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Abstract 

Background Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) are chronic hematological 
malignancies characterized by driver and nondriver mutations, leading to a deregulated immune system with aber-
rant cytokines and immune cells. Understanding the gene mutation landscape and immune state at various dis-
ease stages is crucial for guiding treatment decisions. While advanced techniques like single-cell RNA sequencing 
and mass cytometry provide valuable insights, their high costs and complexity limit clinical application. In contrast, 
bulk RNA sequencing (RNA-Seq) offers a cost-effective complementary approach for evaluating genetic mutations 
and immune profiles.

Methods Peripheral blood and bone marrow samples from treatment-naïve patients diagnosed with polycythemia 
vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF) were analyzed using RNA sequencing. 
Additionally, data from the microarray datasets [GSE26049, GSE2191] were included in this study. Bioinformatics meth-
ods were employed to interpret gene mutations and immune landscapes in MPN patients.

Results Our findings demonstrate the potential value of RNA-Seq in identifying gene mutations and characteriz-
ing the immune profile, including immune cell infiltration, cytokine profiles, and distinct immune-related pathways 
involved in the development of MPN.

Conclusion Bulk RNA-Seq is a feasible tool for routine clinical practice, providing comprehensive insights 
into the immune and genetic landscape of MPNs. This approach could enhance personalized treatment strategies 
and improve prognostic accuracy, ultimately contributing to better management of MPN patients.

Keywords Myeloproliferative neoplasms, Bulk RNA sequencing, Gene mutation, Immune landscape

Introduction
Classic myeloproliferative neoplasms (MPNs) are clonal 
hematopoietic stem cell disorders primarily driven by 
mutations such as JAK2V617F, MPLW515L/K, and cal-
reticulin, alongside nondriver mutations like EZH2, 
ASXL1, RAS, SRSF2, TP53, and U2AF1 [1, 2]. These 
mutations significantly influence disease progression 
and development. Clinically, MPNs manifest through 
constitutional symptoms, including fatigue, abdominal 
discomfort, itching, bone pain, night sweats, and weight 
loss [3]. Routine blood tests often reveal elevated blood 
cell counts, while bone marrow examinations confirm 
malignant hematopoietic stem cell proliferation [4]. 
Major complications include bleeding and thrombosis, 
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contributing to high morbidity and mortality rates [5]. 
A hallmark of MPNs is the chronic inflammatory state 
characterized by immune dysregulation, abnormal 
immune cells, and aberrant cytokines [6, 7]. Under-
standing the interplay between gene mutations and the 
immune landscape is crucial for guiding treatment deci-
sions and adapting therapies throughout the disease 
course [8, 9].

Dysregulated cytokines and immune cells play a pivotal 
role in the pathogenesis and progression of MPNs, par-
ticularly PMF. Key cytokines implicated include IL-1β, 
TNF-α, IL-6, IL-8, VEGF, PDGF, IFNs, and TGF-β [10–
15], with studies highlighting the therapeutic potential of 
targeting IL-1β in JAK2-mutated models [16]. Immune 
cell subsets, such as T-cells (CD4, CD8, Treg, Th1, Th17), 
NK cells, and myeloid cells (MDSCs, DCs, monocytes, 
macrophages), are notably dysregulated in MPNs [17–
23]. Monocytosis, especially intermediate and non-classi-
cal monocytes, is a critical prognostic factor in PMF [24, 
25], with increased TNF-α secretion and angiogenic gene 
expression observed in Tie2 + monocytes [26, 27]. Mac-
rophages, particularly CD68-positive subsets, are signifi-
cantly elevated in PMF compared to CML, PV, and ET, 
suggesting their role in bone marrow fibrosis [28]. Tran-
scriptomic analyses further underscore the importance of 
monocytes and macrophages in MPN pathogenesis, pro-
viding insights into potential therapeutic targets [29].

