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Abstract
Background N6-methyladenosine (m6A) and ferroptosis are involved in the development and prognosis of various 
cancers via long noncoding RNAs (lncRNAs). This study aimed to investigate the cervical cancer subtypes based on 
m6A-and ferroptosis-related lncRNAs (mfrlncRNAs) and to construct a mfrlncRNA signature to predict cervical cancer 
prognosis and treatment response.

Methods mfrlncRNA-related cervical cancer subtypes were identified based on public datasets, and their differences 
in terms of prognosis, immune cell infiltration, and biological mechanisms were compared. Moreover, prognosis-
related mfrlncRNAs were identified to construct a prognostic signature. A nomogram was constructed based on 
the independent prognostic factors. Immune characteristics, immunotherapy response predictions, and drug 
sensitivity analyses were performed for both risk groups. Furthermore, quantitative PCR was performed to validate the 
differential expression of the signature mfrlncRNAs in clinical samples.

Results In total, 549 differentially expressed mfrlncRNAs were identified between cervical cancer and normal 
samples. Two mfrlncRNA-related cervical cancer subtypes that exhibited distinct prognoses, immune characteristics, 
and biological mechanisms were identified. A prognostic signature was developed using six prognostic mfrlncRNAs: 
AC016065.1, AC096992.2, AC119427.1, AC133644.1, AL121944.1, and FOXD1_AS1. This prognostic signature exhibited 
high performance in predicting the prognosis of cervical cancer. Moreover, RiskScore and stage were identified 
as independent prognostic factors, and a nomogram was constructed to accurately forecast overall survival. 
Furthermore, patients in the low-risk group had a more active immunotherapy response and were more sensitive 
to chemotherapeutic drugs such as imatinib. Upregulated expression of AC119427.1, AC133644.1, AL121944.1, and 
FOXD1_AS1 was observed in the tumor samples.
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Introduction
Cervical cancer poses a major health challenge world-
wide and is the fourth most frequently diagnosed can-
cer in women [1]. In 2022, cervical cancer resulted in 
approximately 661,021 new cases and 348,189 deaths 
worldwide [2]. Advancements in prevention and screen-
ing have led to a decline in the incidence and mortality 
rates of cervical cancer in developed countries. However, 
these rates remain elevated or have deteriorated in many 
developing countries [3]. The 5-year survival rate is 92% 
in patients in the early stages of the disease (IA1-IB2 and 
IIA1), 59% in those in the second stage of the disease 
(IB3, IIA2, and IIB-IVA), and 17% in those in advanced 
stages with distant metastases (IVB) [4]. Treatment 
approaches for patients with cervical cancer are tailored 
based on the FIGO stage and lymph node status. With 
precise genetic testing, targeted therapies, and immuno-
therapies are emerging as new models for tumor detec-
tion and treatment; however, a considerable proportion 
of patients show limited response to immune checkpoint 
inhibitors [5]. Hence, it is essential to identify promising 
biomarkers to improve risk stratification, prognosis, and 
treatment response assessment in patients with cervical 
cancer.

Long non-coding RNAs (lncRNAs) longer than 200 
nucleotides have gained attention as potential biomark-
ers [6]. The lncRNAs have been implicated in the malig-
nant development of multiple cancers and contribute to 
therapeutic resistance [7–9]. In cervical cancer, multiple 
lncRNAs play a key role in cancer diagnosis, treatment, 
and prognosis [10, 11]. Elevated levels of the lncRNA 
HOXC-AS3 drive cervical cancer development and are 
indicative of a less favorable prognosis [12]. The lncRNA 
ABHD11-AS1 contributes to cervical cancer progression 
and is key to the diagnosis and treatment of this malig-
nancy [13]. Furthermore, lncRNA signatures are consid-
ered promising diagnostic and prognostic biomarkers for 
cervical cancer [14, 15].

Additionally, lncRNA regulation can be modulated by 
N6-methyladenosine (m6A), which affects the pathogen-
esis of numerous cancers [16]. m6A modifications are 
abundant in mammalian RNA and influence a wide range 
of biological processes and mRNA metabolism [17]. The 
m6A modification is regulated by signal transducers 
(readers), demethylases (erasers), and methyltransfer-
ases (writers) [18]. This modulation has profound impli-
cations in cancers, including cervical cancer, where the 
multifaceted role of m6A methylation offers insights into 
novel diagnostic, therapeutic, and prognostic approaches 

[19, 20]. Furthermore, upregulation of the FOXD2-AS1 
induced by m6A methyltransferase-like 3, contributes to 
cervical cancer progression [21]. The prognosis of various 
cancers, such as cervical cancer, can be assessed using 
m6A-related lncRNAs [22]. Therefore, the identification 
of key m6A-related lncRNAs may provide new ideas for 
early cancer diagnosis and treatment.

