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Abstract 

Glioblastoma (GBM), one of the most aggressive brain tumors, has a 5-year survival rate of less than 5%. Current 
standard therapies, including surgery, radiotherapy, and temozolomide (TMZ) chemotherapy, are limited by drug 
resistance and the blood–brain barrier. Integrating expression quantitative trait loci (eQTL) and protein quantita-
tive trait loci (pQTL) data has shown promise in uncovering disease mechanisms and therapeutic targets. This study 
combined eQTL and pQTL analyses to identify potential GBM-related genes and circulating plasma proteins for thera-
peutic exploration. Using transcriptomic data from The Cancer Genome Atlas (TCGA), we identified 2,528 differentially 
expressed genes, including GPX7 and CXCL10. eQTL-MR analysis identifies GBM-associated differentially expressed 
genes and constructs a protein–protein interaction (PPI) network.Integrating pQTL data from the deCODE database, 
pQTL-MR, and colocalization analyses validated the therapeutic potential of GPX7 and CXCL10.These findings provide 
new perspectives on GBM biology and suggest actionable targets for therapy. Despite limitations due to sample size 
and population-specific data, this study highlights GPX7 and CXCL10 as promising candidates for further investigation 
and lays the foundation for targeted GBM treatments.
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Introduction
Glioblastoma (GBM) is a highly invasive brain tumor, 
constituting 15% to 20% of primary brain tumors in 
adults. It is associated with a poor prognosis, with a 
5-year survival rate of less than 5% [1]. GBM exhibits high 
heterogeneity, with significant differences in the genome, 
phenotype, and immune microenvironment among 

tumors in different patients. This makes single-treatment 
approaches often ineffective, necessitating more person-
alized therapeutic strategies [2]. Temozolomide (TMZ), 
as an effective treatment for GBM, is also limited in its 
effectiveness due to resistance and the constraints of the 
blood–brain barrier. Additionally, the GBM microenvi-
ronment contains various immunosuppressive factors 
that inhibit effective immune cell infiltration, rendering 
the tumor more resistant to treatment. The complexity 
of this microenvironment makes it challenging for con-
ventional therapies to completely eliminate the tumor 
[3]. A key cellular subtype contributing to the charac-
teristics of GBM is a rare population of cells known as 
glioblastoma stem cells (GSCs), which are self-renewing, 
highly tumorigenic stem cells [4]. GSCs drive the malig-
nant progression of GBM through multiple mechanisms, 
including sustained proliferation, invasion, stimulation of 
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angiogenesis, suppression of immune responses, and the 
development of drug resistance [5]. Furthermore, GBM is 
a highly immunosuppressive tumor, where immune eva-
sion mechanisms undermine the efficacy of single-agent 
immunosuppressive therapies, making them insufficient 
to alleviate GBM effectively [6]. Consequently, research-
ers are actively developing new drugs for GBM therapy, 
aiming to discover more effective medications and treat-
ment strategies.

Randomized controlled trials (RCTs) are considered 
the gold standard for causal inference in epidemiological 
research [7]. However, due to limitations such as medi-
cal ethics, participant compliance, and poor reproduc-
ibility of results, conducting RCTs in practice is often 
challenging [8, 9]. In contrast, observational studies are 
relatively simple and easier to conduct, but due to issues 
like reverse causality and potential confounding factors, 
this method has faced criticism in terms of GBM etiol-
ogy inference [10, 11]. In recent years, the application of 
Mendelian randomization (MR) has provided an effec-
tive approach to address these issues [12, 13]. The con-
cept of MR is based on Mendel’s laws of inheritance, 
where parental alleles are randomly assigned to offspring, 
analogous to the randomization process in RCTs. MR 
utilizes genetic variations that are strongly associated 
with an exposure factor as instrumental variables (IVs) 
to infer the causal effect between the exposure and the 
outcome [14]. Since genetic variations are innate, unaf-
fected by environmental factors, and their association 
with the outcome follows a temporal causal sequence, 
MR analysis has become a prominent method for causal 
inference [15]. In recent years, with the rapid advance-
ment of genome-wide association studies (GWAS) and 
various omics data, the public sharing of large-scale sum-
mary statistics has provided new opportunities for the 
widespread application of MR in exploring the causal 
relationships between complex exposure factors and dis-
ease outcomes [16].

In recent years, research combining expression quanti-
tative trait loci (eQTL) and protein quantitative trait loci 
(pQTL) data has significantly established causal relation-
ships between genes and diseases. This approach lever-
ages genetic variations in gene expression and protein 
levels to provide deeper insights into how gene and pro-
tein functions jointly contribute to disease onset and pro-
gression. For example, these studies have proposed eQTL 
or pQTL as functional intermediates for investigating the 
potential biological mechanisms of neurodegenerative 
diseases [17–19]. Additionally, the joint analysis of eQTL 
and pQTL has provided more accurate guidance for iden-
tifying disease-related proteins. A recent study integrated 
pQTL and eQTL data, identifying PNKP as a therapeu-
tic target and offering mechanistic insights into migraine 

pathophysiology [20]. Proteins play a crucial role in vari-
ous biological processes and are a major class of drug tar-
gets [21]. Research has shown that disease-related protein 
drug targets supported by genetic associations are twice 
as likely to receive market approval compared to other 
protein drug targets [22]. Plasma-circulating proteins 
have garnered increasing attention for their potential in 
GBM treatment, especially in diagnostics and therapeu-
tic strategies. These proteins can serve as non-invasive 
biomarkers, aiding in early detection and monitoring 
of tumor progression [23]. Circulating proteins reflect 
metabolic and immunological changes in GBM, which is 
critical for personalized treatment. For instance, proteins 
related to lipid metabolism, such as fatty acid synthase 
(FASN) and sterol regulatory element-binding protein 
(SREBP), have been linked to chemotherapy resistance. 
Targeting these proteins may enhance sensitivity to treat-
ments such as TMZ [24, 25]. Therefore, identifying and 
discovering plasma circulating proteins that are causally 
associated with GBM pathogenesis can provide real-time 
tumor biological information without the need for inva-
sive tissue biopsies. This approach has the potential to 
significantly improve GBM management, aiding in early 
diagnosis, monitoring therapeutic response, and poten-
tially identifying new therapeutic targets.

