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Abstract
Background  The cytological diagnostic process of EUS-FNA smears is time-consuming and manpower-intensive, 
and the conclusion could be subjective and controversial. Moreover, the relative lack of cytopathologists has limited 
the widespread implementation of Rapid on-site evaluation (ROSE) presently. Therefore, this study aimed to establish 
an AI system for the detection of pancreatic ductal adenocarcinoma (PDAC) based on EUS-FNA cytological images.

Methods  We collected 3213 unified magnification images of pancreatic cell clusters from 210 pancreatic mass 
patients who underwent EUS-FNA in four hospitals. A semi-supervised CNN (SSCNN) system was developed to 
distinguish PDAC from Non-PDAC. The internal and external verifications were adopted and the diagnostic accuracy 
was compared between different seniorities of cytopathologists. 33 images of “Atypical” diagnosed by expert 
cytopathologists were selected to analyze the consistency between the system and definitive diagnosis.

Results  The segmentation indicators Mean Intersection over Union (mIou), precision, recall and F1-score of SSCNN 
in internal and external testing sets were 88.3%, 93.21%,94.24%, 93.68% and 87.75%, 93.81%, 93.14%, 93.48% 
successively. The PDAC classification indicators of the SSCNN model including area under the ROC curve (AUC), 
accuracy, sensitivity, specificity, PPV and NPV in the internal testing set were 0.97%, 0.95%, 0.94%, 0.97%, 0.98%, 
0.91% respectively, and 0.99%, 0.94%, 0.94%, 0.95%, 0.99%, 0.75% correspondingly in the external testing set. The 
diagnostic accuracy of senior, intermediate and junior cytopathologists was 95.00%, 88.33% and 76.67% under the 
binary diagnostic criteria of PDAC and non-PDAC. In comparison, the accuracy of the SSCNN system was 90.00% 
in the dataset of man-machine competition. The accuracy of the SSCNN model was highly consistent with senior 
cytopathologists (Kappa = 0.853, P = 0.001). The accuracy, sensitivity and specificity of the system in the classification 
of “atypical” cases were 78.79%, 84.20% and 71.43% respectively.
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Introduction
Endoscopic ultrasound-guided fine needle aspiration 
(EUS-FNA) is currently a reliable and minimally invasive 
method for diagnosing pancreatic cancer. It can precisely 
estimate tumor location, size and peripheral vascular 
infiltration. Most importantly, pathological specimens 
can be obtained from puncture fluid and provide evi-
dence for the formulation of treatment plans including 
surgery, palliative chemotherapy, and local treatment. 
Therefore, EUS-FNA is considered the first-line option 
for the diagnosis and treatment of pancreatic cancer [1].

Rapid On-Site Evaluation (ROSE) in the presence of 
pathologists has been confirmed beneficial in improv-
ing smear specimen quality, as well as reducing the nee-
dle puncturing times and complication rate. Hence, the 
demand for ROSE by endoscopists gradually increased 
in these decades [2, 3]. Nevertheless, the relative short-
age and heavy workload of cytopathologists due to the 
ongoing demand for EUS-FNA operations was a com-
mon problem in most developing countries. Therefore, 
artificial intelligence (AI) is expected to alleviate the 
deficiency of cytopathologists. Additionally, the manual 
cytology diagnosis was often subjective and controver-
sial, which could be influenced by the experience and 
fatigue of cytopathologists, leading to inconsistent con-
clusions among different cytopathologists when deal-
ing with indistinguishable pathological images. AI could 
obviously overcome the above shortcomings, and has the 
advantages of convenience, high efficiency, and stable 
performance, so it has broad application prospects in the 
field of pathological diagnosis.