Ferroptosis, a type of non-apoptotic cell death, is 
linked to oxidative damage [23] and is characterized by 
iron-dependent lipid peroxidation, resulting in plasma 
membrane injury [24]. Ferroptosis has a pivotal role 
as a regulatory mechanism of tumor proliferation that 
affects the efficacy of tumor treatment [25]. Ferroptosis 
plays a role in cervical cancer, opening new avenues for 
clinical research on this malignancy [26]. Ferroptosis-
related genes are promising targets for developing ther-
apeutic strategies for cancer [27]. Moreover, a potential 
association between m6A molecules and ferroptotic 
genes during cancer development has been identified 
[28]. METTL14 enhances sorafenib-induced ferroptosis 
in cervical cancer by reducing the stability of the FTH1 
mRNA via m6A methylation [29]. However, the relation-
ships between m6A, ferroptosis, lncRNAs, and cervical 
cancer remain unclear.

This study aimed to identify differentially expressed 
m6A- and ferroptosis-related lncRNAs (mfrlncRNAs) 
in cervical cancer samples using public gene expression 
data and analyze their differences in terms of progno-
sis, immune cell infiltration, and biological mechanisms. 
Moreover, we screened the prognosis-related mfrln-
cRNAs and constructed a prognostic mfrlncRNA sig-
nature. Subsequently, we established a nomogram 
and compared the immune characteristics, immuno-
therapy response, and drug sensitivity between the two 
risk groups. Furthermore, we validated the differential 
expression of the signature mfrlncRNAs in clinical sam-
ples. A workflow diagram of this study is shown in Fig. 1, 
The findings of this study improve our understanding of 
the landscape underlying cervical cancer and provide a 
refined framework for predicting patient outcomes and 
tailoring therapeutic interventions.

Materials and methods
Data acquisition and preprocessing
Data on ferroptosis-related genes were downloaded from 
the FerrDB v2 database [30]. After removing duplicates, 
484 ferroptosis-related genes were identified. Then, 23 
m6A regulators were identified, including 8 writers, 2 
erasers, and 13 readers. The integrated transcriptomic 

Conclusions The six-mfrlncRNA signature is a new biomarker for forecasting prognosis and treatment response in 
cervical cancer.
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expression data for cervical cancer [The Cancer Genome 
Atlas Cervical Squamous Cell Carcinoma and Endocer-
vical Adenocarcinoma (TCGA-CESC) and GTEx], along 
with the phenotypic and survival data for cervical cancer, 
were downloaded from the UCSC Xena database [31]. 
This dataset included 305 TCGA-CESC and 88 GTEx 
control samples.

Data preprocessing
The human reference genome gtf annotation file was 
downloaded using the import function in the R package 
tracklayer (version 1.64.0). The Ensembl IDs in TCGA-
CESC data were converted to gene symbols, and the 
corresponding gene types were annotated. Genes with 
expression values of 0 in > 80% of the samples were fil-
tered out. The average expression value across each sam-
ple was calculated for genes that appeared multiple times. 
Finally, a gene expression matrix containing 31,849 genes 
and 393 samples and a lncRNA expression matrix con-
taining 7,832 lncRNAs and 393 samples were obtained.

Differential expression analysis
Differentially expressed lncRNAs (DE-lncRNAs) between 
TCGA-CESC and GTEx control samples were identi-
fied using the R package limma (version 3.60.3) [32]. The 
threshold value for DE-lncRNAs screening was set at 
p < 0.05, and|log2 fold change (FC)| > 1. The differential 
expression of m6A and ferroptosis-related genes between 
TCGA-CESC and GTEx control samples was analyzed 
using the Wilcoxon rank-sum test. The differentially 
expressed m6A or ferroptosis-related genes were selected 
with a cut-off value of p < 0.05. Subsequently, Pearson’s 
correlation analysis was performed to assess the correla-
tion between DE-lncRNAs and differentially expressed 
m6A or ferroptosis-related genes to identify differentially 
expressed m6A-related lncRNAs or ferroptosis-related 
lncRNAs. The threshold for correlation was set at R = 0.6 
and p < 0.001. The intersection of differentially expressed 
m6A-related lncRNAs and ferroptosis-related lncRNAs 
was considered an mfrlncRNA.

Fig. 1 The workflow diagram of this study
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Identification of mfrlncRNA-related clusters
Based on the mfrlncRNA expression data, unsupervised 
clustering of TCGA-CESC tumor samples was conducted 
using the R package ConsensusClusterPlus (version 
1.68.0) [33]. Clustering was performed using the PAM 
algorithm, with k ranging from 2 to 10, and Spearman 
correlation for distance measurement. The appropriate 
number of clusters (subtypes) was selected based on the 
heatmap and cumulative distribution plot.

Analysis of MfrlncRNA enrichment score
To evaluate the subtype results, enrichment scores of the 
mfrlncRNAs in each sample were calculated using the R 
package GSVA (version 1.50.5) [34]. The kernel function 
type for density estimation was set to Gaussian and the 
size range for the gene sets was set from 5 to 5000.

