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Abstract 

Background  The accurate diagnosis of thyroid nodules represents a critical and frequently encountered challenge 
in clinical practice, necessitating enhanced precision in diagnostic methodologies. In this study, we investigate 
the predictive efficacy of distinguishing between benign and malignant thyroid nodules by employing traditional 
machine learning algorithms and a deep transfer learning model, aiming to advance the diagnostic paradigm in this 
field.

Methods  In this retrospective study, ITK-Snap software was utilized for image preprocessing and feature extrac-
tion from thyroid nodules. Feature screening and dimensionality reduction were conducted using the least absolute 
shrinkage and selection operator (LASSO) regression method. To identify the optimal model, both traditional machine 
learning and transfer learning approaches were employed, followed by model fusion using post-fusion techniques. 
The performance of the model was rigorously evaluated through the area under the curve (AUC), calibration curve 
analysis, and decision curve analysis (DCA).

Results  A total of 1134 images from 630 cases of thyroid nodules were included in this study, comprising 589 
benign nodules and 545 malignant nodules. Through comparative analysis, the support vector machine (SVM), which 
demonstrated the best diagnostic performance among traditional machine learning models, and the Inception V3 
convolutional neural network model, based on transfer learning, were selected for model construction. The SVM 
model achieved an AUC of 0.748 (95% CI: 0.684–0.811) for diagnosing malignant thyroid nodules, while the Inception 
V3 transfer learning model yielded an AUC of 0.763 (95% CI: 0.702–0.825). Following model fusion, the AUC improved 
to 0.783 (95% CI: 0.724–0.841). The difference in performance between the fusion model and the traditional machine 
learning model was statistically significant (p = 0.036). Decision curve analysis (DCA) further confirmed that the fusion 
model exhibits superior clinical utility, highlighting its potential for practical application in thyroid nodule diagnosis.

Conclusion  Our findings demonstrate that the fusion model, which integrates a convolutional neural network (CNN) 
with traditional machine learning and deep transfer learning techniques, can effectively differentiate between benign 
and malignant thyroid nodules through the analysis of ultrasound images. This model fusion approach significantly 
optimizes and enhances diagnostic performance, offering a robust and intelligent tool for the clinical detection 
of thyroid diseases.
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Introduction
The prevalence of thyroid nodules in the general popu-
lation is as high as 65%. Although only about 10% prove 
to be malignant [1]. But thyroid cancer rates are increas-
ing every year among all genders, races, and age groups 
[2]. Ultrasound is the primary tool used to stratify cancer 
risk of thyroid nodules and decide whether to perform 
fine-needle aspiration (FNA) [1, 3]. However, ultrasound 
diagnostic results are somewhat subjective. The com-
bination of ultrasound and artificial intelligence (AI) 
makes up for the subjectivity and operator dependence 
of thyroid ultrasound diagnosis [4]. Using artificial intel-
ligence algorithms to analyze thyroid ultrasound imaging 
data could help distinguish patients at different risks and 
avoid unnecessary fine-needle aspiration biopsies or thy-
roidectomies in lower-risk patients [5].

Computer-aided diagnosis (CAD) systems can pro-
vide objective and reliable diagnostic evidence for thy-
roid diseases [6]. The use of CAD improves diagnostic 
performance [7, 8] and its diagnostic performance is 
comparable to that of experienced endocrinologists [9]. 
Artificial intelligence CAD systems are based on two 
technologies: machine learning (ML) and deep learn-
ing (DL). ML techniques rely on extracting and select-
ing the most obvious features from a region of interest 
(ROI) to apply to the ML classifier. DL technology uses 
deep learning, taking the original image pixels and cor-
responding category labels as input, and simultaneously 
performs feature extraction, selection, and final classifi-
cation during the training process [10]. DL is the most 
mainstream technology in the field of artificial intelli-
gence medical imaging. Convolutional neural network 
(CNN) is a common deep learning architecture [11]. 
Transfer learning has emerged as a key strategy to over-
come the challenges of limited annotated medical data, 
enabling CNNs to achieve high performance even with 
small datasets [12, 13]. Its diagnostic algorithm can effec-
tively classify benign and malignant thyroid nodules, and 
its diagnostic performance is equivalent to the results 
obtained by experienced ultrasound doctors based on TI-
RADS reports.

