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Abstract
Purpose  Prognostic prediction plays a pivotal role in guiding personalized treatment for patients with locoregionally 
advanced nasopharyngeal carcinoma (LANPC). However, few studies have investigated the incremental value of 
functional MRI to the conventional MRI-based radiomic models. Here, we aimed to develop a radiomic model 
including functional MRI to predict the prognosis of LANPC patients.

Methods  One hundred and twenty-six patients (training dataset, n = 88; validation dataset, n = 38) with LANPC were 
retrospectively included. Radiomic features were extracted from T1-weighted imaging (T1WI), T2-weighted imaging 
(T2WI), contrast-enhanced T1WI (cT1WI), and diffusion-weighted imaging (DWI). Pearson correlation analysis and 
recursive feature elimination or Relief were used for identifying features associated with progression-free survival 
(PFS). Five machine learning algorithms with cross-validation were compared to develop the optimal single-layer and 
fusion radiomic models. Clinical and combined models were developed via multivariate Cox regression model.

Results  The clinical model based on TNM stage achieved a C-index of 0.544 in the validation dataset. The fusion 
radiomic model, incorporating DWI-, T1WI-, and cT1WI-derived imaging features, yielded the highest C-index of 0.788, 
outperforming DWI-based (C-index = 0.739), T1WI-based (C-index = 0.734), cT1WI-based (C-index = 0.722), and T1WI 
plus cT1WI-based models (C-index = 0.747) in predicting PFS. The fusion radiomic model yielded the C-index of 0.786 
and 0.690 in predicting distant metastasis-free survival and overall survival, respectively. However, the addition of TNM 
stage to the fusion radiomic model could not improve the predictive power.

Conclusion  The fusion radiomic model demonstrates favorable performance in predicting survival outcomes in 
LANPC patients, surpassing TNM staging alone. Integration of DWI-derived features into conventional MRI radiomic 
models could enhance predictive accuracy.

Early prediction of progression-free 
survival of patients with locally advanced 
nasopharyngeal carcinoma using multi-
parametric MRI radiomics
Lian Jian1†, Cai Sheng2†, Huaping Liu1†, Handong Li1, Pingsheng Hu1, Zhaodong Ai1, Xiaoping Yu1* and Huai Liu1*

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-025-13899-2&domain=pdf&date_stamp=2025-3-20


Page 2 of 13Jian et al. BMC Cancer          (2025) 25:519 

Introduction
Nasopharyngeal carcinoma (NPC) exhibits a unique geo-
graphical distribution, with the highest incidence rates 
reported in east and southeast Asia [1]. Approximately 
70-80% of NPC patients are classified as having locore-
gionally advanced NPC (LANPC) [1]. Moreover, the 
5-year survival rates for LANPC patients who undergo 
chemoradiotherapy remain a persistent challenge due to 
locoregional recurrence and distant metastasis, typically 
ranging from 70 to 80% [2]. Thus, accurately predicting 
the prognosis of LANPC patients holds significant clini-
cal importance, enabling the optimization of treatment 
strategies, enhancement of patient care, and ultimately 
leading to improvements in survival and quality of life.

In clinical practice, the tumor-node-metastasis (TNM) 
classifcation system serves as a crucial tool for clinical 
decision-making and prognostic evaluation in LANPC. 
While patients classified under the same category are 
generally treated with similar therapeutic strategies, 
their clinical outcomes can vary significantly [3]. This 
disparity indicates that the TNM system predominantly 
focuses on the tumor’s relationship with surrounding tis-
sues and organs, neglecting intratumor heterogeneity. As 
a result, its capacity to accurately predict risk stratifica-
tion markers is limited. In contrast, magnetic resonance 
imaging (MRI), renowned for its superior soft-tissue 
resolution, provides more precise visualization of micro-
scopic lesions and the exact extent of abnormalities. Pres-
ently, MRI is extensively utilized for tumor staging, image 
guidance, and follow-up through visual interpretation. 
However, the use of MRI predominantly revolves around 
qualitative structural information.

Radiomics, as a computational methodology, involves 
the extraction of quantitative features from medical 
images to reveal underlying tumor characteristics [4]. 
These features function as biomarkers that signify tumor 
biology and histological properties. Through the correla-
tion of these radiomic signatures with clinical outcomes, 
predictive models are formulated to anticipate treatment 
response and survival. Many studies have utilized MRI 
radiomic models to predict the prognosis of LANPC 
patients [5, 6, 7, 8, 9, 10, 11, 12, 13]. Nevertheless, most of 
these studies are based on conventional MRI sequences 
and have not explored the incremental value of diffusion-
weighted imaging (DWI) to the predictive models.

