO cohorts. (G) The association of the PYGL expression with the clinical T stage. (H) Analyses of correlation between 
PYGL and lactylation level. (I) Analyses of correlation between PYGL and six energy metabolism score. (J) Wb was performed to detect the efficiency of 
PYGL-shRNA transfection. (K) Lactate concentration was detected in medium supernatant after transfection with PYGL shRNA for 48 h. (L-M) PYGL and 
LDHA mRNA expression in SCC7 cells exposed to hypoxia for 0–24 h examined by qRT-PCR. (N) HIF1A and PYGL protein expression in SCC7 cells 0–24 h 
examined by western blotting
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cuproptosis regulatory protein, as validated at the protein 
level. Hence, elesclomol shows potential as a treatment 
for HNSCC.

Discussion
This study used RNA-seq data from TCGA and 16 dif-
ferentially expressed LMRGs to develop a prognostic 
signature for risk classification and clinical outcome pre-
diction. A highly significant link between the risk model 
and clinicopathological characteristics is discovered. 

Immune-associated pathways were shown to undergo 
substantial enrichment in the low-risk group. The high-
risk group was shown to be inversely linked to many 
immunoregulators and to have a TME that was not 
inflamed. Patients with HNSCC who have low-risk scores 
might gain from ICB treatment. Machine learning analy-
sis demonstrated that PYGL was a hub prognostic gene 
related to HNSCC patients, and played a significant func-
tion in TME.

Fig. 8 Associations between PYGL and macrophages. (A) PYGL expression in HNSCC single-cell clusters obtained from TISCH online tool. (B) The expres-
sion of PYGL in tSNE plot of GSE103322. (C) The distribution of immune cell clusters and PYGL in UMAP plot of GSE139324. (D) Pseudotime trajectory 
analysis of macrophages types based on celltype (left), pseudotime (right). (E) Pseudotime trajectory analysis of PYGL in different macrophages types. 
(F-G) CD68, TGF-β, CCL22, PYGL, CXCL10, and CXCL9 mRNA expression in THP-1 cells by qRT-PCR. (H) CD206, PYGL, and CD86 protein expression in THP-1 
M0 and RAW267.4 cells by western blotting
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Lactate gathers in tumors as a result of metabolic 
abnormalities in cancerous cells [45]. Ping et al. discov-
ered that intracellular lactate levels in TIL from gastric 
carcinomas were dramatically elevated [46]. Elevated 
lactate levels were shown to be inversely linked to the 
count of TH1 cells and CTLs in the tumor, indicat-
ing that the immunological potential inside the TME 

has been changed and impaired [6]. Lactate is a domi-
nant metabolite in the TME that suppresses the activa-
tion and proliferation of dendritic cells, NK cells, and 
CD8 + T cells, thereby affecting the metabolic activity of 
adaptive and innate immune responses [47]. It is com-
monly accepted that an inflamed TME is linked to a 
better patient prognosis and a higher sensitivity to ICB 

Fig. 9 Associations between PYGL, the immune infiltration, and the responsiveness to immunotherapy in HNSCC. (A) Relationship between PYGL and 
infiltration levels of CD8 + T cell in the TCGA cohort. (B) Association of PYGL with infiltration levels of B cell in the TCGA cohort. (C) Inverse link between 
PYGL and CD8 in OC tissue microarray (n = 48) by IHC. (D) The HNSCC samples were classified into two groups depending on the existence or absence 
of CD8 + T cells into inflamed and non-inflamed phenotypes. Immunofluorescence showed lower PYGL positivity and higher CD8 and PD-L1 positivity in 
inflammatory TME. (E) Mean densitometric analysis revealed that PYGL was inversely linked to CD8 + T cell infiltrates. (F) Relationship between PYGL and 
chemokines. (G) Relationship between PYGL and chemokine receptors. (H) Inverse correlation between PYGL and CD8 in OC tissue microarray (n = 48) by 
IHC. (I) Correlation analysis of PYGL with CD274 (PD-L1) in the TCGA cohort. (J) Analyses of correlation between PYGL and TIDE score. (K) Mulberry plot 
showing the relationship between risk signature, PYGL, immune subtype, and predicted immune efficacy
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[48–51]. This investigation found significantly higher 
CD8 + T cell infiltration levels in the low-risk group com-
pared to the high-risk group. Chemokines regulate the 
function of CD8 + T lymphocytes in tumors. Chemokines 
like CCR5, CXCL9, and CXCL10 are associated with 
the extent of CD8 + T cell infiltration in melanoma [52]. 
STAT proteins are important for immune cell develop-
ment and function since they are the primary signaling 
proteins for inflammatory markers [53]. The low-risk 

group showed significant enrichment in genes regulat-
ing immune pathways, such as the JAK-STAT pathway 
and the inflammatory response, alongside higher CYT 
and GEP scores—both strong indicators of antitumor 
immune activity. Brand et al. proposed a mechanism for 
lactate-induced immune inhibition, demonstrating that 
tumor acidosis and lactic acid suppress the nuclear factor 
of activated T cells (NFAT) [54]. This suppression, affect-
ing tumor-infiltrating NK cells and CD8 + T lymphocytes, 