Advanced technologies such as single-cell transcrip-
tomics and mass cytometry have significantly enhanced 
our understanding of the immune landscape in MPNs 
[30, 31]. However, these methods are often prohibitively 
expensive and require specialized expertise, making them 
difficult to implement in routine clinical practice. Cur-
rently, flow cytometry is widely used to assess the pheno-
typic and functional characteristics of a limited range of 
immune cell types, but it lacks comprehensiveness [32]. 
Sanger sequencing and Next-generation DNA sequenc-
ing are commonly employed to investigate gene muta-
tions associated with MPNs, but they typically focus on 
a limited number of genes due to cost constraints. In 
contrast, bulk RNA sequencing (RNA-Seq) has emerged 
as a preferred method for comprehensive transcriptome 
analysis at a relatively low cost. RNA-Seq not only facili-
tates the discovery of gene expression differences but 
also offers valuable insights into the immune landscape 
through bioinformatics tools like CIBERSORTx, which 
estimates the relative abundance of immune cell types 
based on gene expression data [33–35]. Recent studies 
have demonstrated the accuracy of RNA-Seq in inter-
preting immune cell subsets compared to protein expres-
sion evaluated by mass cytometry [36]. This suggests that 
bulk RNA-Seq can effectively characterize the immune 
and gene mutation landscape throughout the disease 

course, including before treatment, after treatment, and 
during disease progression. While JAK2 inhibitors have 
been shown to improve the prognosis for many MPN 
patients, some individuals do not respond favorably due 
to severe side effects [37]. Therefore, it is crucial to tai-
lor treatment strategies based on the specific immune 
and gene mutation profiles of each patient. For certain 
patients, alternative therapies such as IFN-α or other 
immune-modulatory drugs may be more appropriate.

This study enrolled treatment-naïve patients diagnosed 
with PV, ET, and PMF. By analyzing peripheral blood 
(PB) and bone marrow (BM) samples, the researchers 
aimed to identify gene mutations and characterize the 
immune landscape using advanced bioinformatics tools, 
such as CIBERSORTx for immune cell infiltration analy-
sis. It emphasizes the feasibility of implementing bulk 
RNA-Seq in routine clinical practice for MPNs, providing 
valuable insights into the gene mutation landscape and 
immune characteristics of patients. This approach could 
enhance personalized treatment strategies and improve 
prognostic accuracy, ultimately contributing to better 
management of MPNs. The findings advocate for further 
validation with larger cohorts and integration of RNA-
Seq data into clinical workflows to optimize patient care.

Materials and methods
Patient samples
Three PV patients, 23 ET patients, and 8 PMF patients 
with confirmed diagnoses without treatment were 
enrolled in this study. They were treated at the Zhongnan 
Hospital of Wuhan University between July 1, 2022, and 
June 30, 2023. Peripheral blood (PB) routine, bone mar-
row (BM) aspiration and bone biopsy were performed for 
routine laboratory tests; the residual samples after rou-
tine examination of gene mutation and flow cytometry 
analysis were used further for RNA extraction and RNA 
sequencing. This study was approved by the Ethics Com-
mittee at Zhongnan Hospital of Wuhan University. All 
methods and procedures associated with this study were 
conducted following the Good Clinical Practice guide-
lines and the ethical principles of the Declaration of Hel-
sinki, as well as the local laws.

RNA‑sequencing library
The first strand of cDNA was synthesized via the 
M-MULV reverse transcriptase system. Endogenous 
RNAs are degraded by RNaseH, and the second strand 
is synthesized by DNA polymerase I with dNTPs. After 
purification, the double-stranded cDNA was repaired at 
the end, followed by the addition of a tail and the con-
nection of sequencing adapters. AMPure XP beads were 
used to screen cDNAs. PCR amplification was per-
formed, and the PCR products of AMPure XP beads 
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were again used to purify each cDNA. The shot-gun 
libraries were sequenced on an Illumina NovaSeq 6000, 
and paired-end reads of 150 bp were generated.

Comprehensive analysis of immune characteristics
To examine immune cell infiltration in the bone marrow, 
we utilized CIBERSORTx (https:// ciber sortx. stanf ord. 
edu) [33], as described previously, to quantify the infiltra-
tion of 22 immune cells and provide an estimation of the 
abundances of various cell types in a mixed cell popula-
tion via gene expression data.

Enrichment analysis and correlation analysis
Gene Ontology (GO), Kyoto Encyclopedia of Genes and 
Genomes (KEGG), and gene set enrichment analysis 
(GSEA) were implemented via the clusterProfiler pack-
age in R v4.3.2. GO terms with adjusted P values less than 
0.05 were considered significantly enriched in the DEGs. 
Correlation analysis was implemented with the R pack-
ages psych and corrplot.