Machine learning (ML) algorithms are transform-
ing the prognosis prediction landscape for LANPC 
[14], which identify intricate patterns and features 
within medical images, surpassing human capabilities. 
By integrating multimodal imaging data, ML models 

enable precise and robust prognostication. Combining 
radiomics with ML presents a synergistic approach to 
LANPC prognosis prediction. By merging the wealth 
of quantitative information from radiomics with the 
advanced pattern recognition capabilities of ML, com-
prehensive and personalized prognostic models are 
developed. These models provide clinicians with invalu-
able decision support, guiding tailored treatment strate-
gies for LANPC patients.

In this current study, we aimed to develop and vali-
date a machine learning-based radiomic model including 
DWI-derived features to predict the progression-free sur-
vival (PFS) of LANPC patients. This tool has the potential 
to enhance treatment decision-making, improve patient 
counseling, and ultimately lead to better clinical out-
comes. In addition, we explored the added value of DWI 
compared to conventional MRI in a radiomic modeling 
approach.

Materials and methods
Patient cohort
This retrospective cohort study was approved by our Eth-
ics Committee and the requirement to obtain informed 
written consent was waived. The study was performed 
in accordance with the Declaration of Helsinki. Between 
August 2015 and November2018, the medical records 
of 232 NPC patients were collected; the inclusion cri-
teria were as follows: [1] patients with pathologically 
confirmed newly diagnosed NPC; [2] patients aged ≥ 18 
years; [3] Eastern Cooperative Oncology Group perfor-
mance status of 0–1; [4] patients were classified as III-IVa 
according to the 8th edition of AJCC system; [5] patients 
who received concurrent chemoradiotherapy (CCRT) 
after 2 or 3 cycles of induction chemotherapy (IC); and 
[6] MRI examinations were performed before IC regi-
mens. The exclusion criteria were as follows: [1] patient 
has concomitant severe diseases of organs such as the 
heart, lungs, and brain; [2] patient has concomitant pri-
mary tumors in other organs; [3] previous anti-cancer 
therapy before MRI scans; [4] incomplete MR images and 
low quality images; and [5] lost to follow up. The patient 
enrollment process is illustrated in Fig. 1. Finally, a total 
of 126 patients were included for analysis.

All patients receive 2–3 cycles of platinum-based 
doublet or triplet chemotherapy regimens (such as TP, 
GP, PF, TPF) for induction chemotherapy. The dose of 
platinum-based agents (e.g., cisplatin/oxaliplatin/ neda-
platin) is 60–80  mg/m², administered intravenously 
every 3 weeks as one cycle. Doublet regimens consist 
of: platinum agents combined with paclitaxel liposome 
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(135–175 mg/m² intravenous infusion); platinum agents 
combined with docetaxel (60–75  mg/m² intravenous 
infusion); platinum agents combined with fluoroura-
cil (300–500  mg/m²continuous intravenous infusion for 
3–5 days). Triplet regimens consist of: platinum agents 
combined with paclitaxel liposome (135–175  mg/m² 
intravenous infusion) + fluorouracil (300–500  mg/m² 
continuous intravenous infusion for 3–5 days); platinum 
agents combined with docetaxel (60–75  mg/m² intrave-
nous infusion) + fluorouracil (300–500 mg/m² continuous 
intravenous infusion for 3–5 days). After IC therapy, all 
patients underwent definitive intensity-modulated radia-
tion therapy (IMRT) using a 6MV-X linear accelerator. 

IMRT was delivered with the patient immobilized in a 
thermoplastic mask for head, neck, and shoulder posi-
tioning. CT simulation was performed with a slice thick-
ness of 3 mm, initiated after the completion of the final 
session of IC. The radiation doses were as follows: PGT-
Vnx and PGTVrpn received 68–72 Gy/ 30–33 fractions, 
PGTVnd received 66–70  Gy/30–33 fractions, PCTV1 
received 60–62 Gy/30–33 fractions, and PCTV2 received 
50–56  Gy/30–33 fractions. Specifically, the gross tumor 
volume (GTV) was outlined based on the tumor regres-
sion area post-IC, with particular attention to includ-
ing the pre-treatment skull base invasion area within 
the GTV for radical dosing. Simultaneously, ensuring 

