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Abstract 

Cervical cancer is a significant global health issue affecting women worldwide, necessitating prompt detection 
and effective management. According to the World Health Organization (WHO), approximately 660,000 new cases 
of cervical cancer and 350,000 deaths were reported globally in 2022, with the majority occurring in low- and mid-
dle-income countries. These figures emphasize the critical need for effective prevention, early detection, and diag-
nostic strategies. Recent advancements in machine learning (ML) and deep learning (DL) have greatly enhanced 
the accuracy of cervical cancer cell classification and diagnosis in manual screening. However, traditional predictive 
approaches often lack interpretability, which is critical for building explainable AI systems in medicine. Integrating 
causal reasoning, causal inference, and causal discovery into diagnostic frameworks addresses these challenges 
by uncovering latent causal relationships rather than relying solely on observational correlations. This ensures greater 
consistency, comprehensibility, and transparency in medical decision-making. 

This study introduces CausalCervixNet, a Convolutional Neural Network with Causal Insight (CICNN) tailored for cervi-
cal cancer cell classification. By leveraging causality-based methodologies, CausalCervixNet uncovers hidden causal 
factors in cervical cell images, enhancing both diagnostic accuracy and efficiency. The approach was validated 
on three datasets: SIPaKMeD, Herlev, and our self-collected ShUCSEIT (Shiraz University-Computer Science, Engineer-
ing, and Information Technology) dataset, containing detailed cervical cell cytopathology images. The proposed 
framework achieved classification accuracies of 99.14%, 97.31%, and 99.09% on the SIPaKMeD, Herlev, and ShUCSEIT 
datasets, respectively. 

These results highlight the importance of integrating causal discovery, causal reasoning, and causal inference 
into diagnostic workflows. By merging causal perspectives with advanced DL models, this research offers an inter-
pretable, reliable, and efficient framework for cervical cancer diagnosis, contributing to improved patient outcomes 
and advancements in cervical cancer treatment.
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Introduction
Cervical cancer remains a leading cause of morbidity 
and mortality among women worldwide, ranking as the 
fourth most prevalent cancer among females [1]. Human 
papillomavirus (HPV) infection accounts for approxi-
mately 90% of cases [2], with 604,000 new diagnoses and 
342,000 deaths reported globally in 2020 alone [3]. Effec-
tive screening programs, including routine Pap smears 
and HPV vaccinations, are crucial in reducing disease 
burden and improving survival rates [4, 5].

Advancements in computational methodologies 
have significantly enhanced cervical cancer screening, 
particularly through automated classification of cyto-
logical images [6]. Traditional machine learning (ML) 
approaches have demonstrated considerable efficacy in 
recognizing cellular abnormalities; however, they pre-
dominantly rely on correlation-based feature learning, 
which assumes that training and test data share similar 
statistical distributions [7, 8]. This assumption often fails 
in real-world clinical settings where data variability and 
patient heterogeneity challenge model generalizability.

The limitations of correlation-driven ML models, par-
ticularly their lack of interpretability and susceptibility 
to bias, pose significant barriers to clinical adoption [9]. 
While these models excel at pattern recognition, they 
do not inherently capture causal relationships between 
pathological features and clinical outcomes. As Pearl and 
Mackenzie [10] emphasized, ’correlation does not imply 
causation,’ underscoring the necessity of transitioning 
toward causality-based methodologies. Medical deci-
sion-making demands more than associative evidence; it 
requires an understanding of underlying causal mecha-
nisms to improve reliability and trust in AI-driven diag-
nostics [11, 12].

Causal discovery has emerged as a pivotal area of 
research, building on foundational work by Fisher (1970) 
and Granger (1969) and further refined by Pearl (2011), 
who formalized a structured framework for causal infer-
ence. These advancements have facilitated the develop-
ment of methods capable of extracting cause-and-effect 
relationships from observational data, particularly in 
contexts where controlled experimentation is impracti-
cal or ethically constrained [13, 14]. By integrating causal 
inference techniques into AI-driven medical imaging, 
researchers aim to improve model robustness, enhance 
diagnostic accuracy, and provide interpretable insights 
critical for clinical decision-making.

This study introduces CausalCervixNet, an advanced 
deep learning framework that incorporates causal infer-
ence techniques for more accurate classification of cervi-
cal cytology images. By leveraging a structured approach 
to causal reasoning, CausalCervixNet transcends the lim-
itations of conventional ML models, offering enhanced 
interpretability and diagnostic precision. To validate its 
efficacy, the model was evaluated on three diverse data-
sets—SIPaKMeD, Herlev, and ShUCSEIT—each con-
taining high-resolution cervical cytopathology images 
representative of varied clinical conditions.

A critical component of this approach is training deep 
learning models on both normal and malignant cell 
images to facilitate accurate differentiation. This ensures 
that the model captures salient morphological features, 
mitigates bias, and generalizes effectively to unseen clini-
cal data, ultimately enhancing its applicability in real-
world diagnostic settings.

The key contributions of this study are:

1. Advancing causality-driven AI in medical imaging by 
introducing a novel framework tailored for cervical 
cytology classification.

2. Overcoming the limitations of conventional ML 
models by integrating causal inference methodolo-
gies that enhance interpretability and robustness.

3. Developing a deep learning model that identifies and 
leverages causal factors influencing classification out-
comes, thereby improving diagnostic reliability.

4. Providing a high-resolution, multi-source cervical 
cytopathology dataset, expanding opportunities for 
future research in AI-driven cancer diagnostics.

5. Demonstrating superior classification performance, 
particularly on the SIPaKMeD dataset, highlighting 
the efficacy of causal modeling in improving diagnos-
tic accuracy.

The structure of this paper is as follows: the Litera-
ture Review examines conventional classification tech-
niques and recent advancements in causal inference. The 
Background contextualizes key theoretical principles. 
The Methodology outlines the experimental design and 
implementation details. The Results section presents 
quantitative and qualitative performance evaluations. 
The Discussion provides a critical analysis of findings, 
implications, and potential areas for further research. 
Finally, the Conclusion synthesizes key insights and 
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outlines future directions for integrating causality-driven 
AI methodologies in clinical practice.

By pioneering causality-based AI in cervical cytology, 
this study aims to bridge the gap between computational 
innovation and clinical applicability, fostering more accu-
rate, interpretable, and trustworthy diagnostic solutions.

Literature review
In this section, we provide a brief review and discussion 
of the previous related works, which can be categorized 
into cervical cells classification, causal discovery, and 
causal inference.