MR analysis has become widely used in drug target 
development and drug repurposing [26]. MR is a genetic 
instrumental variable analysis that typically utilizes sin-
gle nucleotide polymorphisms (SNPs) from GWAS as 
genetic instruments to estimate the causal effect of expo-
sures on outcomes. Compared to observational studies, 
MR can avoid the influence of confounding factors. With 
the advancement of high-throughput genomics and pro-
teomics technologies in plasma, MR-based strategies 
have facilitated the identification of potential therapeu-
tic targets for many diseases, such as stroke and Alzhei-
mer’s disease [27, 28]. Although previous studies have 
successfully applied the combined MR analysis of eQTL 
and pQTL to identify cancer treatment targets, com-
prehensive analyses of this kind are still lacking in GBM 
research. Therefore, this study attempts to employ this 
innovative approach to identify potential therapeutic tar-
gets associated with GBM.

In summary, this study aims to identify pathogenic 
genes causally associated with GBM by integrating 
eQTL and pQTL data and exploring the potential thera-
peutic value of plasma circulating proteins in GBM. We 
first utilized transcriptomic data from GBM and control 
groups in the TCGA database to screen for differentially 
expressed genes and performed eQTL-MR analysis to 
identify pathogenic genes associated with GBM. By con-
structing a protein interaction network and integrating 
plasma protein pQTL data from the deCODE database, 
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we further validated and identified potential plasma pro-
tein targets for GBM through pQTL-MR analysis and 
colocalization analysis. This approach provides a new 
perspective for GBM treatment and may lay the founda-
tion for the development of future targeted therapies.

Materials & methods
Study design
The overall design of our study is depicted in Fig.  1. 
Initially, we analyzed transcriptomic data from GBM 
and control groups in the TCGA database to identify 

differentially expressed genes (DEGs). These DEGs 
were treated as exposures, with GBM serving as the 
outcome, to identify loci with potential causal associ-
ations to GBM. To validate the directionality of these 
associations, we conducted a bidirectional MRanalysis 
by reversing the roles of GBM and the identified loci, 
using GBM as the exposure and the loci as outcomes, 
to exclude the possibility of bidirectional causation. 
The MR analysis adhered to three core assumptions: (i) 
the Correlation Assumption, which requires a strong 
association between DEGs and instrumental variables; 

Fig. 1 The overall flow chart of this study
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(ii) the Independence Assumption, ensuring no con-
founding factors are correlated with both the instru-
mental variables and GBM; and (iii) the Exclusivity 
Assumption, stipulating that the instrumental variables 
influence outcomes only through the exposure. Subse-
quently, we constructed a protein–protein interaction 
(PPI) network and integrated the plasma protein pQTL 
data from the deCODE database. We then performed 
pQTL-MR analysis to identify potential plasma proteins 
related to GBM as drug targets. To ensure the robust-
ness of causal inference, we employed a range of MR 
methods. First, the F-statistic was calculated to evalu-
ate the correlation between SNPs and the exposure, to 
screen for strong instrumental variables. Subsequently, 
the causal effect was estimated using the inverse vari-
ance weighting (IVW) method and Wald ratio esti-
mation, while horizontal pleiotropy was assessed via 
MR-EGGER regression and the weighted median 
method. Heterogeneity was tested using Cochran’s Q 
statistic, and a leave-one-out analysis was performed 
to assess the impact of individual SNPs on the overall 
estimate. Additionally, Bayesian colocalization analysis 
was conducted to verify whether the observed associa-
tions are driven by the same causal variant rather than 
by linkage disequilibrium (LD) effects.

Data source and preparation
The GBM dataset was procured from TCGA (https:// 
portal. gdc. cancer. gov/). This dataset comprised 170 GBM 
samples and 5 normal samples from the control group, 
from which their transcriptomic data were extracted. The 
datasets for eQTLs and GBM were procured from the 
Integrative Epidemiology Unit (IEU) database (https:// 
gwas. mrcieu. ac. uk/). GBM dataset originates from a 
European population and includes 91 cases and 174,006 
controls, with a total of 16,380,303 SNPs. The data for 
patient prognosis analysis was obtained from the CGGA 
database. The dataset for pQTL-MR analysis in GBM 
was procured from the deCODE database. This dataset 
encompasses data from a population of 35,559 individu-
als in Iceland, with genome-wide association analysis 
conducted for 4,907 plasma circulating proteins.

Analysis of differential gene in GBM
The raw RNA-seq data from the TCGA-GBM dataset 
were processed using the R package DESeq2 (https:// 
bioco nduct or. org/ packa ges/ relea se/ bioc/ html/ DESeq2. 
html) to identify DEGs. Genes with an adjusted p 
value < 0.05 and an absolute |log2FC|> 3 were deemed 
significantly differentially expressed. A volcano plot was 
then created to display the DEGs.

Gene ontology, KEGG pathway, and GSEA analysis
The obtained DEGs were subjected to enrichment 
analysis for Gene Ontology (GO), Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathways, and Gene 
Set Enrichment Analysis (GSEA) using the “Cluster-
Profiler” package. Enrichment with a p value < 0.05 was 
considered statistically significant.

eQTL‑MR analysis
Bonferroni correction was applied to adjust for multi-
ple testing, and eQTL SNPs with p < 5 × 10⁻⁸ and F > 10 
thresholds were included in the MR analysis. DEGs 
identified through differential analysis were used as 
exposures, and GBM was set as the outcome. MR anal-
ysis was performed using the “TwoSampleMR” pack-
age (https:// github. com/ MRCIEU/ TwoSa mpleMR). 
For genes with only one available eQTL, the Wald ratio 
method was used, whereas for those with two or more 
genetic instruments, inverse-variance weighted (IVW) 
was applied to assess the robustness of the results. 
Odds ratio (OR) was used to reflect the relationship 
between gene expression and GBM risk: OR > 1 indi-
cated that the gene was associated with an increased 
risk of GBM, OR < 1 suggested a potential protective 
effect of the gene, and OR = 1 implied no significant 
association. Utilize data from the CGGA database to 
retrieve and analyze the identified positive loci, clarify-
ing the relationship between these genes and the prog-
nosis of glioma patients.

Protein‑protein interaction network analysis
After identifying positive loci with causal associations 
to GBM risk through the above steps, PPI analysis was 
performed for these loci. All PPI analyses were con-
ducted using the GeneMANIA tool (https:// genem ania. 
org/), and the results were visualized using Cytoscape.