Both machine learning and deep learning-based CAD 
systems have good diagnostic results for malignant thy-
roid nodules. Recent studies have further advanced this 
field, with research proposing a hybrid optimization algo-
rithm for improved feature selection and other studies 
demonstrating the effectiveness of deep transfer learn-
ing [14, 15]. However, many current studies rely solely 
on either traditional machine learning methods or deep 
learning and transfer learning methods to diagnose thy-
roid nodules. This limits the diagnostic performance as 
traditional machine learning excels in interpretability and 
handling structured data, while deep learning captures 

complex patterns in high-dimensional data. Fusion mod-
eling that integrates the strengths of both approaches 
offers a novel solution to bridge this gap. To clarify the 
diagnostic performance of traditional machine learning 
and deep transfer learning, our study uses a post-fusion 
method that integrates traditional machine learning with 
deep transfer learning to diagnose thyroid nodules. This 
combined approach is used to jointly diagnose benign 
and malignant thyroid nodules, and their diagnostic per-
formance was compared.

Methods
Research objects
Patients and data were obtained from Zhejiang Rongjun 
Hospital. Since this study was retrospective, the require-
ment for patient informed consent was exempted, and 
the research protocol was approved by the Ethics Com-
mittee of Zhejiang Rongjun Hospital. This study included 
thyroid nodules that underwent fine needle aspiration or 
inpatient surgery from January 2019 to December 2023 
and had pathological results.

The inclusion criteria were as below: patients who 
underwent ultrasound examination at the hospital within 
2  weeks before surgery and with complete ultrasound 
data; all nodules were confirmed by pathological results 
obtained through either fine-needle aspiration or surgical 
resection.

The exclusion criteria were as below: (1) patients with 
a history of thyroid surgery, radiotherapy, chemotherapy, 
or radiofrequency ablation; (2) poor image quality, mak-
ing it difficult to identify tumor boundaries and unable to 
perform image segmentation. (3) Images with measure-
ment markers exceeding the image range or incomplete 
nodule sections; (4) Images with both color Doppler 
and measurement markers; a total of 630 patients were 
screened, including 345 benign nodules and 285 malig-
nant nodules. For example, take one to four images from 
each patient’s ultrasound images.

Ultrasound examination and image acquisition
All selected patients underwent preoperative cervical 
ultrasonography. Ultrasound machines include Mylab90 
(Esaote, Italy), Philips EPIQ5, and EPIQ7 ultrasound sys-
tems (Netherlands). Ultrasound examinations were per-
formed by radiologists with 10–15 years of experience in 
thyroid ultrasound evaluation using a 5–12  MHz trans-
ducer. After placing the patient in the supine position, 
serial longitudinal and transverse scans were performed 
to obtain longitudinal and transverse images of the thy-
roid nodules. According to the 2020 Chinese Ultrasound 
Malignant Tumor Risk Stratification Guidelines for Thy-
roid Nodules: C-TIRADS evaluates the following ultra-
sound characteristics of thyroid nodules: composition 



Page 3 of 12Xu et al. BMC Cancer          (2025) 25:544 	

(cystic or almost completely cystic, spongy, mixed 
cystic and solid, almost completely solid) nature, solid), 
echo (anechoic, isoechoic or hyperechoic, hypoechoic, 
extremely hypoechoic,), edge (smooth, blurred, irregular, 
toward the outside of the thyroid capsule), morphology 
(vertical and horizontal diameter ratio < 1 or ≥ 1), and 
calcification (comet tail artifact, peripheral calcification, 
coarse calcification, microcalcification) [16].

Image preprocessing
Image segmentation
For image preprocessing, regions of interest (ROI) were 
manually segmented using ITK-SNAP software (version 
3.6.0, USA). First, two sonographers with 10–15  years 
of experience in thyroid imaging diagnosis used a blind 
method to complete manual cropping. Because the out-
line of the nodule edge is another factor that affects the 
classification diagnosis, it is necessary to ensure the 
accuracy of manual outline. They were then reviewed by 
a senior sonographer with more than 15 years of experi-
ence in thyroid imaging. Image annotation and any disa-
greements will be resolved through negotiation.