Cervical cell classification plays a crucial role in 
computer-aided cervical cancer detection, with recent 
advancements in the field leading to significant progress. 
Chen et  al. [15] emphasize its importance, while [16] 
address the challenge of limited data availability by fine-
tuning pre-trained deep learning models from ImageNet 
datasets and employing the deep feature fusion (DFF) 
technique for improved classification performance. 
DeepPap, introduced by [17], automatically extracts hier-
archical features from cellular image patches, eliminating 
the need for manual cytoplasm/nucleus segmentation 
and hand-crafted features, resulting in more accurate 
results. Fang et al. [18] propose DeepCELL, a deep con-
volutional neural network that captures feature informa-
tion from cervical cytology images using multiple kernels 
with different sizes, enhancing accuracy and timeliness 
in cervical cancer diagnosis. Liu et  al. [19] introduce 
CVM-Cervix, a novel framework combining CNN, Vis-
ual Transformer, and Multilayer Perceptron. Notably, 
it tackles an 11-class classification task, the most com-
plex in the existing literature, and significantly improves 
overall classification performance. Zhao et al. [20] high-
light the significance of cervical cell classification in 
early-stage cervical cancer screening. Their proposed 
model combines taming transformers with T2T-ViT to 
address imbalanced datasets and uneven image quality 
challenges, incorporating techniques like upweighting 
classes with few samples and generating samples using 
CCG-taming transformers, yielding insightful results and 
recommendations for enhanced cervical cancer classifi-
cation. Deo et al. [21] present CerviFormer, an innovative 
approach leveraging cross attention and latent trans-
former techniques for classification, surpassing other 
alternative classifier models in terms of accuracy, preci-
sion, and recall for the 3/2 target classes. Fekri-Ershad et 
al. [22] propose a novel machine learning strategy involv-
ing a tuned three-layer perceptron fed with trained deep 
convolutional neural networks for feature extraction and 
classification. Fang et  al. [23] propose a deep integrated 
fusion method that combines local and global features 
for cervical cell classification. Their method enhances the 

robustness of feature extraction by leveraging a multi-
scale approach, which improves classification accuracy in 
challenging datasets. Interpretable Cervical Cell Classifi-
cation: A Comparative Analysis [24] conduct a compara-
tive analysis of interpretable cervical cell classification 
models, emphasizing the trade-offs between accuracy 
and model explainability, particularly in medical diag-
nostic contexts where transparency is critical.  Anand 
et al. [25] introduce CervicalNet, a convolutional neural 
network optimized for five-class cervical cell classifica-
tion. By integrating attention mechanisms, CervicalNet 
improves feature relevance and significantly enhances 
classification performance.

Recent literature in cervical cell classification uses deep 
learning models, novel architectures, and advanced tech-
niques to improve accuracy in computer-aided cervical 
cancer detection, offering promise for early detection and 
treatment.

Causal discovery identifies causal relationships between 
variables based on observational data [14]. Zhang 
et al. [26] present SCIT, a fast method for testing condi-
tional independence in linear structural equation models 
using kernel functions and permutation tests. They also 
discuss the HSIC formula for measuring independence 
in kernel-based methods. Zhang et al. [27] propose two 
kernel-based methods, HSIC and KCI tests, for testing 
independence and conditional independence between 
continuous variables, showcasing their efficiency for 
high-dimensional data. Rast [28] introduce an algorithm 
to uncover latent graph structures in biological systems 
based on experimental data, holding potential for appli-
cations in medicine and biotechnology. Zheng et al. [29] 
present Causal-learn, an open-source Python library for 
causal discovery and inference. It includes scalable algo-
rithms for learning causal structures, testing independ-
ence, and evaluating causal effects, making it a versatile 
tool for both researchers and practitioners.  Wan  et al. 
[30] provide a comprehensive survey exploring the inte-
gration of causal discovery with large language models. 
This study discusses how language models can leverage 
causal inference to enhance interpretability and improve 
robustness, particularly in applications that process com-
plex linguistic or textual data.

Causal inference has been a pivotal research topic 
across domains for several decades [31, 32]. In the con-
text of [33], statistical causal inference (SCI) methods 
aim to estimate causal effects from observational data 
when randomized controlled trials are not possible, mak-
ing it crucial for public health interventions. Glass et al. 
[34] emphasize the significance of identifying causal 
associations in public health and offer guidelines for 
interpreting evidence. They highlight the importance of 
employing rigorous study designs and statistical methods 



Page 4 of 19Taghados et al. BMC Cancer          (2025) 25:607 

to establish causality. Furthermore, the authors present 
examples of successful interventions that were built 
upon causal associations in the field of public health. 
In "Practical Causal Inference for Ecoepidemiologists" 
by Fox [35], a systematic approach is presented to assess 
the link between environmental factors and observed 
effects. The work highlights the importance of recogniz-
ing uncertainty and limitations in scientific knowledge 
for informed environmental management decisions.  Liu 
et al. [36] introduce CIIC, a novel framework for image 
captioning that integrates causal intervention into both 
object detection and caption generation processes, effec-
tively mitigating the confounding effect. Furthermore, 
Lopez-Paz et al. [37] aim to find causal signals in images 
by identifying observable footprints that reveal causal 
relationships between object categories in static image 
collections through a learning approach.  Terziyan et  al. 
[38] introduce CA-CNN, a CNN architecture with a cau-
sality map capturing relationships between features in 
images and other data channels. CA-CNN autonomously 
identifies crucial causalities for accurate classification, 
enhancing accuracy in datasets where class distribution 
depends on causal scene characteristics. Causal infer-
ence techniques have also benefited from recent compu-
tational advancements. Gao et  al. [39] provide a survey 
on causal inference in recommender systems, highlight-
ing its potential to address biases, confounding factors, 
and fairness in recommendations. The study emphasizes 
how causal approaches can improve the reliability and 
fairness of personalized systems. Similarly, Luo et al. [40] 
offer a detailed review of causal inference techniques in 
recommendation systems, presenting methodologies 
to estimate user preferences while mitigating spurious 
correlations.

This literature review demonstrates the diverse appli-
cations of causal inference and its significance in various 
domains, emphasizing the importance of rigorous meth-
odologies to establish causality and make informed deci-
sions in different fields.

Advantages and disadvantages of existing literature
The existing literature on cervical cell classification and 
causality demonstrates significant advancements but 
also reveals notable limitations. Recent studies effec-
tively integrate advanced deep learning models, such as 
CNNs, transformers, and hybrid frameworks, leading 
to improved classification performance and robustness 
[17–19]. Methods like DeepPap, DeepCELL, and Cer-
vicalNet showcase the benefits of deep feature extrac-
tion and attention mechanisms, achieving high accuracy 
even with imbalanced datasets [17, 18, 25]. Addition-
ally, the integration of causal reasoning and causal infer-
ence into classification workflows has enhanced model 

interpretability, providing insights into feature depend-
encies and addressing critical challenges in explainable 
AI [29, 37, 38]. Techniques like SCIT, HSIC, and CIIC 
have extended causal reasoning to high-dimensional 
data, while the use of benchmark datasets such as SIPa-
KMeD and Herlev has standardized the evaluation of 
these models [26–28]. However, these advancements 
are accompanied by several limitations. The datasets 
often lack real-world complexity, such as overlapping 
cells and variable staining, reducing the generalizability 
of trained models [15, 16]. While causal methodologies 
enhance transparency, their integration with deep learn-
ing frameworks increases computational complexity and 
may limit scalability for large-scale applications [29, 30, 
39]. Furthermore, the focus on curated datasets and con-
trolled environments restricts real-world validation and 
clinical integration [20, 23]. The absence of standard-
ized evaluation metrics for models combining causality 
and classification also complicates comparative analysis 
[14, 24, 40]. Despite these challenges, the integration of 
causal reasoning with advanced deep learning techniques 
presents an opportunity to address these gaps, particu-
larly through unified frameworks validated on diverse 
datasets.