Detection of bidirectional causal relationship
Applying the same eQTL selection criteria, bidirec-
tional MR analysis was conducted on the dataset pro-
vided by the FinnGen database (https:// www. finng en. 
fi/ fi) to detect potential reverse causal relationships. 
The MR-IVW method was utilized to estimate effects, 
ensuring the directionality of the association between 
positive genes and GBM prognosis. Results with a p 
value < 0.05 were considered statistically significant.

pQTL‑MR analysis
To further explore the relationships between genes, 
proteins, and GBM, we extend the eQTL analysis by 
incorporating plasma cis-pQTL analysis. By examin-
ing the association between plasma protein expression 
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levels and GBM risk, we aim to identify gene regulatory 
mechanisms that might drive protein level changes. The 
29 positive loci associated with increased GBM risk 
were queried in the deCODE dataset, and the results 
were analyzed using the “TwoSampleMR” package. For 
proteins with only one available pQTL, the Wald ratio 
method was used, while for those with two or more 
genetic instruments, IVW was applied to assess the 
robustness of the findings. OR were used to reflect the 
relationship between gene expression and GBM risk: 
OR > 1 indicated that the gene was associated with an 
increased risk of GBM, OR < 1 suggested a potential 
protective effect of the gene, and OR = 1 implied no sig-
nificant association.

Sensitivity analysis and bayesian co‑localization analysis
Heterogeneity was evaluated using Cochran’s Q test, 
and when heterogeneity was present, the IVW ran-
dom-effects model was utilized [29]. The Leave-One-
Out approach assessed the influence of excluding each 
SNP on the outcome. The MR-EGGER method, with an 
intercept test, was used to detect horizontal pleiotropy. 
To investigate whether two correlated signals (protein 
and GBM risk) share a common causal variant while 
distinguishing linkage disequilibrium (LD) confound-
ing, Bayesian co-localization analysis was conducted 
based on summary statistics from GWAS of protein and 
GBM, using the "coloc" package [30]. The analysis con-
sidered five hypotheses: (i) no causal variant exists in the 
genomic locus (H0) for either protein or GBM; (ii) only 
protein (H1) has a causal variant; (iii) only GBM (H2) has 
a causal variant; (iv) protein and GBM (H3) have distinct 
causal variants; (v) protein and GBM (H4) share a com-
mon causal variant. For each protein, SNPs within ± 1Mb 
of the pQTL were included. When a protein had multiple 
pQTLs, co-localization analysis was conducted separately 
for each, focusing on the pQTL showing the strongest co-
localization evidence. Default parameters were used, with 
p1 = 1 ×  10−4 (prior probability of an SNP being associ-
ated with the protein), p2 = 1 ×  10−4 (prior probability of 
an SNP being associated with GBM), and p12 = 1 ×  10−5 
(prior probability of an SNP being associated with both 
protein and GBM). Given the sensitivity of co-locali-
zation to priors and window size, additional analyses 
were performed with alternative priors (p12 = 1e − 6) 
and a window size of ± 250 kb to assess robustness. Pos-
terior probabilities were used to assess support for each 
hypothesis. A posterior probability greater than 80% for 
H4 (PP4) under different priors and window sizes was 
considered strong evidence for colocalization [30–32]. 
Visualization of co-localization results was conducted 
using the "LocusCompareR" package [33]. All analyses 
were performed using R version 4.2.1.

Results
Selection of significantly DEGs in GBM
RNA-Seq data from the TCGA database were processed 
using R, resulting in the identification of 23,557 DEGs. 
These genes were further filtered, with a threshold of 
adjusted P < 0.05 and |log2FC|> 3 set for significance. 
After filtering, 2,528 significant differentially expressed 
genes met the criteria and were included in the sub-
sequent analysis. Among these, 1,440 genes, including 
GPX7 and CXCL10, were upregulated, while 1,088 genes, 
including TRIM17 and SLC7A4, were downregulated 
(Fig. 2A).

GO, KEGG, and GSEA analysis of DEGs
We conducted enrichment analysis, including Gene 
Ontology (GO), Kyoto Encyclopedia of Genes and 
Genomes (KEGG), and Gene Set Enrichment Analysis 
(GSEA), on the 2,528 DEGs. GO analysis, which included 
Biological Processes (BP), Cellular Components (CC), 
and Molecular Functions (MF), highlighted cellular-level 
changes. BP analysis revealed modifications in cross-syn-
aptic signaling involved in chemical synaptic transmis-
sion, vesicle-mediated transport in the synapse, synaptic 
vesicle cycle, and neurotransmitter transport. CC analy-
sis showed alterations in the synaptic membrane, neuron 
cell body, postsynaptic membrane, and ion channel com-
plexes. MF analysis pointed to dysregulation in channel 
activity, passive transmembrane transporter activity, ion 
channel activity, gated channel activity, and voltage-gated 
ion channel activity. These results suggest that GBM 
alterations primarily occur at the cellular level, affect-
ing synaptic regulation, neurotransmitter transport, and 
channel activity at both biological and molecular levels 
(Fig.  2B).KEGG pathway enrichment analysis indicated 
that differentially expressed genes are involved in path-
ways related to neuroactive ligand-receptor interactions, 
the calcium signaling pathway, the cAMP signaling path-
way, morphine addiction, GABAergic synapse, choliner-
gic synapse, serotonergic synapse, synaptic vesicle cycle, 
taste transduction, and nicotine addiction (Fig.  2C).
GSEA enrichment analysis highlighted significant enrich-
ment in pathways associated with allograft rejection, 
autoimmune thyroid disease, cell cycle, graft-versus-host 
disease, ribosome, and systemic lupus erythematosus. 
These findings imply potential links between GBM and 
the identified pathways (Fig. 2D).

Identification of positive loci causally associated 
with the onset of GBM
The eQTLs derived from the above DEGs were used as 
exposures, with GBM as the outcome. MR analysis was 
performed using the “TwoSampleMR” package. The results 
revealed a total of 29 positive genes (p < 0.05). Among 
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these, CLEC4E, LOC283194, AIDAP2, DDIAS, ACTN1-
DT, SYT1, HNRNPA1P21, GBP1P1, IGLV3-9, SLC16A4, 
HLF, PHF24, MIR657, SLC7A4, IGLV2-14, ST13P19, and 
TRIM17 were associated with a decreased risk of GBM, 
while IGLV1-47, CDC45, CREB3L3, STX1A, PITPNM3, 
IGLV4-69, XRCC6P2, RAPGEFL1, CABP1, CXCL10, 
GPX7, and HOXB2 were associated with an increased risk 
of GBM (Fig. 3A, B and Supplementary Material 1). These 
above 29 positive loci were selected for further analysis. 
The data analysis from the CGGA database identified 15 
available genes, most of which have expression levels asso-
ciated with the prognosis of glioma patients (Supplemen-
tary Material 2).