Fig. 1  The flowchart of patient inclusion
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Fig. 2  Radiomic workflow for predicting prognosis in LANPC. The key steps of the radiomics approach encompass clinical and MRI data acquisition, 
manual segmentation of MRI images, feature extraction and selection, model development, and comprehensive evaluation of the model in terms of 
discrimination, calibration, and clinical utility
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coverage of the entire tumor area prior to IC within the 
low-risk clinical target volume (CTV). In this study, the 
radiotherapy plan follows the 2018 international guide-
lines for delineating clinical target volumes in NPC [15]. 
During IMRT, patients received 1–3 cycles of platinum-
based chemotherapy concurrently. The specific drug 
and dosage were as follows: cisplatin at a dose of 80–100 
mg/m2, administered intravenously every 21 days as one 
cycle of chemotherapy.

After completion of initial treatment, each patient 
was followed up for every 3 months in the first 2 years, 
then every 6 months in the third to fifth year, and annu-
ally thereafter. The primary endpoint of this study is PFS, 
which is defined as the time from the initiation of treat-
ment to the date of disease progression or death from any 
cause. The secondary endpoints include distant metasta-
sis-free survival (DMFS) and overall survival (OS). DMFS 
is defined as the period from the start of treatment until 
the occurrence of recurrence or metastasis, while OS 

is defined as the duration of time from the initiation of 
treatment until death from any cause.

Clinical characteristics were collected from medi-
cal records, including age, sex, TNM stage, WHO Type, 
Epstein-Barr virus DNA (EBV-DNA), chemoradio-
therapy regimens, and treatment response to IC. TNM 
staging was performed following the 8th edition of the 
American Joint Committee on Cancer (AJCC)/Union 
for International Cancer Control (UICC) staging system 
[16]. The WHO types were classified as follows: keratin-
izing squamous cell carcinoma (type I), nonkeratinizing 
differentiated carcinoma (type II), and nonkeratinizing 
undifferentiated carcinoma (type III) [17]. The clinical 
treatment response to IC was defned as stable disease 
(SD), progressive disease (PD), partial response (PR), or 
complete response (CR) based on the Response Evalua-
tion Criteria in Solid Tumors 1.1 (RECIST) criteria [18]. 
Patients were categorized into responders (CR/PR) and 
non-responders (SD/PD).

MRI image acquisitions
The MRI examinations were performed on a 1.5-T MRI 
scanner (Optima® MR360, GE Healthcare). Standard 
head coil was used for scanning. The parameters for each 
sequence were listed as follows: T1WI, repetition time 
(TR) / echo time (TE) = 570/8 ms, slice thickness = 5 mm, 
field of view (FOV) = 220  mm, matrix = 320 × 192; axial 
T2WI, TR/TE = 6289/8 ms, slice thickness = 5  mm, 
FOV = 220  mm, matrix = 320 × 192; cT1WI, TR/
TE = 365/3 ms; slice thickness = 5  mm, interslice 
gap = 1  mm, FOV = 220  mm, matrix = 290 × 192; DWI (a 
single-shot diffusion-weighted spin-echo echo-planar 
sequence), b values = 0, 800  s/mm2, TR/TE = 10,000/92 
ms, slice thickness = 5  mm, FOV = 240  mm, 
matrix = 160 × 160. For the post-contrast acquisition, 
Gadodiamide (Omniscan™, GE Healthcare) was admin-
istrated intravenously at a rate of 3.5 ml/s and a dosage 
of 0.1 mmol/kg body weight, immediately followed by a 
rapid 20 ml normal saline solution flush.

Radiomic analysis pipeline
The radiomic workflow for predicting prognosis in 
LANPC is shown in Fig. 2.

Tumor segmentation
We used open-source ITK-SNAP software (version 3.6.0, 
www.itksnap.org) for the manual segmentation of MRI 
images (Fig. 1). Tumor segmentation was performed on 
the tumor slice-by-slice by a radiologist (L.J., with 6-year 
experience in NPC diagnosis) and subsequently reviewed 
by a board-certified radiologist (X.P.Y., > 10-year 
experience).