Background
Causality
Causality is the fundamental principle that links events 
together. It represents the recognition that one event, 
known as the cause, gives rise to another event, referred 
to as the effect [41]. This cause-and-effect relationship 
is crucial in various fields, helping us comprehend how 
things work and make informed decisions based on 
these connections [42]. However, establishing causality 
can be complex due to multiple factors, like confound-
ing variables and intricate interactions among variables. 
Untangling causality demands a rigorous approach [43]. 
Despite these challenges, grasping causality offers valu-
able insights, fostering a deeper understanding of the 
world and empowering us to predict future outcomes 
based on past observations [44].

The Hilbert–Schmidt Independence Criterion (HSIC) 
and Kernel Conditional Independence (KCI) are pivotal 
concepts in causality and statistical independence within 
machine learning and causal inference. These notions 
serve as essential tools in modern machine learning and 
causal inference, enabling researchers and practition-
ers to identify causal relationships, handle non-linear 
dependencies among variables, and enhance the practi-
cal application of causality across domains. Leveraging 
HSIC and KCI equips contemporary machine learning 
approaches to manage intricate variable relationships, 
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resulting in significant strides in comprehending causal 
structures and their effects on real-world situations [27].

Hilbert–Schmidt Independence Criterion
The Hilbert–Schmidt Independence Criterion (HSIC) is 
a statistical measure widely used to assess the depend-
ence between two random variables or datasets [45]. It 
is calculated as the squared inner product between the 
cross-covariance operator of X and Y within their respec-
tive Reproducing Kernel Hilbert Spaces (RKHSs). The 
formula for HSIC is:

Here, n represents the sample size, K_H and K_L are 
the kernel matrices for X and Y, and L_H and L_L are the 
centering matrices. The ’tr’ represents the trace operator. 
Kernel matrices are constructed by evaluating a kernel 
function on pairs of data points from X and Y, transform-
ing the data into a high-dimensional feature space where 
the inner product signifies their similarity. The center-
ing matrices, L_H and L_L, are essential in HSIC com-
putation as they ensure a mean of zero for each kernel 
matrix [46]. HSIC compares the joint distribution of the 
features of X and Y with the product of their marginal 
distributions. A HSIC value of zero indicates independ-
ence between X and Y, while a positive value suggests a 
non-zero and higher dependence [47].

Kernel Conditional Independence
The Kernel Conditional Independence Test (KCIT) is a 
valuable approach for evaluating the conditional inde-
pendence of continuous variables. It utilizes a test statis-
tic derived from the uncorrelatedness of functions within 
suitable RKHSs [26]. Consider three random variables, 
X, Y and Z, with a joint distribution P (X, Y, Z). The goal 
is to test whether X and Y are conditionally independent 
given Z, meaning that P (X, Y | Z) = P (X | Z) P (Y | Z). 
The KCIT compares the empirical conditional distribu-
tion of X given Z and Y given Z to the product of their 
marginal distributions. This is achieved by using kernel 
density estimators to estimate these distributions and 
comparing them using a test statistic.

The KCIT statistic is defined as:

Here, n represents the sample size, tr denotes the 
trace of a matrix, and KH_X, KH_Y, and KH_Z are the 
centered kernel matrices associated with X, Y and Z, 
respectively [27, 48]. A value of zero indicates condi-
tional independence, while a larger value suggests a 
stronger dependence. KCIT is widely employed in causal 

(1)HSIC(X ,Y ) =
1

n− 1
tr(K_HL_HK_LL_L)

(2)KCI(X ,Y |Z) =
1

n2
tr(KH_XKH_YKH_Z)

discovery and conditional independence testing to assess 
the relationships between variables in the presence of a 
conditioning variable.

Causality map
The causality map is a visual representation of estimated 
pairwise causal relationships between features extracted 
from image [38]. Following the fundamental principle of 
conditional probability, it is linked with the concept of 
joint probability:

The feature maps exclusively consist of non-negative 
numbers, owing to the use of ReLU operations, serv-
ing as indicators of the presence of a specific feature 
within a given batch (location in the image). By normal-
izing the values of the feature maps to the [0, 1] inter-
val through division by the maximum possible value of 
feature presence, we can interpret these values as prob-
abilities. As illustrated in Fig.  2, the featuresF1,F2,…,Fn 
represented by k × k feature maps, are leveraged to com-
pute eachP Fi|Fj  . Equation  3 yields a value within the 
interval [0, 1], providing a robust estimate for conditional 
probability. It considers the joint probability, which sig-
nifies the highest presence of both features within the 
image (each in their respective location). The variables 
a and b serve as indices denoting positions within a 
k-dimensional value matrix.

The causality map serves as a pivotal advancement, 
enhancing classification accuracy for image datasets. It 
proves particularly valuable for datasets where the distri-
bution of images across classes hinges on the causal rela-
tionships inherent in the scenes depicted.

Transfer learning
The utilization of Convolutional Neural Networks 
(CNNs) in AI for medical diagnosis, particularly in 
medical image classification, has had a profound impact 
[49]. Advancements in artificial intelligence, especially 
in deep learning techniques, have significantly con-
tributed to the identification, classification, and quan-
tification of patterns in medical images, making deep 
learning one of the most rapidly evolving domains 
within AI, with widespread and effective applications 
across various sectors. CNNs have emerged as the most 
prevalent and noteworthy deep learning architecture, 
representing a critical breakthrough in enabling auton-
omous detection of essential features without human 
intervention. Research consistently demonstrates that 
CNNs exhibit robustness to image noise and invariance 

(3)P
(

Fi|Fj
)

=
(maxa,b=1,k F

i
a,b)(maxa,b=1,k F

j
a,b)

∑k
a,b=1 F

j
a,b
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to translation, rotation, and size, enhancing their object 
analysis capabilities [16, 49, 50].