ROI extraction and data splitting
Transfer learning selects the image with the largest 
nodule area to represent each nodule. Each cropped 
sub-region image is then resized to 224 × 224 to gener-
ate a minimum area rectangular bounding box for each 
lesion, and the image within the bounding box is called 
the ROI image. The lesion ROI images are then used as 
input images for CNN model training and testing. In the 
experiment, we randomly select 80% of the images from 
the total sample as the training data set and 20% of the 
images as the testing data set.

Feature extraction
Traditional radiomic features
Fifty cases of data were randomly selected for second-
ary annotation, and the inter-observer consistency in 
nodules’ manual outline delineation was evaluated using 
the inter-class correlation coefficient (ICC). A correla-
tion coefficient greater than 0.75 was considered satis-
factory agreement. A total of 108 traditional radiomic 
features were extracted from ROIs, including texture fea-
tures (gray-level co-occurrence matrix), shape features 
(area, perimeter, circularity), and intensity-based features 
(mean intensity, standard deviation). These features were 
calculated using the PyRadiomics library (version 3.1.0) 
in Python.

Deep transfer learning features
For deep transfer learning, the images are input into a 
CNN pre-trained on the ImageNet dataset [17], which 

extracts deep transfer learning features from each ultra-
sound image modality and performs feature dimensional-
ity reduction.

Feature filtering and model building for deep transfer 
learning
For the deep transfer learning features with 2048 dimen-
sions, in order to ensure the balance between features, 
we use principal component analysis (PCA) to reduce 
the dimensionality of deep transfer learning features 
to improve the generalization ability of the model and 
reduce the risk of overfitting. This study uses VGG16, 
ResNet50, and Inceptionv3 deep convolutional neural 
networks pre-trained on the ImageNet data set to imple-
ment transfer learning, that is, using the pre-trained 
model to freeze all convolutional layers and fine-tuning 
the fully connected transfer learning method. We use the 
Adam optimization algorithm in the model training pro-
cess. Each of our experiments runs for 30 epochs, with a 
batch size of 32 and Dropout set to 0.5.

Feature filtering and model building for machine learning
All 108 traditional radiomic features are normalized in 
the training and test sets, and the correlation between 
features is calculated using the Spearman correlation 
coefficient. For features with a correlation coefficient 
greater than 0.9, one of the two features is retained. 
The traditional features are then concatenated with the 
dimensionality-reduced deep transfer learning features 
obtained through PCA. The least absolute shrinkage 
and selection operator (LASSO) algorithm is used to 
screen out the features with the most significant pre-
dictive potential, which are then fed into the machine 
learning models for further analysis. We used logistic 
regression (LR), SVM, Naive Bayes, k-Nearest Neighbors 
(KNN), Decision Tree, Random Forest (RF), Extra Trees, 
eXtreme Gradient Boosting (XGBoost), Light Gradi-
ent Boosting Machine (LightGBM), Gradient Boosting 
(GBM), Adaptive Boosting (AdaBoost), and Multilayer 
Perceptron (MLP) neural network to train each clas-
sification model and used tenfold cross-validation to 
obtain the final radiation group learning characteristics. 
According to the model’s predictions on the test set, the 
experimental results were analyzed to assess the overall 
classification accuracy and performance.

Model development and evaluation
We used Python 3.70 for model construction, evalua-
tion, and repeated cross-validation, with the following 
libraries: numpy (1.21.0), scikit-learn (1.0.2), PyTorch 
(1.10.0), PyRadiomics (3.1.0) and OpenCV (4.5.4). 
Hyperparameters were optimized using manual tuning. 
The code was executed on a workstation equipped with 
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a 12 GiB NVIDIA Titan V GPU and 64 GiB of memory. 
To improve the accuracy of predicting thyroid nodules 
in ultrasound images, post-fusion of models was studied 
using the average method. That is, the results of machine 
learning and deep transfer learning are combined to pre-
dict benign and malignant thyroid nodules, and then the 
malignant probabilities are averaged and classified.

To quantitatively evaluate and compare the perfor-
mance of different models, we calculated an overall 
score based on accuracy, AUC, sensitivity, specificity, 
PPV, NPV, precision, recall, F1-Score, and overfitting 
degree. Each metric was assigned an equal weight of 10%. 
The overfitting degree was quantified as the difference 
between training set accuracy and test set accuracy, and 
normalized to a range of [0, 1] across all models. Specifi-
cally, the normalized overfitting value was calculated as 
1-(training accuracy)/(testing accuracy), ensuring that a 
higher value indicates less overfitting. The overall score 
was computed as the weighted sum of the 10 metrics.