Weighted gene co‐expression network analysis (WGCNA)
WGCNA is a systematic biological approach that ena-
bles the characterization of gene association patterns 
between different samples, with the capacity to identify 
highly covarying gene sets. In our study, we employed 
the R package WGCNA to perform WGCNA on MPN 
bulk RNA-seq data and a microarray dataset. Initially, a 
suitable soft threshold β was calculated to meet the cri-
teria for constructing a scale-free network. We then 
transformed the weighted adjacency matrix into a topo-
logical overlap matrix (TOM) and calculated the dis-
similarity (dissTOM). To perform gene clustering and 
module identification, we applied the dynamic tree-cut 
approach. Finally, the modules highly correlated with ET 
and PMF were identified for subsequent analysis. The R 
package “linkET” was used to perform Mantel test analy-
sis between the MPN subtypes (PV, ET, PMF) and gene 
sets in WGCNA.

Gene mutation analysis
In this study, we used spliced transcript alignment to 
a reference (STAR) and the Genome Analysis Toolkit 
(GATK) to perform gene mutation analysis. The detailed 
analysis process is described on GATK’s official web-
site (https:// gatk. broad insti tute. org/ hc/ enus/ categ ories/ 
36000 23023 12). To investigate the mutations associated 
with MPNs, we utilized the R package “maftools” to gen-
erate waterfall plots and a Lollipop chart, which displays 
mutation landscapes in MPN patients.

Statistical analysis
Trimmomatic and fastp were used for the preprocess-
ing of the raw RNA-Seq reads. Clean reads were mapped 
to human reference genome sequences (GRCh38) via 
HISAT2 with the GRCh38/V34 annotation file in Gen-
code (https:// www. genco degen es. org/ human/). The read 
count matrix was obtained by using the feature count. 
The rank-in strategy described previously [38] (http:// 
www. badd- cao. net/ rank- in/ index. html) was used to 
remove the batch effects between the bulk RNA-Seq data 
and the microarray dataset. PCA plots were subsequently 
generated with the Factoextra package and FactoMineR 
package [39, 40]. The limma package in R v4.3.2 was used 
to process the expression matrix and identify the DEGs 
among BMs (PV, ET, and PMF), following the standard 
analysis process [|log (FC)|> 2 and adjusted P value < 0.05, 
|log (FC)|> 4 for significant DEGs]. Heatmaps were gen-
erated with the pheatmap package, and volcano plots 
were generated with the ggplot2 and ggVolcano pack-
ages. Protein‒protein interaction (PPI) analysis was 
performed via the Search Tool for the Retrieval of Inter-
acting Genes/Proteins (STRING) database (https:// cn. 
string- db. org) and Cytoscape software.

Data access
The data generated in this paper have been deposited in 
the OMIX, China National Center for Bioinformation / 
Beijing Institute of Genomics, Chinese Academy of Sci-
ences under the accession no. OMIX008313 (https:// 
ngdc. cncb. ac. cn/ omix/ view/ OMIX0 08313). The micro-
array datasets [GSE26049, GSE2191] of patients with 
MPN and HCs [PV_PB (n = 41), ET_PB (n = 19), PMF_PB 
(n = 9), HC_PB (n = 21), HC_BM (n = 4)] from the GEO 
database were retrieved.

Results
Patient characteristics
Five peripheral blood (PB) and 30 bone marrow (BM) 
samples from 34 patients without treatment, including 
3 PV patients, 23 ET patients, and 8 PMF patients, were 
used for bulk RNA-Seq. The baseline features of these 
patients are detailed in Table 1. Three patients were diag-
nosed with triple  negative;  one patient presented with 
CALR mutation; and the remaining patients carried the 
JAK2V617F mutation. Among these treatment-naïve 
patients, blood test results were missing for 6 outpatients. 
Leucocytosis (leukocytes ≥10×109/L) was observed 
in 15/28 patients, and elevated lactate dehydrogenase 
(LDH) levels were observed in 14/21 patients. Addition-
ally, 4 ET patients whose Next-generation DNA Sequenc-
ing results revealed gene mutations, such as JAK2V617F, 
ASXL1, TET2, EPPK1, and CSMD1, are shown in Supple-
mentary Table S1.