Transfer learning (TL) using convolutional neural 
networks enhances performance on novel tasks by lev-
eraging knowledge acquired from similar tasks learned 
beforehand. This approach is a significant breakthrough 
in medical image analysis, addressing challenges posed 
by data scarcity and optimizing time and hardware 
resources [51]. TL models are trained on large datasets 
like ImageNet [52], and their parameters can be used in 
custom neural networks for other related applications. 
TL techniques offer a solution to handle unseen data 
and limited data in clinical practice, as traditional neural 
networks may struggle with such data. Pre-trained net-
works, widely used for image classification in medical 
domains, reduce training time and minimize generaliza-
tion errors due to their extensive training on ImageNet 
dataset comprising 1000 object categories [53].

For the cervical cell dataset, four pre-trained models—
XceptionNet, VGG16, VGG19, and ResNet50—were 
employed. These models have already learned generic 
features from various datasets. Fine-tuning these mod-
els on the cervical cell dataset allows them to learn spe-
cific features relevant to this medical domain, leading to 
improved generalization and reduced training time and 
errors [16, 54].

– VGGNet represents a convolutional neural network 
architecture distinguished by its remarkable depth, 
and notable implementation of compact 3 × 3 convo-
lution filters across the network. Such architectural 
attributes have substantially contributed to its out-
standing performance, propelling VGGNet to the 
forefront of the ImageNet Challenge 2014, where it 
attained state-of-the-art results [55].

– ResNet50 is a convolutional neural network variant 
utilized in deep learning for image classification. It 
consists of 50 layers and has been extensively trained 
on a large image dataset to recognize patterns and 
features. ResNet50 effectively addresses the vanish-
ing gradient problem in deep neural networks by 
employing residual connections. These connections 
enable the network to learn residual functions, sim-
plifying the acquisition of complex image features 
and patterns [56].

– XceptionNet is a powerful deep learning architecture 
that efficiently combines depthwise separable convo-
lutions and convolutional neural networks. It has 36 
convolutional layers forming the feature extraction 
base, organized into 14 modules with linear residual 
connections. Its linear stack enables easy definition 
and modification [57].

Method
Classification with deep features
In this study, we propose a novel classification approach 
leveraging Convolutional Neural Networks with Causal 
Insight (CICNN) to enhance the diagnostic accuracy of 
cervical cancer cell classification. The overall workflow of 
the CICNN model is illustrated in Fig. 1, which outlines 
the key stages of the methodology: preprocessing, feature 
extraction, causality estimation, causal inference, and 
classification.

Workflow Overview (Fig. 1): The CICNN model begins 
with preprocessing the dataset of microscopic images 
to prepare it for training. The preprocessed images are 
passed through a fine-tuned CNN to extract high-dimen-
sional feature maps, which serve as the foundation for the 
subsequent causality analysis. Following the last pooling 
layer, the extracted feature maps are processed in two 
parallel directions:

1. Causality Estimation: A causality map is constructed 
by computing pairwise conditional probabilities 
between features, as detailed in Eq. (3).

2. Causal Inference: Flattened feature maps are ana-
lyzed to identify causal factors influencing the target 
label through independence and conditional inde-
pendence testing (Eqs. 1 and 2).

The causal factors identified are fused with the origi-
nal feature maps and fed into dense layers for final clas-
sification. This integration of causal insights significantly 
enhances the model’s interpretability and accuracy, espe-
cially for medical image datasets where relationships 
among features are often governed by causal dependen-
cies. The CICNN methodology is summarized in the fol-
lowing pseudo-code, which outlines the main steps of the 
approach:

– Input: Raw microscopic images X = {x1,x2,…, xN }, 
Labels Y = {y1 , y2,…, yN }, where N = Number of cells.

– Preprocessing:

◦ Segment images to isolate individual cells.
◦ Apply augmentation techniques (e.g., rotation, 
flipping, normalization).
◦ Prepare the data for CNN input.

– Feature Extraction: Use a fine-tuned CNN to com-
pute feature maps F = {F1 , F2,…, FN } for all input 
images.

– Causality Estimation:

◦ For each pair of feature maps ( F i , F j ), calculate the 
conditional probability P ( F i∣F j ) using Eq. (3).
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◦ Construct a causality map representing pairwise 
causal relationships.

– Causal Inference:

◦ Perform independence testing for each feature 
map F i using Eq. (1).
◦ Eliminate features independent of the target label Y.
◦ Apply conditional independence testing (Eq. 2) to 
identify causal relationships between features and 
the target label.

– Feature Fusion: Combine causal factors with feature 
maps at the concatenation layer.

– Classification: Pass the fused features through dense 
layers to classify each image into one of the catego-
ries.

– Output: Classification results for all images.

In this study, our approach involves the extraction of 
feature maps from deep networks. Following the last 
pooling layer, we proceed in two directions. Firstly, 
we utilize these feature maps to construct a causality 
map, which learns pairwise conditional probabilities, 
a process commonly known as causality estimation, 
for features. Secondly, we aim to unveil the causal fac-
tors that impact the target label. The construction 

of the causality map follows the method outlined in 
the background (Eq.  3, Fig.  2). In the phase dedicated 
to identifying causal factors affecting the target vari-
able, denoted as label, we implement a causal inference 
scheme by flattening feature maps. A causal factor, in 
this context, can signify a cause, effect, or independ-
ence with respect to y. Our process commences with 
an independence test between y and each factor to 
eliminate those demonstrating independence from y. In 
causal discovery, evaluating the dependencies of vari-
ables helps to identify causal links between variables. 
Employing the HSIC core independence test (Eq. 1), we 
infer statistical dependencies from the samples. After 
the removal of independent factors from y, we proceed 
with a conditional independence test to uncover the 
causal relationship between y and the remaining factors 
(Eq. 2).

The conditional independence test acts as a versa-
tile and robust causal inference method, utilizing the 
inherent conditional independence structures present 
in causal graphs. Within the scope of our current causal 
inference problem, we observe that a pair of agents can 
be considered causes of y only if their dependence is 
strengthened after conditioning on y. To operationalize 
this concept, we conduct independence and conditional 
independence tests for each pair of factors, with a focus 
on pairs where dependencies intensify after conditioning 

Fig. 1 The CausalCervixNet framework begins with a preprocessing step where augmented images are generated using geometric 
transformations, color space transformations, kernel filters, random erasing, and image mixing. After preprocessing, the augmented images are 
inputted into a deep learning model, to extract feature maps. Following the final pooling layer, the network progresses through two key phases: 
1) constructing a causality map containing estimations of pairwise causal relationships between features, and 2) flattening the feature maps 
while identifying causal factors associated with the target variable (y) using a novel causal inference scheme. The model’s performance is evaluated 
using unseen test images, and assessed in terms of precision, recall, F1 score, and accuracy
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on y. This comparative analysis of test results facilitates 
the identification of such pairs. Importantly, these tests 
can be parallelized to enhance practical efficiency (Fig. 3).

Once the causal factors for the target y have been iden-
tified in each model, we progress to the concatenation 
layer. The causalities learned during flattening are inte-
grated with the causal features and influence, achieved 
through fully connected layers, impacting the classifica-
tion results.