Few studies constructed deep learning (DL) models 
based on EUS-FNA cytological images have reported 
that the accuracy of pancreatic malignant tumors iden-
tification fluctuates between 83.4 and 94.4% [4–6]. For 
instance, Sohn [4] reported an AI model based on ultra-
high resolution whole slide image (WSI), and Zhang [6] 
presented an AI segmentation system by standardized 
cell cluster photographs. However, to the best of our 
knowledge, the majority of studies published previously 
have built AI models under a fully supervised system, 
the region of interests (ROI) was extracted on the basis 
of tremendous manual annotations in the preliminary 
preparation stage. Meanwhile, the complexity of manual 

annotation is aggrandized compared with another medi-
cal image because the morphology of ROI on pathologi-
cal images is complicated and changeable, this makes it 
difficult to include large-scale samples for research; it 
has been regarded as one of the predominant obstacles 
affecting the performance of the model. In contrast, the 
dominant advantage of a semi-supervised deep learning 
model is that partial or only a small portion of images 
needed been labeled beforehand, the model can learn 
the corresponding algorithm through human-computer 
interaction to achieve segmentation of the target region, 
which is free from the dependence on the manually 
selected feature information to achieve higher accu-
racy and efficiency, and dramatically reduces the work-
load of the early manual annotation, so that the artificial 
intelligence can achieve authentically lightweight and 
intelligentization.

In addition, cytopathologists tend to deliberatively clas-
sify suspicious lesions as “atypical” when the morpholog-
ical changes in the cytoplasm and nucleus are not enough 
to diagnose malignant tumors according to the guidelines 
for pancreaticobiliary cytology from the Papanicolaou 
Society of Cytopathology [7]. While “atypical” is a group 
of heterogeneous diagnoses that include inflammatory, 
precancerous lesions and nontypical malignant tumors, it 
brings considerable confusion to endoscopy and surgeon 
in clinical decision-making. Artificial intelligence mod-
els can read the potential information in images, such as 
intensity, texture and spectral features, utilizing complex 
information to train DL models and fulfill the tasks of 
lesion identification, which may have impressive applica-
tion potential in the classification of “atypical”. Unfortu-
nately, research reported on this niche field is still rare. 
Hence, we designed this study to attempt to construct a 
semi-supervised convolutional neural network (SSCNN) 
system for the diagnosis of pancreatic ductal adenocarci-
noma based on EUS-FNA cytological images.

Materials and methods
Patients
A total of 210 patients with pancreatic mass were admit-
ted to The First Affiliated Hospital of Anhui Medical 
University, The First Affiliated Hospital of University 
of Science and Technology of China, Anqing Hospital 

Conclusion  Not merely tremendous preparatory work was drastically reduced, the semi-supervised CNN model 
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Affiliated to Anhui Medical University and The First 
Affiliated Hospital of Bengbu Medical University from 
January 2018 to April 2024 were selected (183, 12, 7 and 8 
cases in order). Inclusion criteria: (1) Pancreatic mass has 
been detected by imageological examinations (CT, MRI 
or ultrasonography) which meet the indication of EUS-
FNA described in the guidelines [7]. (2) Complete the 
EUS-FNA cytology examination with at least one quali-
fied smear (the eligibility criteria was Papanicolaou cytol-
ogy sample adequacy grade C or above [8]). (3) With a 
definitive final diagnosis. (4) With complete clinical and 
follow-up data. Exclusion criteria: (1) With contraindica-
tion of EUS-FNA. (2) The quality and the clarity of the 
smear could not meet the requirements of model con-
struction. (3) The percentage of erythrocyte contamina-
tion area on the background of the smear exceeds 50% 
(contamination grade C [9]). (4) Diagnostic controversy 
existed on a single smear, with a diagnosis between clini-
cal and cytological or cytological and histological.

This study was approved by the Ethics Committee of 
The First Affiliated Hospital of Anhui Medical University. 
It has been registered in clinicaltrials.gov, and its unique 
Protocol ID was PJ-2018-12-17.