Statistical Analysis
ICCs, Spearman rank correlation test, z-score normali-
zation and LASSO regression analysis were performed 
using Python 3.7. Descriptive statistics for continuous 
variables are expressed as mean ± standard deviation; cat-
egorical variables are expressed as percentages (%). The 
independent samples t test was used for continuous vari-
ables with normal distribution; the Mann–Whitney U 
test was used for continuous variables without normal 
distribution. Categorical variables were analyzed using 
the chi-square test. Use the Receiver Operating Charac-
teristic (ROC) curve to show the diagnostic performance 
of each model. Delong validation was used to compare 
the AUC values of different models. A P value less than 
0.05 was considered statistically significant. The calibra-
tion curve was drawn to evaluate the goodness of fit of 
the model. Decision Curve Analysis(DCA)was applied to 
evaluate the clinical application value of the model. The 
confidence intervals (CIs) for the AUC values were cal-
culated using the DeLong test. DeLong test is a robust 
non-parametric method for comparing the AUC of ROC 
curves and estimating the variability.

Results
Patient characteristics
A total of 630 patients and 1134 pictures were selected, 
including 589 pictures of benign nodules and 545 
pictures of malignant nodules. The average age is 
52.19 ± 13.298 years old; the age range is 15–86 years old. 
According to 8:2 random stratified sampling, it is divided 
into a training set of 907 images and a verification set of 
227 images. The baseline characteristics of patient pic-
tures in the training and test groups (Table 1). There was 

no statistically significant difference between the train-
ing set and the test set in terms of patient age, gender, 
tumor maximum diameter, location, composition, mar-
gin, morphology, calcification and C-TIRADS. Through 
single-factor and multi-factor logistic analysis, it was 
concluded that age, C-TIRADS, composition and echo 
are independent predictors of malignant thyroid nodules 
(Table 2).

Image preprocessing
After obtaining the original data set and then outline and 
label the data. The input ROI image contains the entire 
tumor area and its boundary area. The image generated 
after the outline is completed (Fig.  1). When perform-
ing deep transfer learning, we selected the largest section 
image of the thyroid nodule.

Feature screening and modeling
A total of 108 traditional radiomic features were 
extracted for each lesion, and 42 features were retained 
after screening. The features were dimensionally reduced 
and screened through the ten-fold intersection algorithm 
and LASSO regression, and 8 significant features were 
finally retained. For convolutional neural network tech-
nology, this study uses VGG16, ResNet50, and Incep-
tionv3 deep convolutional neural networks pre-trained 
on the ImageNet data set to implement transfer learn-
ing, replacing its fully connected layer, SoftMax layer and 
classification output layer, and Set the fully connected 
layer to be the same as the number of classes in the new 
data, thereby generating a new network model. Finally, 
the optimal model Inceptionv3 was selected for deep 
transfer learning. There are 32 features after feature com-
pression. The Adam optimizer was used with a learning 
rate of 0.001, beta1 of 0.9, beta2 of 0.999, and epsilon of 
10–8. L2 regularization with a lambda value of 0.01 and 
early stopping are used to prevent overfitting, and loss 
rate is used to evaluate model performance.

Model evaluation analysis
Using radiomic features, the optimal model SVM is 
obtained compared with LR, NaiveBayes, KNN, Decision 
Tree, RF, Extra Trees, XGBoost, LightGBM, Gradient-
Boosting, AdaBoost and MLP classifiers. It achieved the 
best overall score in the classification diagnosis of thy-
roid nodules training set and test set (Table 3, Fig. 2). To 
find the best deep transfer learning model for evaluating 
thyroid nodules, we compared the performance of pre-
trained VGG16, Resnet50, and Inception v3. The results 
show that Inception v3 has the best performance, with an 
accuracy of 72.2% and an AUC of 0.763 (95%CI: 0.702–
0.825) (Fig. 3). Therefore, we use Inception V3 to further 
evaluate the model effect.
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Model fusion is an effective means to improve the 
overall prediction ability. In multi-classifier system and 
ensemble learning, fusion is a very important step. This 

study uses a post-fusion method to fuse the SVM model 
results and the InceptionV3 model results in traditional 
machine learning. That is, the images of the test set are 