PPI network of positive loci causally associated 
with the onset of GBM
A total of 29 positive loci were imported into GENEMA-
NIA to construct a PPI network, identifying 17 key genes, 
including GPX7 and CXCL10. However, genes such 
as MIR657, IGLV4-69, IGLV1-47, IGLV2-14, IGLV3-9, 
GBP1P1, ST13P19, HNRNPA1P21, XRCC6P2, AIDAP2, 
LOC283194, and ACTN1-DT were not successfully iden-
tified. The generated results were exported to Cytoscape 
for PPI network visualization. The relationships among 
the key genes are shown in the figure. Based on the 
GeneMANIA tool, a gene network containing various 
types of interactions, including co-expression, physical 

Fig. 2 Differential gene screening and enrichment analysis of GBM and normal samples. A Volcano diagram of DEGs in GBM and normal samples. B 
GO enrichment analysis of DEGs. C KEGG enrichment analysis of DEGs. D GSEA enrichment analysis of DEGs
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interactions, predicted interactions, co-localization, 
shared protein domains, genetic interactions, and path-
ways, was constructed for target genes such as CXCL10 
and GPX7. The analysis revealed that these genes and 

their associated genes were significantly enriched in 
multiple biological functions, including neurotransmit-
ter release, synaptic vesicle-mediated signaling, neuro-
transmitter transport regulation, and synaptic cycling. 

Fig. 3 eQTL-MR analysis and PPI network analysis. A The OR values of positive loci were identified from the MR analysis, where OR reflects 
the relationship between gene expression and GBM risk. An OR > 1 indicates a positive association with GBM, OR < 1 suggests a protective role, 
and OR = 1 indicates no significant association. B Results of the eQTL-MR analysis, where the horizontal axis represents the MR estimated causal 
effect values of positive loci on GBM, and the vertical axis lists the gene names. The color of each point represents the p-value from the MR analysis, 
and the size of each point corresponds to the absolute value of the MR estimate. C A PPI network was constructed from GENEMANIA using the 17 
core genes identified through the analysis. The network illustrates the protein–protein interactions between these genes, highlighting their 
potential roles in GBM pathogenesis
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The network weights were calculated using an automati-
cally selected weighting method, with data sourced from 
multiple high-quality databases and research literature. 
Specifically, the analysis showed that co-expression net-
works accounted for the highest proportion (44.40%), 
including studies related to genes in the human central 
nervous system and those associated with liver expres-
sion quantitative trait loci. The physical interaction net-
work accounted for 12.90%, with primary data derived 
from the Reactome pathway database and BioGRID stud-
ies. The co-localization network accounted for 11.55%, 
revealing the spatial relationships of genes within the cell, 
suggesting that they may function synergistically within 
the same functional modules. Furthermore, pathway 
analysis indicated that these genes are involved in several 
key biological processes, including immune responses, 
inflammatory regulation, oxidative stress balance, and 
extracellular matrix remodeling. CXCL10 was found to 
be a core node in immune regulation and inflammation 
pathways, closely related to immune cell recruitment 
and tumor microenvironment regulation. GPX7 plays 
a critical role in redox balance and DNA damage repair, 
forming a significant interaction network with antiox-
idant-related genes. These results suggest that the tar-
get genes may play an important role in tumor immune 
microenvironment regulation and neurofunctional con-
trol, providing data support for further exploration of 
their molecular mechanisms and potential therapeutic 
targets. (Fig. 3C and Supplementary Material 3).

Bidirectional MR analysis
The 29 positive loci obtained were subjected to bidi-
rectional MR validation using data from the FinnGen 
database. GBM was considered as the exposure factor, 
and the eQTLs of DEGs were used as the outcome. The 
results showed that, except for HOXB2 (p < 0.05), the out-
comes of bidirectional MR for the remaining 28 positive 
loci were not statistically significant (p > 0.05). This indi-
cates that there is a unidirectional causal relationship 
between the 28 positive loci and GBM. There may be a 
bidirectional causal relationship between HOXB2 and 
GBM (Table 1).

Identification of plasma circulating proteins causally 
associated with the onset of GBM
To identify plasma circulating proteins potentially 
involved in the onset of GBM, we queried the 29 sig-
nificant genetic loci identified in our eQTL-MR anal-
ysis against the deCODE database, which provides 
pQTLs associated with circulating protein levels. From 
this query, we identified three available plasma pro-
teins: GPX7, CXCL10, and STX1A. For inclusion 
in our MR analysis, we applied a stringent selection 

criterion: only SNPs that meet the significance thresh-
old (p < 5 × 10⁻⁸,  F > 10) were included. Additionally, we 
required that multiple independent pQTLs be avail-
able for robust instrumental variable construction. Our 
analysis revealed that GPX7 and CXCL10 met these cri-
teria and were significantly associated with an increased 
risk of GBM (Fig. 4, Tables 2 and 3). Specifically, GPX7 
demonstrated strong associations with loci previously 
implicated in oxidative stress regulation, while CXCL10, 
a well-known chemokine involved in immune modula-
tion, exhibited significant links to inflammatory path-
ways relevant to glioblastoma progression. In contrast, 
STX1A, despite being identified in our database query, 
had only one available SNP that did not meet our inclu-
sion criteria for pQTL-based MR analysis. Consequently, 
STX1A was excluded from further causal inference anal-
ysis. To further validate these findings, we will conduct 
sensitivity analyses, including MR-Egger regression and 
weighted median estimation, to assess the robustness of 
causal associations and potential pleiotropy. Additionally, 
we will compare our results with existing literature on 
GPX7 and CXCL10 in glioblastoma to contextualize their 
potential biological relevance.