Diagnostic criteria/definitions
Pancreatic masses were classified into PDAC and non-
PDAC on the basis of a comprehensive analysis of sero-
logical tests, imaging findings, EUS-FNA, postoperative 
pathology and follow-up outcomes. The diagnostic cri-
teria for PDAC include: (1) Confirmed by postoperative 
pathological results. (2) Confirmed by cytopathology, 
liquid-based cytology, histopathology and immunohisto-
chemistry of EUS-FNA/FNB. (3) Imaging (enhanced CT, 
PET-CT, MRI), serological examination (tumor marker 
CA199) and other auxiliary examination evidence. (4) 
Death due to PDAC occurred during the 6-month follow-
up period. The diagnostic criteria for non-PDAC include: 
(1) Non-PDAC diagnosis (such as chronic pancreatitis, 
pancreatic neuroendocrine tumors, autoimmune pan-
creatitis) were established on the basis of cytopathology, 
liquid-based cytology, histopathology and immunohis-
tochemistry of EUS-FNA/FNB. (2) Survival or imaging 
findings of the mass were unchanged during the 6-month 
follow-up period [10, 11]. In this study, senior patholo-
gists made diagnoses for each image, and the diagnoses 
classification was determined according to the Papanico-
laou Society of Cytopathology Guidelines [12].

Cytological image collection
The EUS examination was accomplished with various 
types of echoendoscope (Fujinon® EG-530UT echoen-
doscopes, FujiFilm Medical Systems, Tokyo, Japan; GF-
UCT240-AL5, or GF-UCT260-AL5, Olympus Medical 
Systems, Tokyo, Japan) and the puncture was performed 

with two types of 22G needles (EchoTip Ultra, Cook 
Medical, Bloomington, IN, USA; Boston Scientific Cor-
poration, Marlborough, MA, USA) in this study.

The standardized image acquisition process was as fol-
lows: unitive images were captured using the Olympus 
microscope (model BX53F2) which was connected to 
the digital pathology reporting system (manufactured by 
Nanjing Jieda Ltd, model: Path QC). The unified magnifi-
cation of the microscope (eyepiece 10 times and objective 
40 times) was 400 times, and the brightness of the back-
ground light source was consistent. The width and height 
of the target image in the captured field of view were 
2592*1944 pixels. The quality of the images was reviewed 
by a senior cytopathologist, and images were eliminated 
for the inferiority of quality on account of the lack of ade-
quate diagnostic cell cluster, stained, unevenly dyed, cells 
overlapping and extrusion.

ROI annotation
Previous studies have confirmed that the sensitivity and 
specificity of EUS-FNA cytological diagnosis could be 
reinforced on condition that the “Suspicious for malig-
nancy” and “Malignant” been distinguished as positive 
for pancreatic cancer within the framework of Papanico-
laou Society of Cytopathology Guidelines [13, 14]. Con-
sequently, “Suspicious for malignancy” and “Malignant” 
cell clusters were set as PDAC with reference to previous 
research on the cytology AI model.

The manual annotation of ROI in binary classification 
was accomplished together by two experienced cytopa-
thologists. Images with disputed ROI boundaries and 
diagnostic arguments should be reviewed and consulted 
by senior cytopathologists until a consensus was reached. 
The image annotation software was Labelme. Red and 
blue lines were selected for PDAC and non-PDAC cell 
cluster demarcation line annotation, respectively. Con-
tinuous image fragments were captured closely to the 
periphery of the cell cluster, avoiding circling background 
images into ROI to the greatest extent during the labeling 
process.

Particularly worth mentioning was a semi-supervised 
CNN system was built in this study, except for 100% 
manual annotation was required in the testing set and 
validation set which only included a minority proportion 
of images, and only 20% of images were annotated manu-
ally in the training set which contained the vast majority 
of images, that is, the ratio of manually annotated images 
to non-manual annotated images was 1:4 approximately. 
It only labeled a small amount of images, which signifi-
cantly reduced the manual annotation workload in the 
preparatory stage of model construction.
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Data set construction
Cytology images were divided into training set, validation 
set and testing set (internal testing set and external test-
ing set) according to the requirements of SSCNN system 
construction and verification. The images from the First 
Affiliated Hospital of Anhui Medical University were ran-
domly divided into training set, validation set and inter-
nal testing set, while the images from the First Affiliated 
Hospital of the University of Science and Technology of 
China fell into the external testing set entirely. The train-
ing set images were used for the construction of the CNN 
model, while the validation set was applied to the vali-
dation of the SSCNN system. Finally, the testing set was 
utilized to verify the segmentation performance and clas-
sification ability of the SSCNN system. Cytopathologists-
System competition set constituted by 60 images from 
Anqing Hospital Affiliated to Anhui Medical University 
was devoted to the comparison of accuracy between 
the SSCNN system and cytopathologists with different 
seniority. A total of 33 images of “atypical” diagnosed by 
expert cytopathologists from The First Affiliated Hospi-
tal of Bengbu Medical University were selected to analyze 
the consistency between the system and the definitive 
diagnosis conclusions based on the serological test, imag-
ing findings, EUS-FNA, postoperative pathology or fol-
low-up outcomes.