Throughout the process of model learning, the sys-
tem autonomously discerns which factors are crucial 

for accurate classification. This additional feature of the 
model represents a significant enhancement towards 
achieving improved classification accuracy, especially in 
the context of medical image datasets, where the logic 
behind image distribution among classes is contingent on 
the causal nature of the scenes depicted in the images.

Classification with shape and texture features
In this study, we aimed to enhance and broaden the 
scope of our research by not only utilizing existing data-
sets but also by proactively collecting datasets directly 

Fig. 2 By utilizing feature maps from the ultimate pooling layer, a causality map is constructed, offering estimates for the pairwise causal 
relationships between features via the application of joint probability

Fig. 3 This diagram illustrates the process of identifying causal factors influencing the target variable from feature maps. The features depicted 
in the diagram can signify causes, effects of y, or maintain independence, as denoted by the arrows. Causal inference encompasses the examination 
of independence and conditional independence between y and attributes, thereby unveiling noteworthy causal factors
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from single cervix cells through the collaborative efforts 
of our research team. This exclusive dataset comprises 
invaluable information derived from authentic samples 
obtained from reputable sources. Upon data collection, 
we partitioned the cells into two distinct components: 
the nucleus and the cytoplasm, each exhibiting distinct 
characteristics. Through meticulous analysis of these seg-
mented images, we identified and extracted meaningful 
and distinguishing features. Subsequently, we employed a 
combination of independence and conditional independ-
ence tests for every feature pair, coupled with advanced 
machine learning techniques such as K-Nearest Neigh-
bors (KNN), Support Vector Machines (SVM), and 
Random Forest (RF), to accomplish precise cell classifica-
tion. These models, driven by the extracted image-based 
features encompassing shape and texture attributes, 
demonstrated exceptional accuracy in recognizing and 
categorizing cells.

The extracted features in our analysis consist of two 
major components: shape features and texture features, 
the descriptions are briefly shown in Table 1.

Experiments
Experimental setup
In this experiment, we utilized the NVIDIA GeForce 3060 
GPU for both training and testing our model. The experi-
mental setup involves Python 3, which comes pre-config-
ured with a suite of essential machine learning libraries 

including Tensorflow, Matplotlib, Keras, PyTorch, and 
OpenCV. These tools were integrated seamlessly within a 
Jupyter notebook environment.

Dataset
SIPaKMeD
The SIPaKMeD dataset comprises 4049 annotated cell 
images. Expert cytopathologists have classified these 
cells into five different classes based on their cellular 
appearance and morphology. Specifically, normal cells 
are divided into two categories: superficial-intermediate 
and parabasal. Abnormal cells, which are not malignant, 
are further divided into two categories: koilocytes and 
dyskeratotic. Additionally, there is a category for benign 
cells, specifically metaplastic cells [58].

The distribution of cells based on their classes is shown 
in Table 2. For visual examples of images from this data-
set, refer to Fig. 4.

Table 1 Features extracted during our analysis of images and corresponding descriptions

Feature Type Feature Name Description

Shape Nucleus/Cytoplasm
Area

This quantifies the number of pixels that make up the segmented image of the nucleus and cytoplasm

Nucleus/Cytoplasm
Ratio

This ratio provides insights into the relative sizes of the nucleus and cytoplasm, calculated as Nucleus Area 
divided by the sum of Nucleus Area and Cytoplasm Area

Nucleus/Cytoplasmic
Perimeter

It measures the length of the perimeter around the object, offering information about its shape and boundaries

Nucleus/Cytoplasm
Roundness

This metric gauge the roundness of the object by comparing its actual area to the area inside a circle defined 
by its longest diameter

Nucleus/Cytoplasm
Shortest Diameter

This represents the largest diameter a circle can have while being completely inscribed within the object

Nucleus/Cytoplasm
Longest Diameter

This signifies the shortest diameter a circle can have while fully circumscribing the object

Nucleus/Cytoplasm
Elongation

Elongation is determined by the ratio between the shortest and longest diameters of the object, providing 
insights into its elongated or compact nature

Nucleus Position This feature assesses how centrally the nucleus is positioned within the cytoplasm, offering information 
on the object’s spatial distribution

Texture Contrast It quantifies the local variations in pixel intensity within the image. High contrast values indicate significant 
variations

Correlation This feature measures the likelihood of specific pixel pairs occurring, providing insights into the pixel relation-
ship

Energy Energy is a statistical measure of the image’s randomness or entropy, indicating the complexity of pixel patterns

Homogeneity Homogeneity assesses the similarity of pixel intensities across the image, offering insights into the uniformity 
of texture

Table 2 Distribution of SIPaKMeD cells

Category Number of cells

Normal Superficial-Intermediate 813

Parabasal 787

Benign Metaplastic 793

Abnormal Koilocytes 825

Dyskeratotic 813

Total 4049
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ShUCSEIT
The data were collected from vaginal smears using a 
light microscope (Olympus DP-72) with a fixed magni-
fication at × 40. Each image captured encompasses mul-
tiple cells, some of which may overlap. The cell types 
diagnosis were confirmed by expert pathologist. To iso-
late individual cells, the images with non-overlapping 
cells were segmented and saved as individual entities. 
Based on their appearance and cell morphology, the 
microscopic images were categorized into five distinct 
groups: Superficial squamous epithelial, Intermediate 
squamous epithelial, Parabasal squamous epithelial, 
low-grade squamous intraepithelial lesion (LSIL), and 
high-grade squamous intraepithelial lesion (HSIL). 
Among these categories, superficial, intermediate, and 

parabasal cells are regarded as normal cells, while LSIL 
and HSIL cells are classified as abnormal cells.

The distribution of cells based on their classes is 
shown in Table  3. For visual examples of images from 
this dataset, refer to Fig. 5.

Herlev
The Herlev Pap-smear dataset represents the latest 
iteration of two versions developed by Herlev Univer-
sity Hospital. Skilled staff at the hospital meticulously 
prepared and analyzed the images, employing CHAMP 
(Dimac), a commercial software package, for image seg-
mentation. The cell selection process prioritized the 
inclusion of crucial classes rather than adhering to a 
natural distribution [59]. The distribution of cells based 
on their classes is shown in Table 4. For visual examples 
of images from this dataset, refer to Fig. 6.

Evaluation method
Assessing the performance of a machine learning 
model is a crucial task in its development. Precision, 
recall, F1-score, and accuracy are widely recognized as 
standard measures for evaluating classification perfor-
mance [60].