Sensitivity analysis and colocalization results for GPX7 
and CXCL10
Sensitivity analysis for GPX7 and CXCL10 indicated no 
significant heterogeneity in the results (p > 0.05) (Sup-
plementary Material 4). However, horizontal pleiotropy 
was detected for GPX7 (p < 0.05), which violates a core 
assumption that instrumental variables affect outcomes 
solely through exposure. This finding implies that cer-
tain SNPs associated with GPX7 might influence GBM 
risk not only through GPX7 expression but also via other 
unknown biological pathways. Such pleiotropic effects 
could confound the causal inference between GPX7 and 
GBM. To mitigate this problem, we employed MR-Egger 
regression to quantify the bias introduced by horizon-
tal pleiotropy and to provide adjusted causal effect esti-
mates [34]. Despite the detected pleiotropy, MR-Egger 
yielded robust causal estimates, further supporting the 
causal link between GPX7 and GBM. A "Leave-one-out" 
sensitivity analysis was conducted, progressively remov-
ing individual SNPs and recalculating the meta-effect 
for the remaining SNPs. The results showed consistent 
overall error lines, which remained to the right of zero, 
demonstrating that horizontal pleiotropy had a lim-
ited impact on the findings (Supplementary Material 4). 
To further validate the relationship between GPX7  and 
CXCL10  with,  GBM, colocalization analysis was per-
formed to assess whether signals for protein levels and 
GBM risk originated from shared causal variants. Results 
revealed a shared causal variant between GPX7 and 
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Table 1 Results of bidirectional mendelian randomization

Outcome Exposure Method nsnp b se pval

CREB3L3 Glioblastoma (age-stratified), 
Glioblastoma

IVW 5 -0.007106561 0.015043951 0.636650852

7 -0.006452276 0.014307202 0.65200327

SYT1 5 -0.016673008 0.015044119 0.267743441

7 -0.006931251 0.014307641 0.628070769

PITPNM3 4 -0.00282299 0.02082459 0.892168805

5 0.018330425 0.016442027 0.264913895

CDC45 5 0.008613326 0.015044088 0.566956949

7 0.005363256 0.014307527 0.707767914

SLC7A4 5 0.004073113 0.015044236 0.786589114

7 3.48E-05 0.014307567 0.998060515

STX1A 5 0.002211464 0.018281167 0.903715189

7 -0.002847035 0.018229146 0.875890822

RAPGEFL1 5 -0.012778424 0.016518757 0.439184795

7 0.007885057 0.018702186 0.673308619

HLF 5 0.003099699 0.015044225 0.836760355

7 0.001515787 0.014307551 0.915627457

GPX7 5 0.005373937 0.015206469 0.72379001

7 0.001340018 0.014933143 0.928498207

PHF24 5 -0.000358246 0.01504424 0.9810019

7 0.005463229 0.01430756 0.702578504

CABP1 5 0.014991238 0.020739311 0.469777183

7 0.002943062 0.014307281 0.837022267

TRIM17 5 0.024295665 0.021592961 0.260518719

7 0.040909871 0.026536513 0.123159995

DDIAS 5 -0.018642862 0.015044052 0.215264719

8 -0.026084294 0.01411218 0.064551255

CLEC4E 5 -0.010331365 0.015044072 0.492246644

7 -0.000867175 0.01430737 0.951669539

SLC16A4 5 -0.00382559 0.019239336 0.842386244

7 -0.015755651 0.014307322 0.270796599

CXCL10 5 -0.002740918 0.019889262 0.890391422

7 -0.026586929 0.014306995 0.063124042

HOXB2 5 0.021781401 0.015043922 0.147657918

7 0.036168728 0.014544894 0.012893556

MIR657 5 -0.00551235 0.022586993 0.807192295



Page 10 of 18Zhang et al. BMC Cancer          (2025) 25:654 

GBM, with a posterior probability exceeding 80%. Spe-
cifically, colocalization was identified at the rs141755176 
locus for GPX7’s pQTL and GBM GWAS (Fig.  5A). 
CXCL10 showed multiple colocalized loci with similarly 
strong evidence (Fig.  5B). This colocalization analysis 
effectively ruled out false-positive associations due to LD, 
bolstering the reliability of the causal inference.

Discussion
In this study, we integrated eQTL and pQTL data to 
investigate pathogenic genes associated with GBM and 
the potential therapeutic value of circulating plasma 
proteins. Our findings indicate that GPX7 and CXCL10 
exhibit significant causal relationships with GBM patho-
genesis and may serve as potential therapeutic targets. 

Since the human proteome represents a major source of 
therapeutic targets for tumors, we employed a compre-
hensive analytical approach to identify potential drug 
targets for GBM. Initially, we screened DEGs between 
control tissue and GBM tissue by analyzing RNA-Seq 
data from TCGA, identifying 2,528 significant DEGs that 
may play crucial roles in GBM pathogenesis. To further 
elucidate the functions of these genes, we conducted 
extensive enrichment analyses, including GO, KEGG, and 
GSEA. GO analysis revealed that DEGs were predomi-
nantly enriched in biological processes related to synap-
tic signaling, neurotransmitter transport, and calcium 
signaling pathways, suggesting that GBM development 
may involve disruptions in neuronal signal transmission 
and synaptic dysfunction. Specifically, synaptic vesicle 

Table 1 (continued)

Outcome Exposure Method nsnp b se pval

7 -0.009268314 0.016464526 0.573485094

IGLV4-69 5 0.01182686 0.01504401 0.431779176

7 0.007468506 0.01461845 0.609423958

IGLV1-47 5 -0.004983835 0.015044053 0.740430917

7 0.000164123 0.014307441 0.990847536

IGLV2- 14 5 0.005923679 0.015044251 0.693765354

7 0.01039328 0.014307517 0.467580725

IGLV3-9 5 -0.012165302 0.015044195 0.418723612

7 -0.01723212 0.014307504 0.228430622

GBP1P1 5 0.014555461 0.016705541 0.3835929

7 0.020306347 0.014307184 0.155808296

ST13P19 5 0.011086437 0.017395695 0.523923446

7 0.01013621 0.014307121 0.478651534

HNRNPA1P21 5 -0.018392867 0.016442688 0.263308824

7 -0.020117034 0.014307172 0.159700254

XRCC6P2 5 -0.027347765 0.015043419 0.06907602

7 -0.024392116 0.014306977 0.088211113

AIDAP2 5 0.014467611 0.015044038 0.336208352

7 0.012005673 0.014307392 0.401399874

LOC283194 5 0.008283151 0.015044063 0.581912952

7 0.007804019 0.014307461 0.585443369

ACTN1-DT 5 0.007656666 0.015044149 0.61078979

7 0.016712846 0.014307402 0.242756016
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Fig. 4 pQTL-MR analysis and sensitivity analysis of plasma circulating proteins associated with GBM onset. A MR analysis of GPX7. B The relationship 
between GPX7 and the SNP effect of GBM. With the increase of the SNP effect of GPX7, the SNP effect of GBM is also increasing. C MR analysis 
results of CXCL10. D The relationship between CXCL10 and the SNP effect of GBM. As the SNP effect of CXCL10 increases, the SNP effect of GBM 
also increases