Construction of the semi-supervised CNN system
In this study, a semi-supervised cell cluster segmentation 
algorithm was constructed to release the burden of man-
ual labeling and improve the generalization performance. 
Semi-supervised learning was mainly divided into two 
steps, namely pre-training and self-training. Firstly, the 
teacher model was pre-trained by manually annotated 
labels from the training set. Afterward, pseudo-labels 
were generated by the teacher model by predicting the 
unlabeled data in each training batch of the self-train-
ing process, and pseudo-labels were mixed with manual 
labels for training student models. In order to achieve 
consistent regularization of different perturbing inputs, 
a weak enhancement strategy was applied to unlabeled 
data fed into the teacher model that generates pseudo-
labels, and a strong enhancement strategy was applied 
to the same unlabeled data fed into the student model. 
Meanwhile, to improve the quality of pseudo-labels, the 
exponential moving average (EMA) was carried out to 
update the parameters of the teacher model in elevation 
of performance and stability. The teacher model and stu-
dent models have the same network structure, both use 
U-Net, and the encoder backbone network is ResNet50. 
U-Net consists of an encoder and a decoder. The encoder 
backbone progressively represents the input into high-
level semantic features, and the decoder will gradu-
ally decode the semantic feature representation into the 

predicted probability of the mask. Moreover, the feature 
layer corresponding to the encoder and the decoder 
adopts a jump connection to supplement the rich details. 
The weak enhancement strategies in the training process 
include random clipping, angle rotation and flipping. In 
contrast, the strong enhancement strategies include add-
ing random Gaussian noise and random intensity scaling 
based on the weak enhancement. The model construc-
tion process is shown in Fig. 1.

Evaluation indicators
The performance indicators of the SSCNN system 
include two aspects: (1) segmentation performance, 
which refers to the efficiency of segmentation of PDAC 
cell cluster and Non-PDAC cell cluster in the target cyto-
logical images. Indicators include: Mean Intersection 
over Union (mIou), precision, recall, F1-score.

	
Pr ecision = TP

TP + FP

	
Re call = TP

TP + FN

	
F1 = 2 × Pr ecision × Re call

Pr ecision + Re call

	
mIou = 1

k + 1

k∑
i=0

pij∑k
j=0 pij +

∑k
j=0 pji − pii

TP, FP and FN represent true positive, false positive and 
false negative respectively, k denote the labeling results 
of different classes, pij expresses the number of pixels of 
class i predicted to belong to class j, among i, j ∈ (0, 1). 
Precision and Recall are the proportion of real PDAC in 
the samples predicted as PDAC and the proportion of 
correct predictions in all PDAC, respectively. F1-score 
(F1) is a balanced indicator, determined by precision 
and recall. mIou is an accuracy metric that measures the 
similarity between the actual situation and the predicted 
result.

(2) Classification performance: refers to the capacity of 
the model to qualitatively classify PDAC cell cluster and 
non-PDAC cell cluster in the target images. Indicators 
include: ROC curve, accuracy, sensitivity, specificity, pos-
itive predictive value (PPV) and negative predictive value 
(NPV).

The cytopathologists were divided into senior (exceed 
15 years), intermediate (10–15 years) and junior (5–9 
years) groups according to the years of working (expe-
rience), with two cytopathologists in each group. The 
images were prepared into web links and sent to 6 cyto-
pathologists, with PDAC and non-PDAC options under 
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each image. Each cytopathologist checked the images 
independently and made a judgment, then submitted 
them to the backend for calculating diagnosis accuracy 
and efficiency comparison with the SSCNN system.