Subtype prognosis and clinical feature correlation analysis
To analyze the association between subtypes and cervical 
cancer prognosis, the Survfit function from the R pack-
age survival (version 3.6.4) was used to compare overall 
survival (OS) differences among the subtypes. Kaplan–
Meier (KM) survival curves were plotted. Additionally, 
associations between subtypes and various clinical fea-
tures were examined using the chi-square test.

Immune infiltration analysis for MfrlncRNA subtypes
To investigate the differences in tumor immune micro-
environment (TIME) between subtypes, the immune 
infiltration levels of tumor samples in the TCGA-CESC 
dataset were analyzed using the CIBERSORT [35], xCell 
[36], and ESTIMATE [37] algorithms. The expression 
data of immune checkpoint-related genes were extracted 
from the TCGA-CESC dataset. Differences in immune 
infiltration scores and gene expression between the dif-
ferent subtypes were compared using the Wilcoxon test.

Analysis of the biological mechanism of action of 
MfrlncRNA subtypes
Based on the hallmark gene sets from the MSigDB data-
base [38], the enrichment scores for each tumor sample 
were calculated using the R package GSVA based on the 
entire gene expression profile, setting the minimum and 
maximum gene set sizes to 5 and 5000, respectively.

To identify activated or inhibited signaling pathways, 
gene set enrichment analysis (GSEA) [39] was performed 
on the pathways. Using the classical Bayesian and linear 
regression methods provided by the R package, “limma,” 
differential expression analysis on the subtypes was per-
formed based on gene expression data. Genes were 
ranked in descending order of their Log2FC values. Sub-
sequently, the GSEA function from the R package cluster-
Profiler (version: 4.12.0) [40] was used to perform Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 

and gene ontology (GO) enrichment analyses. The signif-
icance threshold for enrichment was set at p < 0.05.

Construction of the prognostic signature
By integrating the clinical data of TCGA-CESC tumor 
samples, the Coxph function from the R package sur-
vival [41] was utilized to conduct univariate Cox regres-
sion analysis to assess the prognostic significance of each 
mfrlncRNA, with a significance threshold of p < 0.05.

Based on the prognostic mfrlncRNAs, the sample func-
tion in R was used to divide TCGA-CESC tumor sam-
ples into training (70%) and validation (30%) datasets. 
A prognostic risk model was constructed based on the 
training dataset. First, TCGA-CESC expression data was 
integrated with clinical information (OS time and sta-
tus). A LASSO shrinkage and selection operator regres-
sion model was built using the R package glmnet (version 
4.1.8) [42]. Feature selection was performed using a 
10-fold cross-validation to identify representative mfrln-
cRNAs. Next, based on the survival data, a Cox regres-
sion model was constructed using the R survival package. 
To ensure the accuracy and stability of the model, mfrln-
cRNAs were selected using stepwise regression. The 
regression coefficients (coef ) [43] of the selected mfrln-
cRNAs were extracted from the model. By combining the 
regression coefficients with gene expression data, a prog-
nostic model for cervical cancer, named the mfrlncRNA 
signature, was constructed as follows:

 RiskScore =
∑ n

i=1
(gene i) ∗ coef

The optimal cut-off value for the RiskScore was deter-
mined using the surv cut-off function from the R package 
survminer (version: 0.4.9). Based on this optimal cut-off 
value, patient samples were grouped as follows: samples 
with a RiskScore higher than the optimal cut-off value 
were defined as the high-risk group, and those with a 
lower RiskScore were defined as the low-risk group. The 
KM and receiver operating characteristic (ROC) curves 
for 1-, 3-, and 5-year OS predictions were plotted to 
evaluate the predictive performance of the mfrlncRNA 
signature.

To validate the predictive performance of the mfrln-
cRNA signature, the expression data for the selected fea-
ture mfrlncRNAs were extracted from both the validation 
and entire datasets, and prognostic models were con-
structed using the same method. KM and ROC curves 
were used to assess the performance of the models.

Selection of independent prognostic factors
Univariate Cox regression analysis on the RiskScore, age 
(< 60 and ≥ 60), tumor-node-metastasis (TNM) stage, 
American Joint Committee on Cancer stage, and tumor 
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grade was performed. Features with p < 0.05 were consid-
ered to be related to prognosis. Next, a multivariate Cox 
regression analysis of these features was performed, and 
features with p < 0.05 were considered independent prog-
nostic factors.

Establishment of a nomogram
To facilitate the prediction of OS probability of patients 
with cervical cancer, a nomogram was established based 
on independent prognostic factors using the R package 
rms (version 6.8.1). To validate the nomogram, calibra-
tion curves, decision curve analysis (DCA) plots, and 
ROC curves were generated to assess performance.

Comparison with other published prognostic signatures
To validate the performance of the mfrlncRNA signature, 
published prognostic signatures from previous studies on 
cervical cancer were retrieved. Using our model, the con-
cordance index (C-index) for each prognostic signature 
was calculated and compared with the C-index of our 
mfrlncRNA signature in TCGA training, validation, and 
the entire datasets.