The precision metric measures the number of cor-
rectly identified samples among all recognized represen-
tations. On the other hand, recall defines the ability of a 

Fig. 4 An example of SIPaKMeD database in five categories: a superficial-intermediate, b parabasal, c Metaplastic, d Koilocytes, e Dyskeratotic

Table 3 Distribution of ShUCSEIT cells

Category Number of cells

Normal Superficial squamous epithelial 507

Intermediate squamous epithelial 423

Parabasal squamous epithelial 444

Abnormal Low-grade squamous intraepithelial 
lesion

406

High-grade squamous intraepithelial 
lesion

420

Total 2201

Fig. 5 An example of ShUCSEIT database in five categories: a Superficial, b Intermediate, c Parabasal,d LSIL, e HSIL
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classification model to recognize all the relevant samples. 
The F1-score combines both precision and recall by using 
the harmonic mean. Accuracy, on the other hand, repre-
sents the proportion of correctly predicted samples out of 
the total number of samples. The ROC (Receiver Operat-
ing Characteristic) is a probability curve that graphically 
illustrates the True Positive Rate (TPR) in relation to the 
False Positive Rate (FPR). Meanwhile, the AUC (Area 
Under the Curve) is a single scalar value that quantifies 
the classifier’s performance by summarizing the informa-
tion contained within the ROC curve. The mathematical 
expressions for these evaluation metrics are provided in 
Table 5.

True positive (TP) denotes the number of accurately 
labeled positive samples, while true negative (TN) rep-
resents the number of correctly classified negative sam-
ples. False positive (FP) refers to the number of negative 
samples classified as positive, and false negative (FN) 
represents the number of positive instances predicted as 
negative [61].

Data setting
The cervical cell images used in evaluating the efficacy 
of our proposed methodology exhibit diverse dimen-
sions. To ensure uniformity in image size for subsequent 
analysis and processing, each image has been consistently 

resized to (224 × 224) pixels. This crucial resizing step 
guarantees consistency and facilitates rigorous analysis 
and processing of the images. To enhance the model’s 
performance, data augmentation techniques were exclu-
sively applied to the training sets. Techniques include 
geometric transformations, color space changes, kernel 
filters, random erasing, and image mixing. TensorFlow 
(TF) and Keras provide built-in methods for augmenta-
tion. As a result, the training datasets for SIPaKMeD and 
ShUCSEIT were augmented by a factor of 6, while the 
training dataset for Herlev was augmented by a factor of 
14. For this study, we adopted a standard data split strat-
egy for each dataset, allocating 60% of the data in each 
class for training, 20% for validation, and 20% for testing. 
The classification tasks involved both 5-class datasets 
(SIPaKMeD and ShUCSEIT) and a 7-class dataset (Her-
lev). More detailed information about the resulting train-
ing, validation, and test datasets can be found in Table 6.

To establish a cohesive perspective on the data classes, 
we can assert that the Superficial and Intermediate classes 
are analogous to the Superficial and Intermediate catego-
ries within other datasets. Specifically, the Parabasal class 
aligns with the Metaplastic and Parabasal classes found in 
the SIPaKMeD dataset. Meanwhile, the LSIL class corre-
sponds to the Mild category in the Herlev dataset and the 
Koilocytes category in the SIPaKMeD dataset. Lastly, the 
HSIL class equates to the Dyskeratotic class in the SIPa-
KMeD dataset, as well as the Moderate, Severe, and carci-
noma in situ categories in the Herlev dataset.

Table 4 Distribution of Herlev cells

Category Number 
of cells

Normal Superficial squamous epithelial 74

Intermediate squamous epithelial 70

Columnar epithelial 98

Abnormal Mild squamous non-keratinizing dysplasia 182

Moderate squamous non-keratinizing dysplasia 146

Severe squamous non-keratinizing dysplasia 197

Squamous cell carcinoma in situ intermediate 150

Total 917

Fig. 6 An example of Herlev database in seven categories: a Superficial squamous epithelial, b Intermediate squamous epithelial, c Columnar 
epithelial, d Mild squamous non-keratinizing dysplasia, e Moderate squamous non-keratinizing dysplasia,g Severe squamous non-keratinizing 
dysplasia, h Squamous cell carcinoma in situ intermediate

Table 5 Evaluation metrics

Metric Formula

Precision TP

TP+FP

Recall TP

TP+FN

F1-score 2× Precision×Recall

Precision+Recall

Accuracy TP+TN

TP+TN+FP+FN

AUC TruePositiveRate−FalsePositiveRate+1

2
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Data analysis
In this study, we leveraged the extensive ShUCSEIT 
dataset to conduct a comprehensive analysis of cellular 
images. Our primary objective was to accurately seg-
ment nucleus, cytoplasm, and cell boundaries, employ-
ing advanced computer vision techniques (Table 7). This 
segmentation process laid the foundation for extract-
ing shape-based features (Table  1). These descriptors 
encapsulated the geometric properties of the cellular 
structures, providing a robust basis for subsequent clas-
sification efforts.

With the extracted shape-based features in hand, we 
proceeded to employ machine learning techniques for 
image classification. The results, as depicted in Tables 8 

and 9, showcased the efficacy of our approach. The clas-
sification metrics, including accuracy, precision, recall, 
AUC, and F1-score, provided a thorough assessment of 
the model’s performance. This study demonstrates the 
promising potential of shape-based features in accu-
rate cellular image classification, paving the way for fur-
ther advancements in this critical domain of biomedical 
research.

As evident from the observed results, the incorporation 
of causal discovery methods led to significant enhance-
ments in our findings. This improvement in accuracy 
and precision underscores the importance of leverag-
ing advanced methodologies in cellular image analysis. 
The combination of these techniques not only refines 

Table 6 Experimental distribution of datasets

Number of Images

ShUCSEIT SIPaKMeD Herlev

Train 9240 16,982 8190

Validation 440 811 185

Test 440 812 186

Table 7 Examples of our segmentation results for cell, nucleus, and cytoplasm

Table 8 The performance analysis of the presented methods on 
the ShUCSEIT dataset

Models Avg
Precision

Avg
Recall

Avg
F1-score

Avg
Accuracy

AUC 

KNN 0.764 0.706 0.675 71.59% 0.822

SVM 0.847 0.846 0.843 84.09% 0.901
RF 0.807 0.808 0.807 80.68% 0.879
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our understanding of cellular structures but also holds 
immense potential for broader applications in biomedical 
research and clinical practice.

Experimental results
In this study, we conducted a rigorous assessment of 
the CausalCervixNet framework, benchmarking its 
performance against well-established deep learning 

architectures (VGG16, VGG19, ResNet50, and Xcep-
tionNet) for automated cervical cell classification. The 
evaluation was performed on unseen test datasets 
encompassing both 5-class (SIPaKMeD and ShUCSEIT) 
and 7-class (Herlev) classification tasks. The results are 
systematically detailed in Tables 10 and 11.

Table 10 presents the comparative performance of the 
deep learning models. XceptionNet demonstrated the 
lowest classification accuracy across all datasets, while 
VGG16 yielded the best performance for the SIPaKMeD 
dataset. In contrast, ResNet50 exhibited superior gener-
alization capabilities, outperforming the other models on 
the ShUCSEIT and Herlev datasets. This result under-
scores the adaptability of ResNet50 in handling diverse 
cytological image variations.