“Atypical” diagnosed images by expert cytopathologists 
were selected and fed into the model, analyzing the con-
sistency between the model and the definitive diagno-
sis conclusions. The flow chart of this study is shown in 
Fig. 2.

Statistics
McNemar test was adopted to compare efficacy indica-
tors, Cohen’s Kappa test and correlation coefficient were 
used for consistency evaluation of diagnostic accuracy, 
the SPSS20.0 system was selected as statistical processing 
software, and the test statistic P value was 0.05.

Results
Patient population and basic information
A total of 183,12 and 7 patients with pancreatic mass who 
underwent EUS-FNA from The First Affiliated Hospital 
of Anhui Medical University, The First Affiliated Hospi-
tal of the University of Science and Technology of China, 
Anqing Hospital Affiliated to Anhui Medical University 
were recruited. Qualified pathological smears were col-
lected and 2989, 131 and 60 unified magnification images 

of pancreatic cell clusters were photographed respec-
tively. Besides, 33 qualified pathological images that were 
diagnosed as “atypical” from 8 patients admitted to the 
First Affiliated Hospital of Bengbu Medical University 
were collected additionally.

One hundred patients were diagnosed with PDAC and 
110 patients were non-PDAC ultimately. A total of 2028 
unified magnification images of PDAC cell clusters and 
1152 non-PDAC cell clusters were photographed.

The basic information and pathological data of the 
patients were summarized in Table 1.

Data sets and annotation
A total of 1,088 images were manually annotated in the 
preliminary preparation stage, included 535 in the train-
ing set and the remaining 553 images in the testing and 
validation sets. One image may contain multiple cell clus-
ters (ROI), ultimately, a total of 1529 ROIs were manu-
ally annotated, including 978 PDAC cell clusters and 551 
non-PDAC cell clusters.

The training set consisted of 2567 images from the First 
Affiliated Hospital of Anhui Medical University, of which 
535 images were manually annotated and the remain-
ing 2032 images were unannotated. The Validation set, 
internal testing set and the external testing set consist 
of 134, 288 and 131 images respectively. The detailed 

Fig. 1  The process of SSCNN system construction: The teacher model trained by manually labeled data in step 1 was the stage of model pre-training. 
The pseudo labels generated by the teacher model in step 2, the data re-integration in step 3, the student model generated by the new database con-
taining manual and pseudo-labels in step 4, the teacher model update in step 5 and cycling continuous improvement in step 6 was the stage of model 
self-training.
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distribution and annotation of PDAC and non-PDAC in 
the data sets are shown in Table 2.

Segmentation and classification performance of the 
SSCNN system
The segmentation efficiency indexes mIou, precision, 
recall and F1-score of the SSCNN system in the inter-
nal testing set were 88.30%, 93.21%, 94.24% and 93.68% 
respectively. Analogously, the mIou, precision, recall and 

F1-score of the SSCNN system in the external testing set 
were successively 87.75%, 93.81%, 93.14% and 93.48%. 
The PDAC classification efficiency indexes of the SSCNN 
system including Area under the ROC curve (AUC), 
accuracy, sensitivity, specificity, PPV, NPV in internal 
testing set were 0.97, 95.14%, 93.82%, 97.27%, 98.23%, 
90.68% respectively, and 0.99, 93.89%, 93.58%, 95.45%, 
99.03% and 75.00% correspondingly in external test-
ing set. In addition, the CNN system was trained using 

Table 1  Patient population and basic information
Clinical features The First Affiliated Hos-

pital of Anhui Medical 
University

The First Affiliated 
Hospital of the 
USTC

The Anqing Hospital 
Affiliated to Anhui 
Medical University

The First Affili-
ated Hospital of 
Bengbu Medi-
cal University

Gender (n) male 111 8 4 5
female 72 4 3 3

Age (years) 61.13 ± 12.08 63.25 ± 8.88 69.00 ± 13.81 64.38 ± 10.68

Puncture times (
−
x±s)

3.55 ± 0.61 3.33 ± 0.49 3.14 ± 0.69 3.38 ± 0.52

Smears(
−
x±s)