Analysis of immune characteristics and treatment 
responses related to the MfrlncRNA signature
To evaluate the role of the mfrlncRNA signature in the 
TIME of cervical cancer, the relationship among the 
mfrlncRNA signature, immune cell infiltration, and 
immune regulators was investigated. TIME was assessed 
using the CIBERSORT [44], TIMER [45], EPIC [46], 
xCell [36], and MCPcounter [47] algorithms with the R 
package IOBR (version: 0.99.8) [48]. Subsequently, the 
association between the mfrlncRNA signature and most 
immune regulators, including ligands and receptors, was 
examined. The immunotherapy response and drug sen-
sitivity associated with the mfrlncRNA signature were 
analyzed. Based on gene expression data, the immuno-
therapy response of the samples was assessed using the 
tumor immune dysfunction and exclusion (TIDE) data-
base. The microsatellite instability (MSI), immune profile 
score (IPS), interferon gamma (IFNG), and TIDE scores 
of the two risk groups were compared using the Wil-
coxon test, with the significance threshold set at p < 0.05. 
Furthermore, the Cancer Drug Sensitivity Genomics 
Database (GDSC,  h t t p s :   /  / w w  w .  c a n c e r r x g e n  e . o r g /) [49] 
was used to estimate each patient’s sensitivity to chemo-
therapeutic drugs. The IC50 of each drug was quantified 
using the R package, pRRophetic (version 0.5), and the 
differences between the two risk groups were analyzed 
using the Wilcoxon rank-sum test. Additionally, as many 
proteins lacked binding sites or had insufficient affinity 
for small molecules and antibodies, potential drug tar-
gets were collected from previous studies and Spearman’s 

rank correlation analysis was used to screen targets asso-
ciated with the RiskScore.

Experimental validation
From June 2023 to January 2024, 10 pairs of tumor and 
adjacent non-cancerous tissue samples were collected 
from patients with cervical cancer who underwent pri-
mary surgical resection at the First Hospital of Shanxi 
Medical University. Our study was approved by the Eth-
ics Committee of the First Hospital of Shanxi Medical 
University (NO.KYYJ-2023-161). All patients provided 
informed consent for this study.

Quantitative polymerase chain reaction (qPCR) was 
used to validate the expression of mfrlncRNAs in the 
prognostic signatures. In brief, total RNA was extracted 
from clinical tissue samples using RNAiso Plus (Trizol) 
reagent (TaKaRa, Japan). After reverse transcription to 
cDNA using the ReverTra Ace® qPCR RT master mix 
(TOYOBO, Japan), real-time qPCR was performed using 
Power SYBR Green PCR master mix (Thermo, USA). 
The relative lncRNA expression was quantified using the 
2–ΔΔCt method using GAPDH as the internal control.

Statistical analysis
The experimental data are expressed as mean standard 
deviation (SD). Statistical analyses were performed using 
GraphPad 9.0.5 software (GraphPad Software, San Diego, 
CA, USA). The differences between groups were ana-
lyzed using one-way analysis of variance (ANOVA), with 
p < 0.05 indicating statistical significance.

Results
Identification of MfrlncRNAs
Using differential expression analysis, 3,100 DE-lncRNAs 
(1,370 upregulated and 1,730 downregulated) were iden-
tified between TCGA-CESC and GTEx control samples 
(Fig.  2a). Additionally, 23 differentially expressed m6A 
genes (Fig. 2b) and 417 ferroptosis-related genes (Fig. 2c) 
were identified. Pearson correlation analysis identi-
fied 551 differentially expressed m6A-related lncRNAs 
and 1,656 differentially expressed ferroptosis-related 
lncRNAs. In total, 549 mfrlncRNAs were identified in 
intersectional analysis (Fig. 2d).

Identification of MfrlncRNA subtypes
Before clustering, the sample numbers of TCGA-CESC 
were matched with the sample numbers in the sur-
vival data, and samples with a survival time of 0 were 
excluded, leaving a total of 292 CESC samples. Based on 
the expression data of 549 mfrlncRNAs, unsupervised 
clustering analysis showed that when the optimal num-
ber of clusters (k) = 2, the heatmap divisions were clearer 
than the other values (Fig. 3a) and the cumulative distri-
bution function was closest to being parallel to the x-axis 

https://www.cancerrxgene.org/
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(Fig.  3b). Therefore, k was 2, which divided the tumor 
samples into two subtypes. Clusters 1 and 2 included 
122 and 170 samples, respectively. Subsequently, we used 
GSVA to calculate the mfrlncRNA score of the cervical 
cancer samples in the two clusters and found that clus-
ter 1 had a notably higher mfrlncRNA score than cluster 
2 (p = 5.5e-15; Fig. 3c), indicating a significant difference 

between the two subtypes. Moreover, principal compo-
nent analysis showed a clear clustering of samples within 
the same cluster (Fig. 3d). KM curve analysis showed that 
patients in cluster 2 had a shorter OS time than those in 
cluster 1 (p = 0.025, Fig. 3e), indicating that cluster 2 had 
worse prognosis. The correlation between the two sub-
types and various clinical factors such as age, TNM stage, 