Table 1  Patient characteristics
Characteristics Training dataset

(n = 88)
Validation 
dataset
(n = 38)

P-
val-
ue

Sex 0.134
  Male 69 (78.4) 25 (65.8)
  Female 19 (21.6) 13 (34.2)
Age (years) 43.3 ± 9.1 46.0 ± 9.2 0.128
Overall stage 0.639
  III 48 (54.5) 19 (50.0)
  IV 40 (45.5) 19 (50.0)
Histology, WHO Type 0.275
  I 2 (2.3) 0
  II 28 (31.8) 17 (44.7)
  III 58 (65.9) 21 (55.3)
EBV-DNA (copies/mL) 0.585
  ≤400 46 (52.3) 18 (47.4)
  >400 26 (29.5) 10 (26.3)
  Unknown 16 (18.2) 10 (26.3)
IC regimens 0.853
  TP 19 (21.6) 8 (21.1)
  DP 19 (21.6) 10 (26.3)
  DPF 45 (51.1) 19 (50.0)
  TPF 5 (5.7) 1 (2.6)
IC cycles 0.880
  2 52 (59.1) 23 (60.5)
  3 36 (40.9) 15 (39.5)
Treatment response 0.287
  Responder 75 (85.2) 35 (92.1)
  Non-responder 13 (14.8) 3 (7.9)
Median PFS (months) 49.1 (41.4, 58.7) 48.8 (41.9, 54.7) 0.776
Abbreviations: EBV DNA, Epstein-Barr virus DNA; IC, Induction chemotherapy; 
TP, paclitaxel liposome + cisplatin/nedaplatin; DP, docetaxel + Cisplatin /
Nedaplatin; DPF, docetaxel + cisplatin/nedaplatin + 5-fluorouracil; TPF, 
paclitaxel liposome + cisplatin/nedaplatin + 5-fluorouracil; PFS, progression-
free survival

http://www.itksnap.org
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Image preprocessing
Utilizing the N4 bias correction algorithm in 3D Slicer 
software to mitigate MRI field inhomogeneity artifacts, 
thereby reducing the effects of radiofrequency field 

non-uniformity and inherent MR equipment variations. 
Employing a selected grayscale normalization algorithm 
to standardize MRI grayscale values to the range of [0, 
255], mitigating grayscale discrepancies across MRI 
sequences due to variations in patients, acquisition times, 
and parameter settings, ensuring accurate and reliable 
texture analysis. Subsequently, resampling the regions 
of interest to a uniform size (1*1*1) prior to feature 
extraction.

Feature extraction
Using the open-source package Pyradiomics v3.0, 
radiomic features were extracted from the original MRI, 
log-filtered, and wavelet-transformed images of each 
sequence. This software complies with the standards 
established by the Image Biomarker Standardization Ini-
tiative [19]. The features include the following types: [1] 
shape-based features; [2] first-order statistical features; 
[3] texture features: grey-level co-occurrence matrix 
(GLCM), grey-level run length matrix (GLRLM), gray-
level size zone matrix (GLSZM), gray-level dependence 
matrix (GLDM), and neighborhood grey-tone difference 
matrix (NGTDM); [4] wavelet features. A total of 962 
image features were extracted from each MR sequence.

Feature selection and model construction
Univariate and multivariate Cox proportional hazards 
analyses with stepwise regression method were per-
formed to identify independent indicators of PFS. The 
variables with P values < 0.05 in both univariate and mul-
tivariate analyses were included in the clinical models. 
The clinical model was constructed using Cox regression 
analysis based on these selected independent variables.

Radiomic feature selection and model construction 
were based on the training dataset. Firstly, Pearson cor-
relation analysis (PCC) was performed on the extracted 
radiomic features from each MR sequence, and the fea-
ture set with low redundancy was preliminarily obtained 
(correlation coefficient threshold was set at 0.99) [20]. 
After preliminary screening, the radiomic feature val-
ues were standardized by Z-score algorithm. Recursive 
feature elimination (RFE) or Relief was used for the final 
feature selection. Five ML algorithms were compared to 
develop optimal single-layer and fusion radiomic mod-
els, including Support Vector Machine (SVM), Random 
forest (RF), Naive Bayes (NB), Gaussian process (GP) or 
Linear discriminant analysis (LDA). The feature selection 
and ML algorithm were optimized by cross-validation, 
and the optimal radiomic model was evaluated in the val-
idation dataset. The performance evaluation metrics of 
the predictive model were C-index, calibration curve, and 
clinical impact curve. The calibration curve assesses the 
accuracy of a predictive model by plotting the observed 
event rates against the predicted probabilities. Ideally, 