6.90 ± 2.31 6.25 ± 1.13 8.57 ± 1.51 7.25 ± 1.58

Standardized images (n) 2989 131 60 33
Lesion location (n) Uncinate process of 

pancreas
16 1 0 1

Head and neck of 
pancreas

139 6 4 5

Body and tail of
pancreatic

28 5 3 2

Cytopathological 
diagnosis(n)

PDAC 83 7 4 Atypical
Non-PDAC 100 5 3 Atypical

Definitive diagnosis(n) PDAC 86 7 4 3
Non-PDAC 97 5 3 5

Fig. 2  Schematic flow chart
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just 535 labeled images in a supervised learning setting 
to emphasize the advantages of SSCNN trained with a 
larger set of unlabeled images. The details are presented 
in Tables 3 and 4; Fig. 3.

Competition between SSCNN system and cytopathologists
The diagnostic accuracy of senior, intermediate and 
junior cytopathologists was 95.00%, 88.33% and 76.67%, 
while the diagnostic accuracy of the SSCNN system was 
90.00%. The results were statistically different between 
the four groups (P = 0.019). The accuracy of the SSCNN 
system was highly consistent with senior cytopatholo-
gists (Kappa = 0.853). The details are presented in Table 5; 
Fig. 3.

The performance of the system in the interpretation of 
“atypical”
The accuracy, sensitivity and specificity of the system in 
the classification of “atypical” cases were 78.79%, 84.20% 
and 71.43% respectively compared with the definitive 

diagnosis conclusion. Additionally, representative images 
for model visualization are shown in Fig. 4.

Discussion
In this study, we constructed a semi-supervised CNN 
system for the diagnosis of PDAC based on EUS-FNA 
cytological images via partial annotation in advance, 
and the system showed outstanding performance in the 
segmentation and classification of PDAC cell clusters. 
‌‌Subsequently, we compared the differences in diagnostic 
performance between the system and the cytopatholo-
gist, the results indicate highly consistent between the 
SSCNN system and senior cytopathologists. what’s more, 
the system could effectively classify the images which 
artificially diagnosed as “atypical” with relatively preci-
sion into binary diagnosis of “PDAC” and “non-PDAC”.

The reports of artificial intelligence in the field of endo-
scopic ultrasonography have spring up exuberantly in 
the last few years [15–18]. In the previously published 
researches, Sohn [4] built a DL system named “MIPCL” 
on the basis of a Whole slide image (WSI) with ultra-
high resolution. The F1-Score and AUC of the MIPCL 
model in the identification of pancreatic cancer cells 
were 87.87% and 0.92 respectively. However, the system 
based on WSI always occupies an immense burden on 
runtime storage, which brings a great challenge to the 
performance of computers and quick acquisition of WSI 
was difficult to achieve in clinical practice. Another EUS-
FNA cytological CNN system reported by Zhang Song 
[6] showed remarkable lesion segmentation and patho-
logical classification performance, nevertheless, their 
study adopted a fully supervised learning model, and the 
construction of a fully supervised model depended on 
detailed manual annotation in the preliminary prepara-
tion stage. The target images involved in model training, 
verification and testing need to be completely annotated, 
which generates a laborious and abundant workload. 
The performance of AI models was ultimately depressed 
under the influence of insufficient image samples in 
partial studies. Lin Rong [5] constructed an AI model 
for EUS-FNA cytological image classification, and the 
accuracy of internal verification and external verifica-
tion was 83.4% and 88.7% respectively. However, none 
of the above studies further explored the identification 
of images manually diagnosed as “atypical”, which was a 

Table 2  Data sets and annotations(n)
Data sets Classification Manual 

annotated
Unannotated

Training set PDAC 351 1268
Non-PDAC 184 764

Validation set PDAC 93 /
Non-PDAC 41 /

Internal testing set PDAC 178 /
Non-PDAC 110 /

External testing 
set

PDAC 109 /
Non-PDAC 22 /

Cytopathologists-
System competi-
tion set

PDAC / 29
Non-PDAC / 31

Table 3  The segmentation performance of the semi-supervised 
CNN system (%)
Model Data sets mIou precision recall F1-score
SSCNN Validation set 86.20 91.82 93.22 92.44