Table 1  Comparison of general data and ultrasound characteristics of benign and malignant thyroid nodules in training set and test 
set

Data are numbers of nodules, with percentages in parentheses. C,TI-RADS China Thyroid Imaging Reporting and Data System. Numbers in parentheses represent 
percentage within a given group (benign, malignant). + Data are means ± standard deviation. * P < 0.05

Characteristics All (n = 1134) Training sample (n = 907) Validation sample 
(n = 227)

P value

Age(y) +  52.19 ± 13.298 52.19 ± 13.385 52.18 ± 12.97 0.445

Max Size (mm) 14.03 ± 14.447 14.029 ± 14.482 14.01 ± 14.337 0.851

Sex 0.173

  Female 424(0.374) 348 (0.384) 76(0.335)

  Male 710(0.626) 559(0.616) 151(0.665)

Position 0.869

  Left thyroid 522(0.46) 419(0.462) 103(0.454)

  Right thyroid 550(0.485) 440(0.485) 110(0.485)

  Thyroid isthmus 62(0.055) 48(0.053) 14(0.061)

Composition 0.423

  Cystic or almost completely cystic 34(0.03) 23(0.025) 11(0.048)

  Spongiform 15(0.013) 13(0.014) 2(0.009)

  Mixed cystic and solid 126(0.111) 104(0.115) 22(0.097)

  Almost completely solid 103(0.091) 83(0.092) 20(0.088)

  Solid 856(0.755) 684(0.754) 172(0.758)

Echogenicity 0.024*

  Anechoic 63(0.056) 44(0.049) 19(0.084)

  Hyperechoic or isoechoic 130(0.115) 109(0.12) 21(0.093)

  Hypoechoic 893(0.787) 710(0.782) 183(0.805)

  Very hypoechoic 48(0.042) 44(0.049) 4(0.018)

Shape 0.099

  Wider-than-tall 783(0.69) 616(0.679) 167(0.736)

  Taller-than-wide 351(0.31) 291(0.321) 60(0.264)

Margin 0.183

  Smooth 901(0.795) 722(0.796) 179(0.789)

  Ill-defined 107(0.094) 85(0.094) 22 (0.097)

  Lobulated or irregular 106(0.093) 88(0.097) 18(0.079)

  Extra-thyroidal extension 20(0.018) 12(0.013) 8(0.035)

Echogenic Foci 0.173

  None 875(0.772) 686(0.756) 189(0.833)

  Comet-tail artifacts 6(0.005) 5(0.006) 1(0.004)

  Macrocal cifications 81(0.071) 69(0.076) 12(0.053)

  Peripheral calcifications 53(0.047) 45(0.05) 8(0.035)

  Punctate echogenic foci 119(0.105) 102(0.112) 17(0.075)

C TI-RADS risk Level 0.579

  TR2 20(0.018) 14(0.015) 6(0.026)

  TR3 219(0.193) 172(0.19) 47(0.207)

  TR4A 330(0.291) 260(0.287) 70(0.308)

  TR4B 379(0.334) 305(0.336) 74(0.327)

  TR4C 177(0.156) 148(0.163) 29(0.128)

  TR5 9(0.008) 8(0.009) 1(0.004)
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generated through the trained network to generate a 
probability value, which represents the malignancy pre-
dicted by the model. The results show that in the test 
set, the performance of the traditional machine learning 
SVM prediction model based on an AUC of 0.748 (95% 
CI: 0.684–0.811) is lower than that of the deep transfer 
learning InceptionV3 model of 0.763 (95% CI: 0:702–
0.825) (Fig. 4).