Fig. 10 Correlation of PYGL and drug response. (A) Scatter plots of the top six kinds of associations between PYGL and chemotherapy drug sensitivity. 
(B-D) AutoDock-derived structure of raloxifene (B), elesclomol (C), and irofulven (D) bound to PYGL. (E) Cell viability is measured in SCC7 PYGL- knock-
down cells treated with elesclomol combined with copper ions (40 nm, 60 nm, 80 nm, 100 nm, and 120 nm) or vehicle. (F) Correlation analysis of PYGL 
with LIPT1 in the TCGA cohort. (G) LIPT1 protein expression in SCC7 PYGL- knockdown cells examined by western blotting
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leads to a decrease in IFNγ production [11]. The primary 
immune evasion mechanisms in the T-cell-inflamed 
tumor microenvironment include: (i) elevated PD-L1 
expression leading to T cell suppression through PD-L1/
PD-1 interaction; (ii) upregulation of IDO; (iii) CCL22-
driven recruitment of regulatory T cells (Tregs); and (iv) 
selection of tumor cells with reduced immunogenicity 
[49]. Our findings suggest that the low-risk group exhib-
ited higher levels of ICIs and CCL22 compared to the 
high-risk group. ICB immunotherapy seems to be most 
effective in those with low-risk scores.

Our study underscores the pivotal role of lactate 
metabolism in shaping the tumor microenvironment 
(TME). Single-cell analysis revealed distinct metaboli-
cally active cell populations that modulate immune 
responses and drive tumor progression. Notably, the cor-
relation between reduced lactate metabolism, enhanced 
CD8⁺ T cell infiltration, and improved prognosis high-
lights the potential of targeting metabolic pathways to 
optimize immunotherapy efficacy.

PYGL is a gene that encodes the glycogen phosphory-
lase distributed in cells and is associated with cell meta-
bolic processes. PYGL has been suggested as a hypoxia 
signal in breast cancer that has a prognostic value [55]. A 
meta-analysis of over 2,000 cases revealed elevated PYGL 
levels in multiple cancer types, including clear cell renal 
cell carcinoma, seminoma, and brain cancer, particularly 
within the hypoxic TME [56]. In the TME, hypoxia is a 
prominent feature, and its impacts on immune cells have 
been postulated to be essential contributors to the pro-
cess of tumor immune evasion [57]. Our findings suggest 
that PYGL knockdown promotes M1 macrophage polar-
ization and is strongly associated with PD-L1 expression 
in tumor cells and infiltrating CD8⁺ T cells, indicating 
its potential role in modulating the immune microen-
vironment and influencing immunotherapy response 
in HNSCC. Additionally, we noticed that PYGL was 
involved in the copper-dependent cell death process. 
PYGL competitively binds to elesclomol, preventing the 
chelation of elesclomol with copper ions to form a com-
plex. Knockdown of PYGL enhances copper ion accu-
mulation, leading to the upregulation of LIPT1, a key 
enzyme involved in protein lipoylation. Ultimately, this 
process triggers cuproptosis.

Although we developed a predictive signature and 
provided further insights for improved HNSCC treat-
ment, our work has several shortcomings. First, the 
size of the sample may be inadequate. The results must 
be confirmed by other independent cohorts to demon-
strate the therapeutic significance of the risk model. Sec-
ond, given the significant differences in the origin and 
molecular properties of the different HNSCC subtypes, 
a more nuanced approach based on the specific origin 
and potential molecular characteristics of each subtype is 

essential. In the future, we will also further analyze each 
subtype to find better biomarkers to provide precise per-
sonalized treatment for patients. In addition, more func-
tional studies are required to investigate the fundamental 
processes of PYGL in TME. The effects of PYGL on the 
proliferation and metastasis potential of HNSCC and the 
related pathways involved need further exploration.

Conclusion
In this study, we finally constructed a lactate metabolism-
related risk model to accurately predict the prognosis 
of patients with HNSCC as well as the efficacy of mul-
tiple immunotherapies. In addition, we described the lac-
tate metabolism of cells in TME at the single-cell level. 
Finally, PYGL, a lactate metabolism-related molecule in 
the model was shown to promote the malignant progres-
sion of HNSCC cells and also play an essential role in 
TME.
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