Internal testing set 88.30 93.21 94.24 93.68
External testing set 87.75 93.81 93.14 93.48

CNN Validation set 78.69 87.00 86.69 88.07
Internal testing set 79.66 87.22 90.18 88.68
External testing set 80.40 87.40 90.95 89.14

Table 4  The classification performance of the semi-supervised CNN system (95% confidence interval)
Data sets AUC accuracy sensitivity specificity PPV NPV
Validation set 0.98 94.78% (89.61%, 97.45%) 94.62% (88.03%, 97.68%) 95.12% (83.86%, 98.65%) 97.78% (92.26%, 

99.39%)
88.64% (76.02%, 
95.05%)

Internal testing set 0.97 95.14% (92.01%, 97.08%) 93.82% (89.27%, 96.51%) 97.27% (92.29%, 99.07%) 98.23% (94.94%, 
99.39%)

90.68% (84.08%, 
94.71%)

External testing set 0.99 93.89% (88.41%, 96.87%) 93.58% (87.33%, 96.85%) 95.45% (78.20%, 99.19%) 99.03% (94.70%, 
99.83%)

75.00% (56.64%, 
87.32%)
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confusing diagnosis to clinicians: overdiagnosis of malig-
nant tumors may bring unnecessary surgical injury to 
patients, on the contrary, missed diagnosis may delay the 
opportunity for timely treatment.

In this study, we applied a semi-supervised learning 
model based on EUS-FNA cytological images. Despite 
semi-supervised AI studies on the pathological diagnosis 
of prostate cancer [19], skin tumor [20], and colon cancer 

Table 5  The performance of the SSCNN system and cytopathologists (95% confidence interval)
Participant accuracy sensitivity specificity PPV NPV
SSCNN model 90.00% (79.85%, 95.34%) 82.76% (65.45%, 92.40%) 96.77% (83.81%, 99.43%) 96.00% (80.46%, 99.29%) 85.71% (70.62%, 

93.74%)
CNN model 70.00% (57.49%, 80.10%) 96.55% (82.82%,99.39%) 45.16% (29.16%,62.23%) 62.22% (47.63%, 74.89) % 93.33% (70.18%, 

98.81%)
Senior 
cytopathologists

95.00% (86.30%, 98.29%) 96.55% (82.82%,99.39%) 93.55% (79.28%,98.21%) 93.33% (78.68%, 98.15) % 96.67% (83.33%, 
99.41%)

Intermediate 
cytopathologists

88.33% (77.82%, 94.23%) 93.10% (78.04%,98.09%) 83.87% (67.37%,92.91%) 84.36% (68.25%, 91.14) % 92.86% (77.35%, 
98.02%)

Junior 
cytopathologists

76.67% (64.56%, 85.56%) 82.76% (65.45%,92.40%) 70.97% (53.41%,83.90%) 72.73% (55.78%, 84.93) % 81.48% (63.30%, 
91.82%)

Fig. 3  The ROC of the SSCNN system in testing, validation and system-cytopathologists competition. CNN: convolutional neural networks trained 
only on labeled images, SSCNN: semi-supervised convolutional neural network. (a) ROC of the validation set. (b) ROC of the internal testing set. (c) ROC 
of external testing set. (d) ROC of competition between AI system and cytopathologists
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[21] have already been reported, this research probably 
was the first report of semi-supervised AI system on 
EUS-FNA smears to the best of our knowledge until 
now. The core principle of the semi-supervised model 
was self-learning. The method of self-training the CNN 
model with pseudo-label data can achieve regulariza-
tion, reduce the overfitting generated by the model train-
ing with limited labeled data, and effectively improve 
the generalization and prediction accuracy of the system 
[22]. The dominant advantage of the semi-supervised 
system was that only 1/3 ∼ 1/5 or even fewer data need to 
be manually annotated in model training, thus 3 ∼ 5 times 
or nearly 10 times of training data could be assimilated 
under the parallelly workload, hence, model diagnosis 
efficiency will be promoted with more plentiful samples 
as a prerequisite [23]. Previous studies have reported that 

the performance of semi-supervised CNN was better 
than fully supervised model VGG and AlexNET, which 
with the most advanced algorithm reported at present 
[24, 25].