https://cibersortx.stanford.edu
https://cibersortx.stanford.edu
https://gatk.broadinstitute.org/hc/enus/categories/360002302312
https://gatk.broadinstitute.org/hc/enus/categories/360002302312
https://www.gencodegenes.org/human/
http://www.badd-cao.net/rank-in/index.html
http://www.badd-cao.net/rank-in/index.html
https://cn.string-db.org
https://cn.string-db.org
https://ngdc.cncb.ac.cn/omix/view/OMIX008313
https://ngdc.cncb.ac.cn/omix/view/OMIX008313
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Gene mutations in MPNs evaluated with RNA‑Seq data
Gene mutations were identified in PV, ET, and PMF 
according to mutation type, mutation variation clas-
sification, and mutation burden (Supplementary Fig. 
S1). Frequent driver gene mutations and nondriver 
mutations, such as those in TP53, JAK2, ASXL1, EZH2, 
EPPK1, and MPL, are shown in Fig.  1. JAK2 muta-
tions were detected in all 3 PV patients. Moreover, two 
patients presented with multihit JAK2 mutations, as 
indicated in black  (Fig. 1A). For 19 ET patients, JAK2 
mutations were detected in 13/19 patients, ASXL1 
mutations were detected in 4/19 patients, and EPPK 
mutations were detected in 3/19 patients (Fig.  1C). 
Moreover, NGS results from 4 ET patients confirmed 
EPPK mutations or ASXL1, which was also detected via 
the transcriptome (Supplementary Table  S1). Among 
the 8 PMF patients, 7 presented with JAK2 mutations, 
6 presented with ASXL1 mutations, and 1 patient pre-
sented with an EPPK1 mutation (Fig.  1B). TP53 gene 
mutations, specifically p.P33R (25/30), p.R205P (1/30), 
and p.R141H (1/30), were identified in MPNs. Analy-
sis of their clinical significance using the IARC TP53 
Database (http:// p53. iarc. fr) revealed that p.R205P and 
p.R141H are pathogenic, while p.P33R is classified as 
benign. Missense mutation and frame-shift-ins muta-
tion were the major types of these genes in the MPNs. 
Mutation loci were also identified, as demonstrated 
with the Lollipop chart in Fig. 1D, for TP53 and JAK2, 
and most mutations tended to converge at several loci. 
More examples of gene mutations, such as those in 
TP53, JAK2, ASXL1, and EPPK1, are shown in Supple-
mentary Fig. S2A, S2B, and S2C for PV, ET, and PMF, 
respectively.

Differential immune gene expression and prominent 
immune pathways implicated in MPNs
Thirty-five samples from 34 patients were sequenced, 
including 5  PB samples and 30 BM samples (3 PV, 19 
ET, and 8 PMF samples). Since very few PB samples 
were included in our cohort, 90  PB samples from data-
sets (GSE26049), including 21 healthy controls, 41 PV, 
19 ET, and 9 PMF samples, were used for gene differen-
tial expression analysis, and another 4 microarray data-
sets of healthy BM controls from GSE2191 were also 
included in the analysis. Therefore, a total of 129 sam-
ples were included in this study. The whole sample was 
well differentiated by cluster analysis (Supplementary 
Fig. S3A) after removing the batch effect via the rank-in 
method. The PCA results revealed that the gene expres-
sion features of the three MPN subtypes from PB and BM 
could be distinguished from those from PB and BM in 
the healthy control group (Supplementary Fig. S3B), and 
the features from PB were also very different from those 

from BM. As indicated in Fig. 2A, ET and PMF presented 
some common gene expression features because there 
are overlapping features between the later stage of ET 
and the early stage of PMF; even in the clinic, it is difficult 
to make a differential diagnosis between ET and overt 
PMF. Compared with those of HCs, each MPN subtype 
presented approximately 700–800 significantly differen-
tially expressed genes (DEGs); among these genes, 620 
DEGs were common to PV, ET, and PMF (Fig. 2B), which 
is likely related to MPNs. The immune-related genes 
among the DEGs are indicated in the heatmap (Fig. 2C). 
These immune-related genes were subsequently sub-
jected to Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis, and the results 
suggested that the common pathways of PV, ET and PMF, 
such as the NF-Kappa B signaling pathway, Th 17 cell 
differentiation, Th1 and Th2 cell differentiation, NK cell-
mediated cytotoxicity, MAPK, cytokine‒cytokine recep-
tor interaction and antigen processing and presentation, 
are potentially involved in MPN development. There 
were also several differential pathways among these three 
entities, such as the IL17 and B-cell receptor signaling 
pathways, which were enriched only in the PV, the Toll-
like receptor signaling pathway was enriched more in 
the PV and ET, and the Ras and Rap1 signaling pathways 
were enriched only in the PMF (Fig.  2D). There were 
unique immune-related features for each MPN subtype, 
which was confirmed by KEGG and GO pathway analysis 
(Supplementary Fig. S4).