Fig. 2 Identification of mfrlncRNAs. (a) Volcano plot of differentially expressed lncRNAs between TCGA-cervical cancer (n = 305) and GTEx control (n = 88) 
samples. Red nodes indicate upregulated lncRNAs and blue nodes indicate downregulated lncRNAs. (b) Box plots of 23 differentially expressed m6A 
genes. * p < 0.05 and *** p < 0.001. (c) Expression heatmap of 417 differentially expressed ferroptosis genes. (d) Venn diagram of differentially expressed 
m6A-related and ferroptosis-related lncRNAs. mfrlncRNAs: m6A-and ferroptosis-related lncRNAs
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and overall stage is shown in Fig. 3f. The distribution of 
various clinical factors in two subtypes was displayed and 
there was no close association between the subtypes and 
age, tumor stage, and TNM classification.

Comparison of immune characteristics and biological 
mechanisms between the two subtypes
Based on TCGA-CESC data, the proportion of infiltrat-
ing immune cells was analyzed. The xCell algorithm 
identified multiple cell types that were significantly asso-
ciated with subtypes, including T regulatory cells, MSCs, 
MEPs, and CD8+ Tem cells (Fig.  4a). Using the CIBER-
SORT algorithm, five types of immune cells were signifi-
cantly related to the following subtypes: CD4+ memory 
resting T cells, memory B cells, naïve B cells, eosinophils, 
and follicular helper T cells (Fig. 4b). Dramatically higher 
ESTIMATE and stromal scores were observed in cluster 
2 than in cluster 1 (Fig. 4c). Furthermore, immune check-
point genes, including BTLA, TNFRSF4, and TNFRSF9, 
showed higher expression levels in cluster 2 (Fig.  4d). 

These data indicated that the two subtypes exhibited dis-
tinct immune characteristics.

Next, we analyzed the differences in the 50 pathways 
between the two subtypes based on the GSVA enrichment 
scores. Among these, 28 pathways, including HALL-
MARK_REACTIVE_OXYGEN_SPECIES_PATHWAY, 
HALLMARK_OXIDATIVE_PHOSPHORYLATION, 
and HALLMARK_DNA_REPAIR, differed significantly 
among the subtypes (Fig.  4e). Moreover, GSEA was 
conducted to identify differential GO functions and 
KEGG pathways between the two subtypes. As a result, 
3,294 differential GO functions, such as the immune 
response-regulating cell surface receptor signaling path-
way (Fig. 4f ), and 145 differential pathways, such as ribo-
somes (Fig. 4g), were enriched.

Construction and validation of the MfrlncRNA signature
By integrating clinical data from TCGA-CESC sam-
ples, 103 mfrlncRNAs were found to be related to 
OS. Subsequently, LASSO Cox analysis identified 11 

Fig. 3 Identification of mfrlncRNAs subtypes. (a) Heatmap of sample distribution with different cluster numbers (clusters 1, 122 samples; cluster 2, 170 
samples). (b) CDF distribution curve. (c) Comparison of the mfrlncRNA score of two clusters. (d) PCA plot of sample distribution in the two clusters. (e) 
Kaplan–Meier survival curve of the two clusters. (f) Heatmap showing the correlation between two subtypes and various clinical factors such as age, TNM 
stage, and overall stage. mfrlncRNAs: m6A-and ferroptosis-related lncRNAs; CDF: cumulative distribution function; PCA: principal component analysis
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Fig. 4 (See legend on next page.)

 



Page 9 of 16Wen et al. BMC Cancer          (2025) 25:580 

risk-associated mfrlncRNAs (Fig.  5a): AC008438.1, 
AC008894.2, AC016065.1, AC090617.3, AC096992.2, 
AC119427.1, AC131953.1, AC133644.1, AL121944.1, 
AL158825.2, and FOXD1_AS1. To ensure the accu-
racy and stability of the model, stepwise multivariate 
regression was conducted to screen the mfrlncRNAs 
for prognostic model construction. The optimal model 
included six mfrlncRNAs: AC016065.1, AC096992.2, 
AC119427.1, AC133644.1, AL121944.1, and FOXD1_AS1 
(Fig.  5b). The regression coefficients (coefs) of these 
mfrlncRNAs were extracted to construct a prognostic 
signature. The RiskScore was then calculated as follows: 
RiskScore = AC016065.1 × (-0.45035) + AC096992.2 × 
(-0.49051) + AC119427.1 × 0.467227 + AC133644.1 × 
(-0.36185) + AL121944.1 × (-0.4462) + FOXD1_AS1 × 
(-0.11495). Risk grouping for samples in the training data-
set was then performed using the optimal cut-off value 
for the RiskScore. The high-risk and low-risk groups con-
tained 71 and 221 patients, respectively. KM curve analy-
sis revealed a markedly shorter OS time in the high-risk 
group. Moreover, patients in the high-risk group were 
more likely to die, and ROC curve analysis demonstrated 
that the area under the curve values for forecasting 1-, 
3-, and 5-year OS were 0.891, 0.773, and 0.797, respec-
tively (Fig.  5c). Consistent results were obtained based 
on the validation (Fig.  5d) and entire datasets (Fig.  5e), 
revealing the robustness of the mfrlncRNA signature. 
Besides, we analyzed the predictive performance of TNM 
stage in forecasting OS based on the entire dataset. We 
found that the area under the curve values for the T, N, 
M stages in predicting 1-, 3-, and 5-year OS were ranged 
from 0.548 to 0.747, all of which were lower than that of 
the risk score (Fig. 5f ). These data demonstrated that our 
constructed mfrlncRNA signature had a higher predic-
tive performance than TNM stage.