After model fusion, the AUC of the test set is 0.783 
(95% CI: 0.724–0.841). The Delong test was used to com-
pare the AUC of the three models. There was no statisti-
cally significant difference between the SVM prediction 
model and the InceptionV3 model in the test cohort 
(p > 0.05). The difference between the fusion model and 
the traditional machine learning model is statistically 
significant (p = 0.036). There is no statistically significant 
difference between the fusion model and deep trans-
fer learning (P = 0.263). The evaluation effect of tradi-
tional machine models can be optimized and improved 
through model fusion. The calibration curve has good 

agreement between predictions and observations (Fig. 5). 
In this study, we evaluated each model through DCA and 
determined the clinical benefit of the model. The fusion 
model provided higher net benefit across a wide range 
of threshold probabilities (Fig.  6), indicating its supe-
rior clinical utility. These results suggest that the fusion 
model can effectively support clinicians in distinguishing 
benign and malignant thyroid nodules, potentially reduc-
ing unnecessary biopsies.

Discussion
Artificial intelligence may increase diagnostic consist-
ency and accuracy, reducing workload for health care 
professionals [18]. It demonstrates diagnostic perfor-
mance comparable to or even better than that of sonog-
raphers in the ultrasound diagnosis of thyroid nodules 
[19–22]. There are studies supporting that the CAD 
method is more objective and the assessment of ultra-
sound features is relatively accurate [23]. A retrospec-
tive study developed an optimized ensemble of artificial 

Table 2  Logistic regression analysis of predictors of thyroid malignant nodules

Factor Univariable analysis Multivariable analysis

characteristics OR 95% CI P value OR 95% CI P value

age 0.96 0.95–0.97 p < 0.001 0.95 0.94–0.97 p < 0.001

C_TIRADS 2.22 1.91–2.58 p < 0.001 2.14 1.78–2.57 p < 0.001

composition 4.85 3.51–6.72 p < 0.001 2.43 1.67–3.53 p < 0.001

echo 8.19 5.16–13 p < 0.001 2.88 1.64–5.06 p < 0.001

echogenic_Foci 1.27 1.12–1.44 p < 0.001

margin 2.27 1.81–2.83 p < 0.001

Position 0.87 0.7–1.09 0.228

Sex 1.07 0.81–1.39 0.645

shape 3.23 2.41–4.32 p < 0.001

size 0.95 0.94–0.96 p < 0.001 1.01 1–1.03 0.123

Fig. 1  Manually outline the ROI along the edge of the lesion on the image and its illustration
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intelligence decision aids to assist 10 radiologists with 
varying levels of expertise. This study analyzed imag-
ing features associated with the effectiveness of artificial 

intelligence assistance and tested the optimization strat-
egy in a prospective cohort. The results demonstrated 
that the optimized strategy achieved higher diagnostic 

Table 3  Diagnostic performance of machine learning model in predicting benign and malignant thyroid nodules

Model_name Accuracy AUC​ 95% CI Sensitivity Specificity PPV NPV Precision Recall F1 Overall Score Task

LR 0.653 0.711 0.6779—0.7440 0.78 0.538 0.604 0.729 0.604 0.78 0.681 0.709 label-train

LR 0.67 0.726 0.6608—0.7909 0.719 0.619 0.656 0.686 0.656 0.719 0.686 label-test

NaiveBayes 0.642 0.678 0.6440—0.7129 0.831 0.471 0.587 0.754 0.587 0.831 0.688 0.709 label-train

NaiveBayes 0.674 0.712 0.6451—0.7784 0.658 0.69 0.682 0.667 0.682 0.658 0.67 label-test

SVM 0.721 0.79 0.7606—0.8188 0.766 0.681 0.685 0.762 0.685 0.766 0.723 0.729 label-train

SVM 0.705 0.748 0.6842—0.8116 0.746 0.664 0.691 0.721 0.691 0.746 0.717 label-test

KNN 0.777 0.86 0.8374—0.8819 0.819 0.739 0.74 0.819 0.74 0.819 0.778 0.712 label-train

KNN 0.683 0.746 0.6848—0.8077 0.886 0.486 0.631 0.806 0.631 0.886 0.737 label-test

RandomForest 0.985 0.999 0.9979—0.9997 0.991 0.979 0.977 0.991 0.977 0.991 0.984 0.635 label-train

RandomForest 0.678 0.721 0.6555—0.7871 0.833 0.527 0.638 0.756 0.638 0.833 0.722 label-test

ExtraTrees 1 1 1.0000—1.0000 1 1 1 1 1 1 1 0.684 label-train

ExtraTrees 0.736 0.778 0.7186—0.8375 0.789 0.681 0.714 0.762 0.714 0.789 0.75 label-test