Table 2 Results from two sample MR of GPX7

Outcome Exposure Methods nSNP b se pval

GBM GPX7 MR Egger 1325 0.3844 0.1132 0.0007

Weighted median 0.3077 0.1084 0.0045

Inverse variance weighted 0.1830 0.0633 0.0038

Simple mode -0.0430 0.3298 0.8965

Weighted mode 0.4933 0.2083 0.0180
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cycling, neurotransmitter transport, and trans-synaptic 
signaling were significantly affected, emphasizing the 
potential association between GBM onset and neuronal 
dysfunction. KEGG pathway analysis further demon-
strated that these DEGs were involved in multiple neural 
function-related pathways, such as neuroactive ligand-
receptor interactions, calcium signaling, cAMP signal-
ing, and GABA receptor signaling, which may undergo 
substantial alterations in GBM. GSEA analysis identified 
significant enrichment in immune response, cell cycle 
regulation, and allograft rejection pathways, implying 
that GBM pathogenesis is not solely driven by tumor 
cell proliferation but also involves immune evasion and 
remodeling of the tumor microenvironment. In recent 
years, studies have suggested that neurotransmitters and 
synaptic activity may play a crucial role in GBM pro-
gression. For example, glutamate promotes GBM cell 
proliferation and invasion through AMPA and NMDA 
receptors and may reshape the tumor microenvironment 
via excitotoxicity [35, 36]. Additionally, GABAergic sign-
aling may have an inhibitory effect on tumor growth and 
contribute to tumor microenvironment regulation [37]. 
Recent studies have also discovered that glioma cells may 
form functional synapses with neurons, thereby promot-
ing tumor progression through neuro-glial interactions 
[38].

To identify potential causal genes in GBM, we utilized 
eQTL data to screen genes with strong causal associa-
tions with GBM risk, identifying 29 positive loci signifi-
cantly linked to GBM. CXCL10 plays a critical role in 
the tumor immune microenvironment, as it not only 
facilitates immune cell recruitment but also modu-
lates immune responses, contributing to immune eva-
sion. Upregulation of CXCL10 expression may promote 
immune escape, thereby exacerbating GBM progression. 
GPX7, on the other hand, is essential for oxidative stress 
regulation and DNA repair, particularly in tumor cells 
responding to oxidative damage and DNA repair mech-
anisms. Aberrant GPX7 expression may lead to redox 
imbalance, consequently promoting tumor cell growth 
and metastasis. The causal relationships identified 
through MR may be influenced by linkage disequilibrium 

(LD), reverse causation, horizontal pleiotropy, or genetic 
confounding [21]. Therefore, we performed bidirectional 
MR analysis, which confirmed that, except for HOXB2, 
none of the identified genes exhibited evidence of reverse 
causality [39]. To further explore interactions between 
GPX7, CXCL10, and other genes, we conducted a PPI 
network analysis, revealing that these genes closely inter-
act with others involved in synaptic vesicle-mediated 
signaling and neurotransmitter transport. SYT1 overex-
pression has been shown to inhibit GBM cell prolifera-
tion and promote apoptosis [40]. Additionally, SYT1 is 
mutated in GBM, suggesting its potential as a therapeu-
tic target [41]. PITPNM3 exhibits lower tumor-region 
expression compared to the peritumoral area in female 
GBM patients, indicating a possible sex-specific role [42]. 
CDC45 regulates DNA replication through the CDC45-
MCM-GINS (CMG) complex, influencing GBM cell 
proliferation and apoptosis [43]. HLF suppresses GBM 
cell growth and enhances the efficacy of TMZ treatment 
[44]. Increased expression of CABP1 is negatively cor-
related with progression-free survival in GBM patients 
[45]. TRIM17 overexpression significantly inhibits GBM 
cell proliferation, while its silencing produces the oppo-
site effect [46]. Furthermore, SLC16A4 (MCT4) is highly 
expressed in GBM, particularly in the more invasive 
mesenchymal subtype. Its inhibition affects the HIF1α-
related signaling pathway, suggesting its potential as a 
novel therapeutic target [47]. Notably, STX1A is a key 
regulatory protein involved in synaptic vesicle membrane 
fusion. It primarily facilitates synaptic vesicle docking 
and neurotransmitter release by participating in SNARE 
complex formation [48]. Additionally, STX1A may influ-
ence tumor cell energy metabolism by regulating the 
glucose transporter GLUT1, highlighting its potential 
role in GBM that warrants further investigation [49]. For 
CREB3L3, RAPGEFL1, PHF24, CLEC4E, SLC7A4 and 
DDIAS, no direct studies have been found linking them 
to GBM. Their biological mechanisms in GBM require 
further exploration in future studies.

Subsequently, we utilized MR analysis of published 
plasma circulating protein pQTL data to evaluate pro-
teins with causal associations with GBM. We exclusively 

Table 3 Results from two sample MR of CXCL10

Outcome Exposure Methods nSNP b se pval

GBM CXCL10 MR Egger 387 4.8031 0.8337 1.7115E-08

Weighted median 3.8828 0.1768 6.9545E-107

Inverse variance weighted 3.3455 0.1275 8.4279E-152

Simple mode 3.8954 0.4934 3.0287E-14

Weighted mode 3.8954 0.4760 4.5306E-15
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used cis-pQTLs of plasma proteins as instrumental vari-
ables to identify drug targets, as they directly influence 
transcription and/or translation [50]. The results further 
confirmed that GPX7 and CXCL10 are potential thera-
peutic targets for GBM. Sensitivity analysis indicated that 

GPX7 exhibited horizontal pleiotropy, suggesting that 
certain SNPs within this gene might influence GBM risk 
through unknown biological pathways. We corrected for 
horizontal pleiotropy using MR-Egger regression, rein-
forcing the causal relationship between GPX7 and GBM. 

Fig. 5 The results of co-localization analysis of GPX7 and CXCL10 with GBM. A The GPX7-pQTL and GBM-GWAS were successfully co-located, 
and the two shared a common variant. B The CXCL10-pQTL and GBM-GWAS were successfully co-located, and the two shared a common variant



Page 14 of 18Zhang et al. BMC Cancer          (2025) 25:654 

To mitigate biases arising from horizontal pleiotropy, 
Bayesian colocalization analysis was employed to exclude 
confounding effects introduced by LD. Colocalization 
analysis revealed that GPX7 and CXCL10 shared mul-
tiple causal variants with GBM, eliminating false posi-
tives due to LD and strengthening the robustness of our 
causal inference. However, these associations do not fully 
elucidate the relationship between the identified pro-
teins and GBM. Thus, the findings should be interpreted 
cautiously.