Construction of a nomogram
After constructing the prognostic signature, we com-
pared the risk scores across different clinical feature 
groups, including age, tumor grade, stage, TNM, and 
subtypes. We observed significant differences between 
stages I and IV, T2 and T3, G2 and G3, and G3 and Gx, 
as well as between the two subtypes (Fig.  6a), indicat-
ing that the mfrlncRNA signature has good potential for 
clinical applications. We then investigated independent 
prognostic factors for cervical cancer. Stage (p = 0.002) 
and risk score (p = 0) were significant in both univariate 

and multivariate regression analyses (Fig. 6b-c), indicat-
ing that these two features are independent prognostic 
factors. Additionally, the hazard ratios were > 1, suggest-
ing that these were risk factors. Using these indepen-
dent prognostic factors, a nomogram was established 
to predict OS (Fig.  6d). The DCA curves indicated that 
the 1-year nomogram model was the most consistent, 
whereas the other nomogram models were largely con-
sistent with the ideal model (Fig.  6e), revealing a satis-
factory overlap in the predictive and actual 1-, 3-, and 
5-year OS (Fig. 6f ). Furthermore, to determine whether 
the mfrlncRNA signature has superior predictive ability, 
we retrieved published prognostic signatures from previ-
ous studies on cervical cancer and calculated the C-index 
using our model. Based on the training set, we observed 
that our mfrlncRNA signature had the highest C-index, 
suggesting the high performance of our model. However, 
in the comparison of the C-indices for the validation set 
and the entire dataset, our model ranked 10th (Fig. 6g). 
Although the C-indices for the validation set and the 
entire dataset were not the highest, the C-index of our 
model for the validation set and the entire dataset was 
higher than 0.6, suggesting a good performance.

Immune characteristics related to the MfrlncRNA signature
We evaluated the role of the mfrlncRNA signature in the 
TIME in cervical cancer. As shown in Fig. 7a, the mfrln-
cRNA signature correlated weakly with the infiltration of 
multiple immune cells. Moreover, the mfrlncRNA signa-
ture was related to various immune regulators, especially 
HLA molecules (Fig. 7b). Moreover, we investigated the 
performance of the mfrlncRNA signature in predict-
ing immunotherapy responses. We found that MSI, IPS, 
and IFNG levels were dramatically higher in the low-risk 
group than in the high-risk group (p < 0.05; Fig. 7c), sug-
gesting that low-risk patients had a more active immu-
notherapy response. However, TIDE scores did not differ 
significantly between the two groups. Furthermore, we 
estimated the sensitivity of patients to 138 chemothera-
peutic drugs based on the expression data of cervical 
cancer samples obtained from TCGA. We observed that 
the IC50 values of 17 chemotherapeutic drugs differed 
significantly between the two risk groups. The top three 
drugs were imatinib, AZD.0530, and NSC.87,877, all of 
which exhibited higher IC50 values in low-risk patients, 
implying that these patients had greater drug sensitivity 
(Fig. 7d). Additionally, we collected potential drug targets 

(See figure on previous page.)
Fig. 4 Comparison of the immune characteristics and biological mechanisms of action of the two subtypes (clusters 1, n = 122; cluster 2, n = 170). (a) 
Comparison of the results regarding immune cell infiltration obtained using the xCell algorithm between the two clusters. (b) Comparison of the results 
regarding immune cell infiltration obtained using the CIBERSORT algorithm between the two clusters. (c) Comparison of the results regarding ESTIMATE 
score, immune score, and stromal score obtained using the ESTIMATE algorithm between the two clusters. (d) Comparison of the expression of immune 
checkpoint genes between the two clusters. (e) Results of GSVA pathways in the two clusters. (f) GSEA analysis showed the differential GO functions 
between the two clusters. (g) GSEA analysis showed the differential KEGG pathways between the two clusters. *p < 0.05, **p < 0.01, ***p < 0.001, and **** 
p < 0.0001
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Fig. 5 (See legend on next page.)
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from previous studies, and subsequent correlation analy-
sis revealed that 18 drug targets, including CYP2J2, were 
significantly associated with high-risk cervical cancer 
(r > 0.2, p < 0.05).