XGBoost 0.939 0.982 0.9750—0.9883 0.947 0.933 0.927 0.951 0.927 0.947 0.937 0.674 label-train

XGBoost 0.687 0.727 0.6611—0.7924 0.93 0.442 0.627 0.862 0.627 0.93 0.749 label-test

LightGBM 0.901 0.962 0.9509—0.9730 0.912 0.891 0.883 0.918 0.883 0.912 0.897 0.649 label-train

LightGBM 0.67 0.725 0.6594—0.7900 0.816 0.522 0.633 0.737 0.633 0.816 0.713 label-test

GradientBoosting 0.752 0.826 0.7993—0.8519 0.775 0.731 0.723 0.782 0.723 0.775 0.748 0.708 label-train

GradientBoosting 0.696 0.733 0.6672—0.7980 0.728 0.664 0.686 0.708 0.686 0.728 0.706 label-test

AdaBoost 0.686 0.744 0.7139—0.7742 0.633 0.733 0.682 0.688 0.682 0.633 0.657 0.710 label-train

AdaBoost 0.674 0.708 0.6447—0.7721 0.781 0.571 0.645 0.719 0.645 0.781 0.706 label-test

MLP 0.68 0.74 0.7082—0.7716 0.798 0.574 0.629 0.758 0.629 0.798 0.703 0.727 label-train

MLP 0.7 0.748 0.6840—0.8112 0.623 0.779 0.74 0.672 0.74 0.623 0.676 label-test

Fig. 2  ROC curves and AUC values of different machine learning models on the test set



Page 8 of 12Xu et al. BMC Cancer          (2025) 25:544 

performance compared to traditional full artificial intel-
ligence strategies [24]. Another study retrospectively 
included 10,023 patients with thyroid nodules from 208 
hospitals and developed detection, segmentation, and 
classification models. It was found that a thyroid ultra-
sound artificial intelligence model developed based on 
different data sets has high diagnostic performance in the 

Chinese population and can improve the performance of 
radiologists in thyroid cancer diagnosis [25].

Some findings suggest that automated "second opin-
ions" can be generated using software applications 
capable of extracting quantitative parameters from Ultra-
sound images, and that machine learning methods can 
be equally accurate [26]. Random forest classifier was 

Fig. 3  ROC curves and AUC values of three deep learning models on the test set

Fig. 4  ROC curves and AUC values of fusion model and single model
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used to build a final classifier that combined geometric 
and morphological features to classify thyroid nodules 
[27], and it was found that the accuracy, sensitivity and 
specificity of classification could be improved. Zhao et al. 

showed [28] that RF-based features were used to select 
the most important features, and it was found that the 
diagnostic performance and unnecessary biopsy rate of 
the machine learning-assisted ultrasound vision method 

Fig. 5  Calibration curve of the test set

Fig. 6  Decision curve analysis of different models in the test set. The Y-axis represents the net benefit. The fusion model provided higher net benefit 
across a wide range of threshold probabilities, indicating its superior clinical utility
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and radiomics method were better than the ACR TI-
RADS evaluation method. The study uses 1232 nodules 
to propose a machine learning framework to predict 
thyroid nodule malignancy by utilizing GBM, LR, linear 
discriminant analysis (LDA), radial or linear kernel SVM 
Training with RF, the RF model has the highest predic-
tion accuracy (0.7931) and the highest AUC (0.8541) [29]. 
There are studies using four machine learning algorithms 
including XGBoost, RF, LightGBM and AdaBoost to 
build a prediction model, incorporating peripheral blood, 
BRAFV600E gene and Demographic indicators. RF was 
found to have the highest diagnostic performance, with 
AUC of 0.874 (95% CI, 0.841–0.906) [30]. Another study 
used RF and SVM classifiers to classify benign and malig-
nant thyroid nodules and found that both methods have 
high performance in practice [31, 32]. Our study found 
that the diagnostic performance of RF in the test set is 
not as high as the accuracy obtained by the SVM model 
(accuracy rate is 0.705, AUC is 0.748). It should be noted 
that our dataset includes both surgical pathology and 
FNA results. While surgical pathology provides defini-
tive diagnoses, FNA has inherent limitations which may 
affect the diagnostic accuracy of our study. Additionally, 
the retrospective design and relatively small sample size 
may introduce selection bias.