MPN‑related immune gene traits evaluated 
by transcription
To explore the associations between immune traits and 
disease subtypes, WGCNA was used to identify modules 
of highly correlated genes and to investigate the relation-
ships between these modules and MPN subtypes. All 
these genes were separated into 43 different gene mod-
ules by hierarchical clustering (Supplementary Fig. S5), 
and each module is presented in an individual color, as 
indicated in Fig.  3A. On the basis of correlation analy-
sis (Supplementary Fig. S6), several disease-related trait 
modules associated with PV, ET, and PMF with differ-
ent grades of correlations were identified. The modules 
therein, which presented a high correlation with both 
PMF and ET, were labeled module complex 1 (MC1: red 
box) and module complex 2 (MC2: blue box) in Fig. 3A. 
MC1 was positively correlated with PMF and negatively 
correlated with ET. MC2, in contrast, was negatively 
correlated with PMF and positively correlated with ET. 
Furthermore, the Mantel test results (Fig.  3B) revealed 
that all the modules in MC1 and MC2 were strongly cor-
related with the PMF and ET subtypes, and most of the 

http://p53.iarc.fr
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modules presented a certain degree of correlation with 
PV.

Further analysis was performed with genes included 
in MC1 and MC2 to explore PMF and ET particular 
immune traits. A heatmap of immune genes, including 
those in MC1, is presented in Fig.  4A. GO enrichment 
analysis identified five groups of genes that were poten-
tially related to disease: positive regulation of cytokine 
production, chemotaxis, taxis, response to molecules of 
bacterial origin, and cell killing (Fig. 4B). Important sign-
aling pathways, including the cytokine‒cytokine receptor 
interaction, acute myeloid leukemia, Toll‒like receptor, 
and TNF signaling pathways, were enriched via KEGG 
analysis (Fig. 4C). Gene correlation analysis revealed cor-
relations among the 46 top genes, such as IL4R, IL17RB, 
IFNAR1, CXCL10, and CXCL16 (Fig. 4D). To uncover the 
interaction between proteins encoded by these 46 genes, 

the STRING database was utilized to perform the analy-
sis. Ten hub genes of MC1 genes were obtained via the 
cytoHubba plugin from the PPI network (Fig. 4E): MPO, 
ICAM1, RENT, CTSG, RNASE3, RNASE2, LTF, LCN2, 
ELANE, and CAMP.

Similar analysis procedures were performed with genes 
in MC2. The heatmap of immune gene expression in the 
three MPN subtypes presented different colors, which 
reflected the relative expression of each gene (Fig.  5A). 
GO enrichment analysis revealed that the above genes 
are involved mainly in immune functions, such as leu-
kocyte proliferation, including lymphocyte and mono-
nuclear cell proliferation; the regulation of leukocyte 
proliferation; and the extrinsic apoptotic signaling path-
way (Fig. 5B). Furthermore, pathways related to cytokine‒
cytokine interactions, the PI3K‒Akt signaling pathway, 
acute myeloid leukemia, and Th 17 cell differentiation 

Fig. 1 Gene mutations identified by RNA-seq in MPNs. A, B, C Examples of mutation types for several genes, such as TP53, JAK2, ASXL1, MPL, EZH2, 
and EPPK1, in PV_BM, PMF_BM, and ET_BM, respectively. D Lollipop chart of the mutation loci for TP53 and JAK2 in ET
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were enriched via KEGG analysis (Fig.  5C). Correlation 
analysis also revealed good correlations among these 
genes. PPI network analysis revealed the top 10 hub 
genes: CD48, KRAS, IL2RA, CD27, FAS, IL6ST, MAVS, 
CYBB, NFKB1, and PAK1.