Validation of MfrlncRNA expression in clinical samples
To preliminarily reveal the role of key mfrlncRNAs in 
cervical cancer, qPCR was performed to validate the 
expression of the six signature mfrlncRNAs in clini-
cal samples. The results showed that the expression of 
AC119427.1, AC133644.1, AL121944.1, and FOXD1_AS1 
in tumor tissues was higher than that in normal tissues 
(p < 0.05, Fig.  8), which is consistent with the results of 
the above public data analysis. However, the expression 
of AC016065.1 and AC096992.2 did not differ signifi-
cantly between tumor and normal samples.

Discussion
Cervical cancer is a cause of health concern that signifi-
cantly affects life expectancy and results in substantial treat-
ment costs. Although treatments such as radiation, surgery, 
immunotherapy, and chemotherapy are promising, drug 
resistance, recurrence, and metastasis pose significant barri-
ers to clinical management and patient survival [50]. There-
fore, identification of promising biomarkers, development 
of reliable prognostic models, and refinement of therapeu-
tic approaches are imperative. In this study, we identified 
549 differentially expressed mfrlncRNAs between cervical 
cancer and normal samples and two mfrlncRNA-related 
cervical cancer subtypes. Two subtypes exhibited distinct 
prognoses, immune characteristics, and biological mecha-
nisms. An mfrlncRNA signature was constructed. This 
signature allowed for the stratification of patients into risk 
groups that differed in terms of prognosis and treatment 
response.

Cervical cancer is a heterogeneous disease, resulting in 
diverse phenotypes and varying clinical outcomes. Given 
the variation in phenotypes and prognoses among cancer 
patients, personalized treatment plans can enhance patient 
outcomes, emphasizing the importance of tumor subtype 
identification in clinical practice. With advancements in 
sequencing technologies and related methodologies, molec-
ular subtyping of cervical cancer based on genetic factors 
has gained widespread attention, offering more compre-
hensive insights regarding tumor biology than traditional 
classification systems. lncRNAs have emerged as crucial 
non-coding gene markers and are increasingly being rec-
ognized for their involvement in the initiation, progression, 

and metastasis of various cancers, including cervical cancer 
[51, 52]. Ferroptosis has been implicated in numerous dis-
eases, including cervical cancer [53]. Among the various 
RNA modifications, m6A regulators have shown poten-
tial as prognostic biomarkers, with their expression, muta-
tion status, and RNA modification features being closely 
linked to patient survival [54]. We identified 23 differen-
tially expressed m6A genes and 417 differentially expressed 
ferroptosis-related genes. Correlation and intersection 
analyses identified 549 differentially expressed mfrlncRNAs. 
Based on mfrlncRNA expression, consensus cluster analysis 
categorized the cervical cancer samples into two clusters, 
with cluster 2 displaying a worse prognosis than cluster 1. 
These findings offer important insights regarding cervical 
cancer heterogeneity and its potential prognostic implica-
tions. Additionally, cluster 2 exhibited significantly higher 
ESTIMATE and stromal scores, as well as higher expres-
sion of immune checkpoint-related genes such as BTLA, 
TNFRSF4, and TNFRSF9. These results suggest that cluster 
2 may have a stronger immune response, potentially influ-
encing prognosis and immunotherapy response. Further-
more, we performed GESA to elucidate the differentially 
enriched pathways, including ribosomes, between the two 
subtypes. Ribosomes are critical for the synthesis of func-
tional proteins, and ribosome biogenesis is crucial for can-
cer metastasis and treatment resistance [55]. Therefore, we 
speculated that key pathways, such as ribosome biogenesis, 
may be responsible for the varying prognoses of patients 
with different mfrlncRNA subtypes.

Previous studies have developed prognostic signatures to 
predict outcomes in patients with cervical cancer based on 
lncRNAs, ferroptosis, m6A regulators, or combinations of 
these biomarkers [56–58]; however, an accurate and clini-
cally applicable prognostic signature specifically focusing on 
mfrlncRNAs for patients with cervical cancer remains to be 
established. To better predict patient prognosis and treat-
ment response, we constructed a prognostic signature based 
on six prognostic mfrlncRNAs: AC016065.1, AC096992.2, 
AC119427.1, AC133644.1, AL121944.1, and FOXD1_AS1. 
FOXD1_AS1 promotes the development of numerous can-
cers [59–61]. However, the role of other five mfrlncRNAs in 
cancer remains largely unknown. Nevertheless, our study 
confirmed the upregulation of AC119427.1, AC133644.1, 
AL121944.1, and FOXD1_AS1 in clinical cervical cancer 
tissues, indicating that these mfrlncRNAs may be involved 
in the development of cervical cancer. The potential role of 
these mfrlncRNAs as key contributors to cervical cancer 
development warrants further investigation. Furthermore, 