Table 2  The selected radiomic features for radiomic models
Models Features
T1WI-based 
model

original_shape_Flatness
original_ngtdm_Strength
log-sigma-6-0-mm-3D_glszm_SmallAreaHighGray-
LevelEmphasis
log-sigma-6-0-mm-3D_ngtdm_Coarseness
wavelet-LHL_firstorder_Entropy
wavelet-LHL_glcm_SumSquares
wavelet-LHH_firstorder_Energy
wavelet-LHH_glszm_SizeZoneNonUniformityNormalized
wavelet-HLL_glszm_HighGrayLevelZoneEmphasis
wavelet-HLH_glszm_HighGrayLevelZoneEmphasis
wavelet-HHH_firstorder_Energy
wavelet-HHH_firstorder_Minimum

T2WI-based 
model

log-sigma-4-0-mm-3D_glszm_SmallAreaLowGray-
LevelEmphasis
wavelet-HHL_glszm_GrayLevelNonUniformityNormalized

cT1WI-
based 
model

log-sigma-6-0-mm-3D_glszm_SizeZoneNonUniformity
original_glszm_SmallAreaHighGrayLevelEmphasis
wavelet-LHL_glszm_SizeZoneNonUniformity
wavelet-LLH_glszm_SizeZoneNonUniformityNormalized
wavelet-LLH_glszm_SizeZoneNonUniformity
original_glszm_SmallAreaEmphasis
wavelet-HHH_glcm_MaximumProbability
wavelet-HHH_glcm_Imc2
wavelet-HLL_glcm_MaximumProbability
wavelet-HHL_glszm_SizeZoneNonUniformity
log-sigma-6-0-mm-3D_glszm_SmallAreaLowGray-
LevelEmphasis

DWI-based 
model

original_shape_Flatness
original_ngtdm_Strength
log-sigma-6-0-mm-3D_glszm_SmallAreaHighGray-
LevelEmphasis
log-sigma-6-0-mm-3D_ngtdm_Coarseness
wavelet-LHL_firstorder_Entropy
wavelet-LHL_glcm_SumSquares
wavelet-LHH_firstorder_Energy
wavelet-LHH_glszm_SizeZoneNonUniformityNormalized
wavelet-HLL_glszm_HighGrayLevelZoneEmphasis
wavelet-HLH_glszm_HighGrayLevelZoneEmphasis
wavelet-HHH_firstorder_Energy
wavelet-HHH_firstorder_Minimum
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this curve should closely follow the 45-degree diagonal 
line, indicating that the observed event rates align with 
the predicted probabilities. The calibration curve assesses 
the accuracy of a predictive model by plotting the 
observed event rates against the predicted probabilities. 
Ideally, this curve should closely follow the 45-degree 
diagonal line, indicating that the observed event rates 
align with the predicted probabilities. The threshold was 
set by X-tile 3.6.1 (Yale University, USA) [21] to divide 
the high- and low-risk groups. The Log-rank test was 
used to evaluate the significance of the survival differ-
ences between the two groups.

The combined models integrating significant clinical 
variables and the optimal radiomic model were devel-
oped via multivariate Cox proportional-hazards model.

Statistical analysis
Comparison of the clinicopathologic features and DNA 
methylation data between the training and validation 
cohorts used a t-test, Chi-squared test, or Mann–Whit-
ney U-test, where appropriate. For model construction, 
the clinical models were built using univariate and mul-
tivariate Cox regression analyses. The radiomic model 
was constructed using ML algorithms, and the rad-scores 
were yielded by performing Cox regression analysis on 
the predicted probabilities generated by the model. The 
combined model was established by incorporating sig-
nificant clinical factors, and fusion rad-scores. All predic-
tive models were developed on the training cohort and 
verified in a held-out validation cohort. Python package 
(v 3.7.6) was employed for all statistical analyses. A two-
tailed P value < 0.05 was considered to indicate statisti-
cally signifcant differences.

Results
Patient characteristics
The mean age of the 126 patients were 40.1 years ± 9.2, 
94 (74.6%) were males. The 3-year PFS, DMFS, and 
OS rates of the entire cohort was 80.2%, 85.7%, 86.5%, 
respectively. The median follow-up time was 83 months. 
The demographic and clinical characteristics of patients 
are presented in Table  1. No statistically significant 

differences between the training and validation datasets 
were observed in sex, age, overall stage, WHO type, EBV-
DNA, IC regimens, IC cycles, treatment response, and 
PFS distribution.