Immune cell compositions and cytokine gene expression 
levels in MPNs evaluated by transcriptional analysis
CIBRSORTx was used to delineate the transcriptome 
matrix and translate it into the abundance of immune 
cell subsets in the bone marrow and peripheral blood 
from different groups. As shown in Fig.  6, a compre-
hensive analysis of immune cell subsets, including T 
cells, B cells, monocytes, NK cells, Treg cells, neutro-
phils, and other cells, could be performed with gene 
expression data. Compared with those in healthy BM, 
the frequencies of naïve B cells, naïve CD4 + T cells, 
CD4 + Treg cells, CD8 + T cells, and monocytes were 
lower. Moreover, a significantly increased frequency 
of memory resting CD4 T cells, resting NK cells, 

eosinophils, and neutrophils was observed in the three 
MPN subtypes (Fig.  6). In PB, a decreased frequency 
of naïve B cells and an increased frequency of eosino-
phils were significantly different from those in healthy 
PB. However, in contrast to that observed in the BM, 
a significantly decreased frequency of resting memory 
CD4 T cells was identified. A slight increase in the fre-
quency of monocytes was observed in PMF compared 
with PV and ET, but this difference was not significant 
(Supplementary Fig. S7).

Dysregulated cytokines are a major feature of MPN. 
Major immune cytokine genes, such as IL-4, IL-6, IL-2, 
IFNG, CSF1R, EPO, and CCR1, were included among 
the immune genes, as demonstrated with heatmaps 
(Fig.  2C). Cytokines can be divided into several groups, 
such as the interleukin family, colony-stimulating factors, 
growth factors, and tumor necrosis factors. Each group 
of cytokine-related gene expression levels could also be 
explored as indicated in Supplementary Fig. S8.

Fig. 2 Immune genes and pathways in MPNs. A PCA diagram after removing the batch effect for all samples from PV_BM, ET_BM, and PMF_
BM. B Venn diagram of DEGs between each MPN subtype and HCs. C Heatmap of significant DEGs between each MPN subtype and HCs. D 
Immune-related pathways identified via KEGG analysis in each MPN subtype compared with HCs. The size of the dots represents the -log10 
(adjusted p value)
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Discussion
In summary, this study aimed to explore the potential 
of bulk RNA-Seq in identifying gene mutations and the 
immune landscape in MPNs. Our results highlight the 
feasibility of incorporating bulk RNA-Seq into routine 
clinical practice, providing comprehensive insights into 
gene mutations and immune pathways implicated in 
MPNs. However, further validation with larger sample 
sizes and in-depth analyses of the correlations between 
gene mutations and immune traits is needed.

Previous research utilizing RNA microarrays and 
chips on PB and BM samples has demonstrated dif-
ferential gene expression in MPNs, underlining the 
importance of RNA-Seq for identifying MPN-related 
genes and pathways [41–43]. Transcriptomic analyses 
of specific cell types such as monocytes, macrophages, 
granulocytes, platelets, and CD34 + cells have revealed 
mechanisms involved in MPN development [29, 44–47]. 
Additionally, detailed studies using single-cell RNA-Seq 
of CD34 + hematopoietic stem cells have shed light on 
their role in MPN initiation [48–51]. Collectively, these 
findings suggest that the transcriptome of MPNs may 
clarify underlying mechanisms of disease progression.

Bulk RNA-Seq can effectively detect various gene 
mutations including type, classification, burden, and 
loci offering valuable insights into the mutation land-
scape of MPN patients [34]. Its high performance and 
low cost make bulk RNA-Seq an attractive complemen-
tary approach to current Sanger DNA sequencing for 
investigating gene mutations, as Sanger sequencing typ-
ically focuses on hotspot regions of genes rather than 
analyzing the entire gene. For instance, in our cohort, 
7 out of 8 PMF patients had ASXL1 mutations, which 
are often overlooked in routine clinical practice but are 
critical for prognosis. ASXL1 mutations promote fibro-
sis and lead to poor outcomes in PMF patients [52, 53]. 
Furthermore, identifying multiple hit genes through 
bulk RNA-Seq may elucidate the limited efficacy of 
JAK2 inhibitors in certain patients, making it possible to 
construct a detailed gene mutation landscape for MPNs 
in clinical settings. However, the gene mutations identi-
fied through RNA-Seq require further confirmation by 
DNA sequencing, as these mutations are predominantly 
single nucleotide polymorphisms (SNPs) that may not 
necessarily be pathogenic. For example, the frequency 
of TP53 mutations was found to be significantly higher 