(See figure on previous page.)
Fig. 5 Construction and validation of the mfrlncRNA signature. (a) LASSO coefficient spectrum of the prognostic mfrlncRNAs and optimized lambda de-
termined in the LASSO regression model. (b) Forest plot of the mfrlncRNAs selected by the stepwise regression model in the training dataset. (c) Validation 
of the predictive performance of the prognostic signature based on the training dataset. (d) Validation of the predictive performance of the prognostic 
signature based on the validation dataset. (e) Validation of the predictive performance of the prognostic signature based on the entire dataset. (f) Analysis 
of the predictive performance of T, N, M stages based on the entire dataset
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our established mfrlncRNA signature demonstrated a 
strong predictive power for cervical cancer prognosis. 
Therefore, we propose that this mfrlncRNA signature could 
be a valuable prognostic tool, with these mfrlncRNAs acting 
as promising biomarkers for cervical cancer prognosis.

TIME is composed of various types of immune cells, and 
tumor-infiltrating immune cells are closely associated with 

cancer development and have a significant impact on the 
therapeutic and prognostic outcomes of antitumor inter-
ventions [62, 63]. This study evaluated the role of the mfrln-
cRNA signature in the TIME of cervical cancer and revealed 
that the signature correlated with multiple immune cell 
infiltrations and various immune regulators, especially HLA 
molecules, which are related to cervical cancer susceptibility 

Fig. 6 Prognostic value of RiskScore and construction of a nomogram. (a) Comparison of the risk scores across different clinical feature groups, including 
age, tumor grade, stage, TNM, and subtypes. (b) Univariate Cox regression analysis for screening prognostic factors. (c) Multivariate Cox regression analy-
sis for screening independent prognostic factors. (d) The constructed nomogram. (e) DCA curves for assessing nomogram performance. (f) Calibration 
curves for assessing nomogram performance. (g) Comparing the performance of the mfrlncRNA signature with various published prognostic signatures 
based on training, validation, and entire datasets
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[64]. HLA genes are vital regulators of immune recogni-
tion and presentation, and their expression is closely linked 
to immunological features of tumors and patient prognosis 
[65]. Additionally, we found that the MSI, IPS, and IFNG 

levels were dramatically higher in the low-risk group, indi-
cating that low-risk patients had a more active immunother-
apy response. Finally, drug sensitivity analysis demonstrated 
that low-risk patients exhibited greater sensitivity to several 

Fig. 7 Immune characteristics related to the mfrlncRNA signature and analysis of treatment response of the two risk groups (high risk group, n = 71; 
low risk group, n = 221). (a) Correlation between the mfrlncRNA signature and multiple immune cell infiltrations. (b) Correlation between the mfrlncRNA 
signature and various immune regulators. (c) Comparison of immunotherapy response indicators between the two risk groups. (d) The top three chemo-
therapeutic drugs, the sensitivities of which differed significantly between the risk groups. (e) Analysis of potential drug targets related to high-risk score. 
*p < 0.05, ** p < 0.01, and ***p < 0.001 compared to normal tissues
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drugs, such as imatinib. Overall, these data provide new 
insights that will be useful for drug screening and making 
treatment decisions for patients with cervical cancer.

This is the first study to characterize mfrlncRNA-related 
cervical cancer subtypes and develop a prognostic mfrln-
cRNA signature. This signature enables the stratification 
of patients into distinct risk groups, offering potential ben-
efits in terms of predicting prognosis and developing tai-
lored treatment approaches for patients with different risks. 
However, this study has several limitations. First, the clinical 
sample size for validation was small, which may reduce the 
statistical power of the findings. Second, we did not validate 
the prognostic value of the mfrlncRNA signature in a clini-
cal cohort. Additionally, because the mfrlncRNA signature 

is related to prognosis and treatment response in cervi-
cal cancer, incorporating its detection in blood serum—an 
approach that is non-invasive, cost-effective, and feasible—
could further enhance the clinical relevance of this study. 
More clinical trials are needed to confirm the practicality 
and accuracy of this model for predicting immunotherapy 
outcomes in patients with cervical cancer. Lastly, the regula-
tory mechanisms underlying these mfrlncRNAs in cervical 
cancer are yet to be investigated. In summary, further pro-
spective studies and foundational research are essential to 
improve our understanding and refine the findings of this 
study.

In conclusion, this study identified a panel of lncRNAs 
linked to both m6A regulators and ferroptosis-related genes 

Fig. 8 Validation of the expression of signature mfrlncRNAs in clinical samples (n = 10 each group). *p < 0.05 and **p < 0.01 compared to normal tissues
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and established a mfrlncRNA signature for patient strati-
fication. The mfrlncRNA signature demonstrated signifi-
cant prognostic potential and could predict the treatment 
response in patients with cervical cancer. These findings 
shed light on the molecular mechanisms that drive cervical 
cancer progression and offer a promising tool for develop-
ing personalized medicine, paving the way for more accu-
rate prognostic assessments and innovative therapeutic 
approaches in clinical practice.
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