Table  11 expands on these findings by illustrating the 
performance of CausalCervixNet, which integrates each 
of the four network architectures (VGG16, VGG19, 
ResNet50, and XceptionNet) within a causality-aware 

Table 9 The performance analysis of the presented methods 
using independence and conditional independence tests on the 
ShUCSEIT dataset

Models Avg
Precision

Avg
Recall

Avg
F1-score

Avg
Accuracy

AUC 

KNN 0.814 0.778 0.769 78.41% 0.865

SVM 0.897 0.896 0.894 89.09% 0.932
RF 0.851 0.852 0.851 85.00% 0.906

Table 10 The performance analysis of the base models

Dataset Models Avg. Precision Avg. Recall Avg. F1-score Avg. Accuracy AUC Time (sec)

SIPaKMeD VGG16 0.978 0.978 0.978 97.78% 0.986 5200

VGG19 0.963 0.962 0.962 96.18% 0.976 5500

ResNet-50 0.949 0.948 0.948 94.82% 0.968 6000

XceptionNet 0.760 0.656 0.649 65.64% 0.785 6400

ShUCSEIT VGG16 0.939 0.937 0.938 93.64% 0.960 3200

VGG19 0.929 0.929 0.929 92.73% 0.955 3400

ResNet-50 0.965 0.964 0.964 96.36% 0.977 3800

XceptionNet 0.857 0.857 0.857 85.45% 0.909 4200

Herlev VGG16 0.616 0.628 0.605 60.21% 0.768 5200

VGG19 0.659 0.635 0.643 59.14% 0.762 5400

ResNet-50 0.825 0.826 0.824 81.18% 0.890 5800

XceptionNet 0.434 0.431 0.387 40.32% 0.652 6200

Table 11 The performance analysis of the proposed CausalCervixNet method

Dataset Models Avg. Precision Avg. Recall Avg. F1-score Avg. Accuracy AUC Time (sec)

SIPaKMeD CICNN-VGG16 0.988 0.987 0.988 98.76% 0.992 10,000

CICNN-VGG19 0.986 0.985 0.985 98.52% 0.991 10,500

CICNN-ResNet-50 0.991 0.991 0.991 99.14% 0.995 11,200

CICNN-XceptionNet 0.881 0.861 0.862 86.21% 0.914 11,800

ShUCSEIT CICNN-VGG16 0.971 0.971 0.971 97.05% 0.982 6300

CICNN-VGG19 0.969 0.970 0.970 96.82% 0.980 6700

CICNN-ResNet-50 0.991 0.991 0.991 99.09% 0.994 7400

CICNN-XceptionNet 0.933 0.933 0.932 93.18% 0.957 8000

Herlev CICNN-VGG16 0.898 0.860 0.871 86.02% 0.918 3600

CICNN-VGG19 0.876 0.853 0.859 84.95% 0.912 3900

CICNN-ResNet-50 0.979 0.978 0.978 97.31% 0.984 4500

CICNN-XceptionNet 0.837 0.786 0.793 79.57% 0.881 5000
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classification pipeline. ResNet50 consistently surpassed 
all competing models, achieving the highest classification 
metrics across datasets. Specifically, ResNet50 attained 
an accuracy of 99.14%, a precision of 0.991, a recall of 
0.991, and an F1-score of 0.991 on the SIPaKMeD data-
set, emphasizing its robustness in cervical cytopathology 
classification.

Crucially, CausalCervixNet demonstrated a significant 
performance advantage over traditional deep learning 
models that lack causal inference capabilities, reinforc-
ing its effectiveness in enhancing classification accuracy 
and interpretability. Figure 7 visually represents the ROC 
curves, illustrating the superior discriminative power of 
CausalCervixNet across all datasets.

These findings underscore the transformative potential 
of integrating causal inference with deep learning in med-
ical image classification. Our results highlight the neces-
sity of strategic model selection and the incorporation of 
causal reasoning methodologies to advance the reliability 
and transparency of AI-driven diagnostic systems. The 
superior performance of CausalCervixNet validates its 
applicability as an advanced, interpretable, and highly 
effective framework for cervical cytology classification.

Finally, Fig.  8 presents the confusion matrices gener-
ated by CausalCervixNet, further illustrating its precision 
and dependability in distinguishing between different 
cervical cell types. These results collectively reinforce the 
robustness of causality-driven deep learning models in 
medical image analysis, paving the way for more trust-
worthy AI applications in clinical diagnostics.

Discussion
In this study, we introduced and examined the Causal-
CervixNet method for cervical cell classification on the 
SIPAKMED, ShUCSEIT, and Herlev datasets. Addition-
ally, we proposed a causal inference scheme to identify 
the causal factors influencing the target. Leveraging these 
causal factors, our method demonstrated superior per-
formance (Table  11). The results of our approach high-
light the potential of causal inference in enhancing the 
accuracy and effectiveness of cervical cell classification.

Based on Fig.  8 and the confusion matrix results 
from all three datasets, it is evident that there were no 
instances where cancerous cells were misdiagnosed as 
non-cancerous. For example, in ShUCSEIT dataset, inter-
mediate cell misdiagnosed as a superficial cell 2 times 
and superficial cell misdiagnosed as intermediate cell one 

Fig. 7  ROC curves depict the performance of various classification models in distinguishing cervical cell images across diverse datasets 

Fig. 8 The confusion matrix depicts the results of the CausalCervixNet method applied to the classification problem using the SIPaKMeD, ShUCSEIT 
and Herlev datasets
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time. Also, in one case parabasal cells (normal cell) diag-
nosed as LSIL (abnormal cell). The same results are seen 
in 2 other datasets. This finding holds significant impor-
tance in medical cases. For instance, if a patient with can-
cerous cells were wrongly identified as non-cancerous, 
they might stop their treatment, leading to disease pro-
gression with potentially dangerous consequences. On 
the other hand, if the opposite scenario occurs, they can 
undergo appropriate follow-up and testing, resulting in 
fewer negative consequences.

Table  12 provides examples of misclassified cervical 
cells on the SIPAKMED, ShUCSEIT and Herlev data-
set for classification. It was found that three misclas-
sifications occurred in the ShUCSEIT dataset images, 
specifically within the Intermediate and Superficial 
classes. These two classes are normal cells and exhibit a 
high degree of similarity, which aligns with the patholo-
gists’ opinion, stating the likelihood of errors between 
these classes.

In summary, CausalCervixNet combines preprocess-
ing, feature extraction, causality map, causal inference, 
and classification stages to identify causal factors and 
achieve accurate classification, making it a valuable tool 
for causal analysis and predictive modeling.