Fig. 3 Immune gene traits associated with MPNs. A WGCNA of gene expression; the gene modules in the red box are labeled MC1, and the gene 
modules in the blue box are labeled MC2. B Mantel test analysis between the MPN subtypes (PV, ET, PMF) and gene modules in MC1 and MC2. 
The color of the line reflects the P value, and the thickness of the line reflects the correlation r value. The color of the square reflects whether there 
is a positive or negative correlation between two modules; red indicates a positive correlation, and blue indicates a negative correlation



Page 9 of 13Li et al. BMC Cancer          (2025) 25:746  

in transcriptional analysis compared to the 16.1% (less 
than 25%) reported in studies using DNA sequenc-
ing [54, 55]. After cross-referencing these mutations 
with TP53 databases, only two patients were found to 
carry TP53 mutations of pathogenic significance, rep-
resenting a frequency of 6.7% (2/30) [56]. These muta-
tions identified through RNA-seq should be carefully 
interpreted by assessing their clinical significance using 
databases such as COSMIC or ClinVar to confirm their 
specificity. Given that current clinical DNA sequencing 
primarily targets hotspot regions of genes, which may 
miss certain mutations, the value of RNA-seq in identi-
fying gene mutations should be emphasized. RNA-seq 
is particularly valuable for detecting splicing variants 

and fusion genes, which are often overlooked in tradi-
tional DNA sequencing.

Considering MPNs are chronic inflammatory dis-
eases with dysregulated immune systems, monitoring 
the immune state is crucial throughout disease progres-
sion. Currently, flow cytometry and ELISA kits evaluate 
immune cell subsets and cytokine levels, respectively, but 
these methods provide limited insights. While advanced 
techniques like mass cytometry and single-cell RNA-Seq 
are useful, their high costs and accessibility issues hinder 
widespread use. Thus, Bulk RNA-seq offers several key 
advantages in studying the immune landscape of MPNs. 
First, it provides comprehensive transcriptome coverage, 
capturing a global view of gene expression that includes 
both immune and non-immune components. This allows 

Fig. 4 Features of immune genes included in MC1. A Heatmaps of immune genes in MC1. B GO enrichment analysis of immune genes in MC1. 
C Immune-related pathways from KEGG analysis of immune genes in MC1. D Correlation analysis of immune genes in MC1; red indicates 
positive, and blue indicates negative. A dark color represents a strong correlation; a light color represents a weak correlation. E Top 10 hub genes 
from the PPI network analysis for the genes included in MC1. Nodes denote encoded proteins, and edges denote interactions between encoded 
proteins. The color represents the scores ranked by the MCC methods. A deeper color denotes more important genes with higher scores
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for the quantification of cytokines, chemokines, and 
other immune-related genes, revealing the immune and 
inflammatory status of the MPNs [57]. Second, compu-
tational deconvolution tools like CIBERSORT enable the 
estimation of immune and stromal cell proportions, facil-
itating the characterization of immune cell infiltration, 
such as T cells, macrophages, and dendritic cells [58]. 
Third, it is cost-effective and scalable, making it suitable 
for tracking systematically changes in immune signatures, 

including analyses at different time points before and 
after treatment, thereby better detecting changes in the 
body’s immune status and treatment responses.

Baseline immune features can guide personalized 
therapies, such as IFN therapy for active IFN signaling 
or JAK2/NF-κB inhibitors for hyperactive JAK-STAT/
NF-κB pathways. Dynamic RNA-Seq monitoring at vari-
ous time points enables the evaluation of therapeutic 

Fig. 5 Features of immune genes included in MC2. A Heatmaps of immune genes in MC2. B GO enrichment analysis of immune genes in MC2. 
C Immune-related pathways from KEGG analysis of immune genes in MC2. D Correlation analysis of immune genes in MC2; red indicates 
positive, and blue indicates negative. A dark color represents a strong correlation; a light color represents a weak correlation. E Top 10 hub genes 
from the PPI network analysis for the genes included in MC2. Nodes denote encoded proteins, and edges denote interactions between encoded 
proteins. The color represents the scores ranked by the MCC methods. A deeper color denotes more important genes with higher scores
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efficacy and the tailoring of interventions based on 
immune variations. Importantly, for patients on long-
term JAK2 inhibitor therapy, RNA-Seq can detect early 
immune suppression, facilitating timely switches to alter-
native therapies to restore immune function and reduce 
infection risks. This precision approach enhances patient 
safety and optimizes therapeutic outcomes by aligning 
treatments with individual immune dynamics.