 Human GPX7 is a nonselenocysteine-containing neu-
tral antioxidant enzyme found in mammals, also known 
as nonselenocysteine phospholipid hydroperoxide GPX 
(phGPX = GPX4) due to its homology with phospho-
lipid hydroperoxide GPX (GPX4). GPX7 serves as a 
crucial sensor of oxidative and endoplasmic reticulum 
(ER) stress [51]. The redox state of GPX7 is determined 
by the cellular oxidative status. During oxidative stress, 
GPX7 becomes activated and transfers disulfide bonds 
to specific proteins, enhancing their activity to respond 
to oxidative challenges. Currently, limited research has 
explored the role of GPX7 in gliomas. The few available 
studies have reported that elevated GPX7 expression 
is associated with poor outcomes in gliomas. Silencing 
GPX7 has been shown to enhance ferroptosis-related 
oxidative stress in glioma cells [52]. The upregulation of 
GPX7 is tightly regulated by epigenetic processes, which 
significantly affect the overall survival of patients with 
lower-grade gliomas (LGG) [53]. Bioinformatics analyses 
indicate that GPX7 is upregulated across various tumor 
types and serves as a potential prognostic biomarker for 
LGG. Moreover, high GPX7 expression can predict the 
sensitivity of LGG patients to TMZ treatment [54]. Stud-
ies have shown that the upregulation of GPX7 is tightly 
regulated by epigenetic mechanisms. In LGG patients, 
GPX7 is associated with processes such as immune 
responses and synaptic transmission, whereas in GBM, it 
is primarily linked to metabolic regulation. GPX7 is also 
closely related to immune cell infiltration and immune 
modulation within the tumor microenvironment, signifi-
cantly influencing local immune responses [53]. In our 
analysis, we identified confounding horizontal pleiotropy 
in GPX7. Horizontal pleiotropy refers to a genetic vari-
ant being associated with multiple phenotypes through 
different biological pathways [55]. Specifically, SNPs may 
influence GBM progression without affecting GPX7 pro-
tein expression, primarily due to the diverse functions of 
these SNPs. For example, SNPs located in coding regions 
(exons) may lead to amino acid substitutions, directly 
impacting protein structure and function [56]. SNPs 
may also affect DNA methylation, histone modification, 
and chromatin accessibility [57]. Additionally, SNPs in 
the 3’ untranslated region (UTR) could alter microRNA 

binding sites, thereby affecting mRNA degradation or 
translational regulation [58]. Some SNPs are found in 
drug-metabolizing enzyme genes or drug target genes, 
influencing drug metabolism rates, efficacy, or toxic-
ity (pharmacogenomics) [59]. Therefore, caution is war-
ranted when interpreting the relationship between GPX7 
and GBM.

Human CXCL10 is a 10 kDa protein functionally clas-
sified as a Th1-type chemokine. It binds to the CXCR3 
receptor and regulates immune responses by activating 
and recruiting leukocytes such as T cells, eosinophils, 
and monocytes [60]. In our study, CXCL10 emerged 
as another potential drug target. Current research on 
CXCL10 primarily focuses on tumor immunity. For 
instance, in colorectal cancer, CXCL10 expression has 
been associated with intratumoral  CD8+ T cell infiltra-
tion and the reprogramming of the tumor vascular sys-
tem [61]. In hepatocellular carcinoma, CXCL10 has been 
found to modulate the tumor microenvironment (TME) 
associated with fibrosis, thereby influencing tumor pro-
gression [62]. In GBM-related studies, the therapeu-
tic approach of upregulating CXCL10 expression in the 
TME has been recognized as a potential strategy. It may 
increase tumor-infiltrating T cells and enhance their 
activity. However, effective delivery methods are still 
lacking. Researchers have demonstrated that peritumoral 
administration of CXCL10 and Nrf2-overexpressing mes-
enchymal stem cells (MSCs) under MRI guidance can 
significantly restrict GBM growth by activating T lym-
phocytes within the TME [63]. These findings underscore 
the potential of CXCL10 as a drug target. In our study, 
we observed that an increase in SNP effects associated 
with CXCL10 corresponded to an increase in SNP effects 
linked to GBM. However, research exploring the relation-
ship between CXCL10 and GBM remains limited, mark-
ing this as a promising direction for future investigation.

In this study, a bidirectional causal relationship was 
identified between HOXB2 (Homeobox B2) and GBM, 
suggesting that HOXB2 may act both as a contributing 
factor to GBM development and as a target influenced 
by GBM progression. HOXB2, a member of the HOX 
gene family, functions as a transcription factor critical for 
regulating cell differentiation, migration, and positioning 
during embryonic development. Aberrant expression of 
HOX genes has been implicated in various cancers, par-
ticularly in promoting cancer stem cell properties, inva-
siveness, and metastasis [64, 65]. The overexpression 
of HOXB2 in GBM may enhance the proliferation and 
invasion of tumor cells, suggesting its role as a potential 
pathogenic factor in GBM [66]. However, studies have 
shown that HOXB2 not only promotes tumor develop-
ment but also plays a role in remodeling the extracel-
lular matrix (ECM), thereby limiting the progression of 
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triple-negative breast cancer [67]. Therefore, the bidi-
rectional causal relationship between HOXB2 and GBM 
may, in part, be attributed to its regulation of the ECM 
in GBM. The excessive ECM in GBM may, in turn, influ-
ence HOXB2 expression. In addition, the aberrant acti-
vation of numerous signaling pathways in GBM may 
contribute to the regulation of HOXB2 expression by 
GBM. For example, previous studies have demonstrated 
that the Wnt signaling pathway is abnormally activated in 
GBM [68]. This dysregulated Wnt signaling can modulate 
the expression of the HOX family of proteins, including 
HOXB2 [69]. GBM’s continuous modulation of intracel-
lular and extracellular signals could lead to changes in 
HOXB2 expression, and this feedback mechanism helps 
explain the bidirectional causal relationship between 
HOXB2 and GBM. However, current research on 
HOXB2 and the ECM in the context of GBM is relatively 
limited, making it difficult to fully understand the deeper 
biological mechanisms involved. This represents a valu-
able research direction for future studies.