In recent years, image analysis based on convolutional 
neural networks has been commonly used for lesion 
detection and classification, which achieved satisfac-
tory results in identifying and classifying thyroid tumors 
[33]. Previous research on the impact of database size on 
transfer learning using Deep CNN has shown that for 
smaller target sets (less than 1000 instances per class) 
used for transfer learning, freezing the first two to three 
layers of features significantly improves performance [34, 
35]. In the context of transfer learning, better image clas-
sification performance can also be achieved by adjusting 
the optimal number of layers for the target task. Basha 
et al. proposed to automatically adjust the convolutional 
neural network to use the knowledge of the target data 
set to adjust the pre-trained CNN layer to have bet-
ter transfer learning capabilities [36]. Shao et  al. used 
ResNet50 and VGG16 and found that transfer learn-
ing pretrained on ImageNet performed better than the 
untrained Deep CNN (ResNet50) model [37]. Zhou et al. 
used a basic convolutional neural network (CNN) model 
[38], a transfer learning (TL) model and a newly designed 
deep learning radiomics of thyroid (DLRT) model to con-
duct research and found that other deep learning models 
were not as good as the DLRT model, but in this study, 
patients with nodule diameter less than 10 mm were not 
selected. The study used 578 patients to perform tenfold 
cross-validation on ultrasound images of different path-
ological types of thyroid using InceptionV3 and found 

that the average accuracy was 0.85 [39]. A recent study 
trained and tested a set of models using 11,201 images of 
6784 nodules, fused the final prediction probabilities of 
Inception-ResNet and DenseNet121, and used RF mod-
els for classification, finding that the highest AUC was 
0.94 [40]. In the current study, we compared three pre-
training models and selected InceptionV3 as the opti-
mal model based on its comprehensive performance. 
The model achieved an accuracy of 72.2% and an AUC 
of 0.763 in predicting malignant thyroid nodules. While 
these results are promising, the performance was lower 
than that reported in some previous studies. This dis-
crepancy may be attributed to differences in sample size, 
image quality, hyperparameter settings, and fine-tuning 
strategies.

Studies have pointed out that machine learning (ML) 
combined with deep learning (DL) models show the 
potential to reduce the possibility of misdiagnosis of 
breast cancer, and this model is significantly better than 
any single model [41]. Consistent with the results of 
this study, our study showed that a fusion classification 
model to distinguish different pathological classifica-
tions of malignant thyroid nodules in ultrasound images. 
It was found that the fused model had higher diagnostic 
accuracy. Compared with CNNs and transformer-based 
architectures which often lack interpretability, our fusion 
approach can leverage the interpretability of traditional 
methods and the high-dimensional feature extraction 
capabilities of deep learning. The findings of this study 
have broader implications beyond thyroid nodule clas-
sification. The fusion modeling approach can be adapted 
to other diagnostic imaging tasks (e. g. lung nodule clas-
sification) and other modalities (e. g. CT, MRI, PET) to 
further validate its utility in clinical practice. This study 
also has several limitations. The sample size may limit the 
generalizability of our findings. Larger, multicenter stud-
ies are needed to validate the performance of the fusion 
model across diverse populations and imaging proto-
cols. Besides, the retrospective design introduces poten-
tial selection bias as the included patients were those 
who underwent fine-needle aspiration or surgical resec-
tion. The dataset primarily consists of static ultrasound 
images. Future studies should consider incorporating 
video-based analysis to further improve diagnostic accu-
racy. Lastly, despite their advantages, fusion models may 
be limited by computational demands and the potential 
for overfitting.

Conclusion
This study demonstrates that a CNN-based fusion model 
integrating traditional machine learning and deep trans-
fer learning techniques can effectively differentiate 
between benign and malignant thyroid nodules using 
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ultrasound images. The fusion approach optimizes and 
enhances the model’s diagnostic performance, offering a 
robust and intelligent solution for thyroid disease detec-
tion. This method provides a clinically practical tool 
for thyroid nodule classification, with the potential to 
improve diagnostic accuracy, reduce the need for unnec-
essary biopsies, and support more informed clinical deci-
sion-making in the evaluation of thyroid nodules.
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