In conclusion, the systematic evaluation of immune 
landscape changes and gene mutation variations 
throughout the entire disease cycle is crucial in manag-
ing MPNs. Bulk RNA-Seq offers significant advantages 
for monitoring the evolution of MPNs by simultaneously 
providing data on gene mutations and immune land-
scape variations at a low cost. It could support person-
alized and precision medicine, ultimately enhancing 
the management of MPNs and improving patient out-
comes. Its implementation in clinical settings is highly 
feasible, requiring minimal sample input and offering an 
affordable cost. However, RNA-Seq has notable limita-
tions. First, it measures gene expression and functional 
insights, which may not always align with protein expres-
sion and function. Second, accurate interpretation of 
RNA-Seq data requires expertise in genetic, immunol-
ogy and bioinformatics to avoid overinterpretation or 
misleading conclusions. Therefore, validation with large 

clinical samples and high-dimensional technologies such 
as mass cytometry and single-cell sequencing is essential 
to ensure the accuracy of transcriptome interpretations. 
Integrating matched data into an artificial intelligence 
learning system could further enhance the accuracy of 
interpreting gene mutations and immune landscapes 
derived from bulk RNA-Seq. Additionally, developing an 
online tool for interpreting raw transcriptome data would 
be beneficial. With advancements in translational medi-
cine and bioinformatics, bulk RNA-Seq has the potential 
to deliver more precise genetic and immune insights for 
MPN patients, positioning it as a valuable complemen-
tary tool alongside current approaches in routine clinical 
practice.
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Fig. 6 Immune cell subsets evaluated with CIBERSORTx for PV_BM, ET_BM, PMF_BM, and HC_BM. (* indicates P ≤ 0.05; ** indicates P ≤ 0.01; *** 
indicates P ≤ 0.001; ns, no significance)
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TP53, JAK2, ASXL1, and EPPK1 in ET. (C) Lollipop chart of the mutation loci 
of TP53, JAK2, ASXL1, and EPPK1 in PMF.
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between MPN and healthy control samples. (A) The gene cluster for differ-
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5 PB samples, Platform 2 included 91 samples, and Platform 3 included 
4 healthy BM samples from another dataset. Each color represents one 
group of samples. (B) PCA diagram after removing the batch effect for all 
the samples described previously, including MPN_BM, HC_BM, MPN_PB, 
and HC_PB.
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of immune genes with differential expression between each subtype 
of MPN. (A) Differential immune pathways identified by KEGG analysis 
between ET_BM and PMF_BM; ET_BM and PV_BM; PMF_BM and PV_BM. 
(B) Comparison of major immune functions identified by GO analysis 
between ET_BM and PMF_BM; ET_BM and PV_BM; PMF_BM and PV_BM. 
The size of the dots represents the number of genes. The color of the dots 
denotes the adjusted p value.

Supplementary Material 5: Supplementary Fig. S5. WGCNA showing the 
co-expression module in MPNs. (A) Dendrogram of the gene clusters. (B) 
Heatmaps of selected immune genes.

Supplementary Material 6: Supplementary Fig. S6. Correlation analysis 
between immune gene modules and MPN subtypes.

Supplementary Material 7: Supplementary Fig. S7. Immune cell subsets 
evaluated with CIBERSORTx for PV_ PB, ET_ PB, PMF_ PB, and HC_ PB. (* 
indicates P ≤ 0.05; ** indicates P ≤ 0.01; *** indicates P ≤ 0.001; ns, no 
significance).

Supplementary Material 8: Supplementary Fig. S8. Heatmaps of cytokine 
gene expression in MPN subtypes. (A) Heatmaps of major IL family gene 
expression. (B) Heatmaps of major chemokine family gene expression. (C) 
Heatmaps of major colony-stimulating factor gene expression. (D) Heat-
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