Despite recent advancements in treatment approaches, 
the selection of therapeutic drugs for GBM remains rela-
tively disappointing and challenging. The primary reason 
for this is the presence of the blood–brain barrier, which 
prevents most drugs from being accurately delivered to 
the target site. In our exploration of plasma proteins as 
potential pathogenic markers for GBM, although the 
evidence remains preliminary, our findings suggest that 
plasma proteins may be worth further investigation. The 
detection of proteins associated with GBM could present 
promising drug targets. Among the targets identified, 
GPX7 and CXCL10 emerged as potential candidates. 
Although there are no specific reports on the develop-
ment of drugs targeting GPX7 for GBM, there is evidence 
suggesting that low-dose metformin upregulates ER-
localized GPX7 to prevent cellular senescence [70]. This 
highlights an interesting consideration: existing drugs 
that have already demonstrated efficacy may offer oppor-
tunities for application in different diseases, a question 
worth contemplating. Regarding CXCL10, while there 
are few reports on drug development targeting this pro-
tein, many studies suggest that CXCL10 could be a prom-
ising target in melanoma treatment. This is largely due to 
the dual role of the CXCL10/CXCR3 axis in promoting 
and counteracting cancer activity in various tissues and 
cells, particularly within the melanoma cells and their 
microenvironment [71]. We believe that CXCL10 could 
be a promising drug target in glioma treatment, and our 
study provides preliminary evidence supporting this 
hypothesis.

In future studies, we propose designing or screen-
ing small-molecule inhibitors or modulators targeting 
these two proteins. Virtual screening methods could be 

employed to identify known compounds capable of spe-
cifically binding to and inhibiting the activities of these 
proteins. Subsequent in  vitro and in  vivo experiments 
would help evaluate the effects of these compounds on 
GBM cell proliferation and migration, further assessing 
their potential clinical value. Given the role of CXCL10 
in immune cell recruitment, it is likely associated with 
immune evasion mechanisms in GBM. This raises the 
possibility of developing combinational therapeutic 
strategies that integrate immune checkpoint inhibi-
tors (e.g., PD-1/PD-L1 inhibitors) with CXCL10-related 
immune pathways to treat GBM. Recent studies have 
shown that a low-intensity focused ultrasound (LIFU)-
guided sequential delivery strategy has been developed 
to enhance CD8 T cell infiltration and activity in GBM 
regions. This strategy involves the continuous delivery of 
CXCL10 to recruit CD8 T cells, along with interleukin 2 
(IL-2) and aPD-L1 to reduce T cell exhaustion [72].On 
the other hand, the antioxidant function of GPX7 might 
be linked to tumor cell resistance. Targeting GPX7 may 
help overcome GBM cell resistance to chemotherapy or 
radiotherapy. These biomarkers not only provide a means 
to evaluate drug efficacy but also offer a foundation for 
developing personalized therapeutic approaches. High-
throughput screening technology to identify potential 
small molecules that interact with GPX7 from existing 
compound libraries is a potentially feasible approach. 
Once the compounds are screened, structure–activity 
relationship (SAR) analysis can be conducted to optimize 
the small molecules’ structure, improving their selectivity 
and activity. Drug activity, solubility, and stability can be 
optimized through methods such as modifying functional 
groups or adjusting stereochemistry. Finally, in vitro and 
in  vivo experiments can be performed to evaluate the 
potential therapeutic efficacy of the optimized com-
pounds [73]. It is worth noting that recent advancements 
in bioinformatics, including genomics and proteomics, 
have been complemented by the rapid development of 
technologies like machine learning and artificial intel-
ligence. While MR analysis provides a straightforward 
method for causal inference, its capabilities are inher-
ently limited. Incorporating other advanced techniques 
may improve the reliability of research findings. Recent 
studies highlight significant progress in applying deep 
learning techniques to medical imaging and genomics, 
demonstrating their potential for multidimensional data 
analysis. For example, an interpretable deep learning 
model emphasizing model transparency and interpret-
ability has been validated in skin lesion classification [74], 
providing valuable insights for analyzing GBM genomic 
and proteomic data. Applying such approaches to GBM 
research could enhance the precision of data interpreta-
tion and improve the transparency of causal relationship 
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analyses. Additionally, a recent study introduced deep 
residual network technology [75], which improves clas-
sification accuracy through multi-level feature extraction. 
This underscores the advantages of deep learning in pro-
cessing high-dimensional data. Applying this approach to 
GBM gene and protein data analysis could help uncover 
deeper insights into disease mechanisms and optimize 
target screening efforts.

Limitations
MR studies typically require large sample sizes, and this 
issue is further compounded by the rarity of gliomas. 
To ensure that MR analyses provide robust references 
for drug target development, the current data volume 
is insufficient. Large-scale case–control studies focus-
ing on glioma pathogenesis and germline genetic data 
are urgently needed. Although randomized controlled 
trials offer potential databases for MR analysis, the lim-
ited sample size remains a significant barrier due to 
the low incidence of gliomas, especially GBM [76, 77].
To improve the accuracy of drug target prediction, we 
adopted a stepwise approach from gene-level analyses to 
plasma protein-level exploration. This approach success-
fully identified two plasma proteins as potential thera-
peutic targets. However, our dataset primarily consisted 
of European and Icelandic populations. While sensitiv-
ity analyses did not reveal significant heterogeneity, the 
generalizability of these findings to other populations 
remains uncertain. Moreover, due to the constraints of 
sample size, the number of significant eQTL loci identi-
fied in our study was relatively small. Consequently, we 
relied on positive loci data from existing databases, which 
might have resulted in the omission of some relevant loci. 
Finally, this study lacks validation with additional exter-
nal datasets (such as transcriptomic and proteomic data) 
and experimental data, which is an acknowledged limi-
tation. Although we have attempted to address some of 
these limitations, the analysis of the results should still 
be approached with caution. Therefore, future valida-
tion through larger-scale, multi-center studies is crucial 
for confirming the reliability and broader applicability of 
these results.

Conclusions
This study leveraged integrated analyses of eQTL and 
pQTL data to explore the potential of GPX7 and CXCL10 
as therapeutic targets for GBM. The findings suggest that 
these two proteins play critical roles in GBM onset and 
progression, potentially influencing its biological behavior 
through the regulation of oxidative stress, immune eva-
sion, and the tumor microenvironment. Additionally, the 

bidirectional causal relationship observed for HOXB2 in 
GBM underscores its potential pathological significance. 
While the identified targets offer new directions for GBM 
treatment, limitations such as sample size, population het-
erogeneity, and data biases necessitate validation through 
larger-scale multicenter studies. Future research focusing 
on virtual screening, the development of small-molecule 
inhibitors, and combination immunotherapy strategies 
will be instrumental in elucidating the clinical applicabil-
ity of these targets and advancing personalized therapeutic 
approaches.
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