XceptionNet’s accuracy on the Herlev dataset was ini-
tially low at 40%, but it increased significantly to 80% 

with the integration of CICNN. This improvement is 
attributed to CICNN’s ability to utilize causality-based 
insights, which enhance the identification of relevant 
features while reducing the impact of noise and spurious 
correlations. By incorporating a causality map and lever-
aging causal inference, the model effectively prioritizes 
meaningful feature relationships, particularly in datasets 
with complex class structures and imbalances.

In contrast, while HDFF achieves comparable accu-
racy on the SIPaKMeD dataset, it lacks CICNN’s 
capability to refine feature importance through causal 
discovery. This limitation is particularly evident in 
datasets like Herlev, where CICNN demonstrated supe-
rior robustness in addressing inter-class similarities 
and variability. These results highlight the critical role 
of causality-driven methods in enhancing generaliza-
tion and interpretability, as shown in Tables 10 and 11.

We evaluated the diversity of the SIPaKMeD, Her-
lev, and ShUCSEIT datasets, with the latter specifically 
designed to enhance representation through varied 
staining techniques and cellular characteristics. Despite 
applying data augmentation and causal inference meth-
ods to mitigate biases, demographic factors such as 
ethnicity, age, and geography may impact model gener-
alizability. We acknowledge this limitation and empha-
size the need for broader demographic representation 

Table 12 Illustrations of cervical cells misclassified by CausalCervixNet method
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in future research to improve model robustness and 
clinical applicability.

In Table  13, we provide a thorough comparative 
analysis of existing methodologies and our novel 
approach across two distinct datasets. Our method 
stands out as the leading performer on the Herlev 
dataset, demonstrating results that significantly sur-
pass those of competing methods. The substantial per-
formance enhancement, as indicated by the notable 
margin between our outcome and those of alternative 
approaches, underscores the robustness and efficacy of 
our proposed methodology. Regarding the SIPaKMeD 
dataset, the HDFF method secures the top position, 
albeit with a marginal 0.01% difference from our result. 
While HDFF exhibits commendable performance, it 
is essential to highlight that the slight variance in out-
comes falls within an acceptable range. What distin-
guishes our method, however, is the incorporation of 
causality, leading to more favorable results, as illus-
trated in Fig. 8. The emphasis on logical consistency is 
crucial in medical applications, and our findings under-
score the significance of not solely relying on quantita-
tive metrics for network evaluation.

Limitations
While the integration of causal inference in cervical can-
cer classification presents significant advantages, there 
are inherent challenges and limitations that must be 
acknowledged.

• Constraints of Causal Inference in High-Dimensional 
Data

 Causal inference methods often struggle when 
applied to high-dimensional datasets, such as medi-
cal imaging data, due to the following reasons:

 – Computational Complexity: Estimating causal 
relationships among a large number of features 

requires significant computational power. Many 
causal discovery algorithms rely on independence 
tests, graph-based models, or structural equation 
modeling, all of which become increasingly expen-
sive as the number of variables grows.

– Spurious Correlations: High-dimensional datasets 
tend to exhibit a large number of correlated fea-
tures, which can introduce spurious causal links. 
Distinguishing between true causal relationships 
and coincidental associations remains a significant 
challenge.

– Data Sparsity and Limited Samples: Despite access 
to large image datasets, the number of unique, well-
labeled samples remains limited compared to the fea-
ture space. This can lead to overfitting in causal mod-
els and difficulties in generalizing to unseen cases.

– Latent Confounders: Unobserved variables that 
influence both the cause and effect can distort 
causal inference. In medical imaging, variations 
in staining, imaging conditions, or patient demo-
graphics may introduce hidden biases.

• Challenges in Implementation
 Implementing causality-driven deep learning models, 

such as CausalCervixNet, introduces several practi-
cal difficulties:

 – Integration with Deep Learning Architectures: 
Combining causal inference with convolutional 
neural networks (CNNs) requires careful alignment 
of feature representations with causal estimation 
methods. Conventional deep learning models are 
optimized for feature extraction but are not inher-
ently designed for causal reasoning.

– Trade-off Between Interpretability and Perfor-
mance: While causal inference enhances model 
interpretability, integrating causality-based 
approaches can lead to a slight increase in compu-
tational cost, potentially impacting real-time medi-
cal diagnosis applications.

– Validation and Benchmarking: Unlike traditional 
classification models that rely solely on accuracy 
metrics, evaluating the success of a causality-based 
model requires additional validation, such as assess-
ing the correctness of identified causal relationships. 
Standardized benchmarks for causality-enhanced 
medical AI models are still underdeveloped.

Conclusions
This study introduces CausalCervixNet, a novel deep 
learning and causality-based method for classifying cer-
vical cells. By estimating pairwise causal relationships 

Table 13 Comparison of the proposed method and existing 
methods on SIPaKMeD and Herlev datasets

SIPaKMeD Herlev
Models Accuracy Accuracy
HDFF [16] 99.15% 90.32%

CerviFormer [21] 93.70% 94.57%

DeepCell [18] 95.63% 92.72%

Our method CICNN-VGG16 98.76% 86.02%

CICNN-VGG19 98.52% 84.95%

CICNN-ResNet-50 99.14% 97.31%
CICNN-XceptionNet 86.21% 79.57%
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between features and identifying the causal factors of 
the target variable, the proposed framework integrates 
a causal inference scheme employing conditional prob-
abilities, independence tests, and causal discovery algo-
rithms. The results demonstrate that CICNN-ResNet-50 
significantly outperforms other approaches, achieving 
higher classification accuracies and setting new bench-
marks in cervical cell classification. Specifically, the 
model achieved state-of-the-art accuracies of 99.14% for 
the 5-class classification problem on the SIPaKMeD data-
set and 99.09% on the ShUCSEIT dataset, while attaining 
an accuracy of 97.31% for the 7-class classification prob-
lem on the Herlev dataset.

The success of this study lies in its innovative integra-
tion of causal reasoning into deep learning, which goes 
beyond traditional methods that rely solely on statistical 
dependence. By identifying and leveraging causal rela-
tionships between features, CausalCervixNet enhances 
both interpretability and robustness, addressing key chal-
lenges in real-world medical imaging. Additionally, the 
framework’s ability to generalize across diverse datasets, 
its computational efficiency through parallelized causal-
ity testing, and its capacity to handle imbalanced datasets 
through advanced feature fusion techniques further high-
light its superiority over similar studies.

This work not only achieves exceptional classification 
performance but also provides a transparent and inter-
pretable solution for cervical cancer diagnostics, which 
is crucial for clinical applications. By shedding light on 
the potential benefits of causality-based approaches, 
this research paves the way for future studies to explore 
the intersection of deep learning and causal inference 
in medical image analysis. The findings underscore the 
promise of using these techniques to enhance accuracy, 
generalizability, and explainability in healthcare, particu-
larly in the context of cervical cell classification.
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