In this study, the accuracy, sensitivity and specificity of 
the SSCNN system in identifying PDAC reached 95.14%, 
93.82%, 97.27% and 93.89%, 93.58%, and 95.45% in inter-
nal and external testing sets respectively. The model 
accomplished PDAC image information extraction on 
the basis of adequate sample content in the training set 
and showed excellent generalization ability. Besides, 
the remarkable resemblance of accuracy, sensitivity and 
specificity in internal and external testing sets indicated 
that the system was robust. Further analysis on the cases 
which was misjudged by model showed that the propor-
tion of PDAC misjudged as non-PDAC was higher than 

Fig. 4  Model visualization: (a) Representative images of manually annotated and AI system-identified PDAC and non-PDAC cell clusters in the internal 
test set. (b) Representative images of manually annotated and AI system-identified cell clusters in the external test set
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that of non-PDAC cases identified as PDAC, suggested 
that the risk of PDAC missed diagnosis was higher than 
the risk of upgrading pathological findings in the sys-
tem. Retrospective analysis of the features of pathologi-
cal degradation showed relatively low quality of these 
smears, some cell clusters were deformed by extrusion 
and lost the polarity distribution rule, which interfered 
with the interpretation result. It reminds us that the sig-
nificance of quality improvement in smear preparation 
and manual review was required when the model diagno-
ses non-PDAC. Similarly, the model also showed excel-
lent segmentation performance for PDAC, accurately 
segmenting the location of PDAC in images helps junior 
pathologists quickly find suspicious lesions in multitu-
dinous cell clusters and reduces the difficulty of image 
reviewing. Moreover, it could be beneficial to improve 
lesion localization ability in endoscopists who are trained 
with cytopathological knowledge and create favorable 
conditions for ROSE implementation.

The comparative results of this study showed that 
there exist differences in diagnostic accuracy between 
the SSCNN system, senior cytopathologist, interme-
diate cytopathologist and junior cytopathologist. In 
order of accuracy from high to low, senior cytopatholo-
gist > SSCNN system > Intermediate > Junior. Kappa cor-
relation analysis showed that it was highly consistent 
between the system and senior cytopathologists. Finally, 
we specially selected the images artificially diagnosed as 
“atypical” and imported them into the system for clas-
sification. The accuracy, sensitivity and specificity were 
78.79%, 84.20% and71.43% respectively compared with 
the definitive diagnosis, which had achieved satisfactory 
results and suggested that a further accurate classifica-
tion by the SSCNN system should be carried out when 
the manual diagnosis was atypical.

There are still some shortcomings in this study. First of 
all, this system was set as a binary variable with PDAC 
and non-PDAC, whereas non-PDAC includes a variety of 
subtypes such as autoimmune pancreatitis, chronic pan-
creatitis and pancreatic neuroendocrine tumors, thus, 
subtypes identification was unavailable by this system. 
Secondly, the system has favourable performance in ret-
rospective study, but it was still necessary to design pro-
spective studies and include more eligible patients for 
further verification. Endoscopist with qualified cytologi-
cal smear preparation skills can obtain the permission of 
SSCNN model on the condition of the system installed 
and debugged by computer engineers, real-time opera-
tion of the SSCNN model in an endoscopic ultrasound 
operating center will help achieve the clinical practice of 
SSCNN model assisted ROSE in the absence of cytopa-
thologist. Therefore, large-scale, prospective, multicenter 
and randomized studies need to be employed to testify 

the effect of ROSE accomplished by endoscopists allied 
with this semi-supervised model in the future.

Conclusion
This study introduced a novel AI-based method for 
the diagnosis of pancreatic ductal adenocarcinoma on 
EUS-FNA cytological images, the semi-supervised con-
volutional neural network demonstrated satisfactory 
performance in PDAC cell cluster segmentation and clas-
sification, and helpful to solve the controversial issues in 
manual diagnosis.
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