Performance of the predictive models
After Cox regression analyses of clinical variables, only 
TNM stage was the independent variable significantly 
associated with PFS (hazard ratio [HR] = 7.05, 95% con-
fidence interval [CI]: 2.07–24.05, P = 0.002). The HRs and 
95%CI for sex, age, WHO type, EBV-DNA, IC regimens, 
IC cycles, and IC response were 0.440 (95%CI: 0.101–
1.912, P = 0.273), 1.026 (95%CI: 0.975–1.080, P = 0.328), 
1.130 (95%CI: 0.461–2.771, P = 0.789), 0.911 (95%CI: 
0.497–1.670, P = 0.763), 1.302 (95%CI: 0.758–2.237, 
P = 0.339), 2.449 (95%CI: 0.949–6.320, p = 0.064), 0.694 
(95%CI: 0.160–3.019, P = 0.626). The TNM stage achieved 
a C-index of 0.722 (95%CI: 0.679–0.765) in the training 
dataset and 0.544 (95%CI: 0.487–0.601) in the validation 
dataset.

Table  2 shows the useful radiomic features utilized in 
the single-layer radiomic models. In the DWI-based 
radiomic model, the optimal model was developed uti-
lizing LDA classifier, integrating 12 features chosen 
via the PCC and RFE methods, comprising eight wave-
let, two first-order, and two texture-based features. This 
model attained a C-index of 0.786 (95%CI: (0.759–0.813) 
in the training dataset and 0.739 (95%CI: 0.712–0.766) 
in the validation dataset (Table  3). For the T1WI-based 
radiomic model, the most effective model was con-
structed using LDA classifier, incorporating 12 features 
selected through the PCC and RFE methods, includ-
ing eight wavelet and four texture features. This model 
obtained a C-index of 0.875 (95%CI: 0.861–0.889) in 
the training dataset and 0.734 (95%CI: 0.709–0.759) 
in the validation dataset (Table  3). In the cT1WI-based 
radiomic model, the optimal model was built using GP 
classifier based on seven wavelet and four texture fea-
tures selected by PCC and Relief. This model achieved 
a C-index of 0.924 (95%CI: 0.910–0.938) in the training 
dataset and 0.722 (95%CI: 0.697–0.747) in the validation 
dataset (Table 3). In the T2WI-based radiomic model, the 

Table 3  The performance of clinical and radiomic models for PFS prediction
Models C-index (95%CI)

Training dataset P-value Validation dataset P-value
Clinical model 0.722 (0.698–0.746) < 0.001* 0.544 (0.487–0.601) < 0.001*
DWI-based radiomic model 0.786 (0.759–0.813) < 0.001* 0.739 (0.712–0.766) 0.013*
T1WI-based radiomic model 0.875 (0.861–0.889) < 0.001* 0.734 (0.709–0.759) 0.004*
cT1WI-based radiomic model 0.924 (0.910–0.938) 0.752 0.722 (0.697–0.747) < 0.001*
T2WI-based radiomic model 0.611 (0.587–0.635) < 0.001* 0.598 (0.541–0.655) < 0.001*
T1WI- plus cT1WI-based radiomic model 0.927 (0.900-0.954) 0.692 0.747 (0.720–0.774) 0.038
Fusion radiomic model 0.921 (0.907–0.935) Ref. 0.788 (0.763–0.813) Ref.
Combined model 0.945 (0.931–0.959) 0.012* 0.788 (0.763–0.813) 1
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optimal model was developed using NB classifier based 
on one texture and one wavelet feature selected by PCC 
and Relief. This model yielded a C-index of 0.611 (95%CI: 
0.587–0.635) in the training dataset and 0.598 (95%CI: 
0.541–0.655) in the validation dataset (Table 3). Among 
the single-layer radiomic models, the DWI-based model 
achieved the highest C-index, followed by the T1WI-, 
cT1WI-, and T2WI-based models.

The combination of T1WI and cT1WI yielded a 
C-index of 0.927 (95%CI: 0.900-0.954) in the training 
dataset and 0.747 (95%CI: 0.720–0.774) in the valida-
tion dataset. While the fusion radiomic model based on 
DWI, T1WI, and cT1WI achieved higher C-index than 
single-layer radiomic models, with a C-index of 0.921 
(95%CI: 0.907–0.935) in the training dataset and 0.788 
(95%CI: 0.763–0.813) in the validation dataset (Table 3). 
The results suggest that the DWI provides complemen-
tary information beyond conventional MRI sequences. 
The T2WI-based radiomic model was not included in the 

fusion radiomic model. However, the addition of TNM 
stage failed to achieve a higher C-index (0.788, 95%CI: 
0.763–0.813 in the validation dataset).

The calibration curves illustrate an excellent agreement 
between the PFS probabilities predicted by the fusion 
radiomic model and the actual observed PFS, as shown 
in Fig.  3A and B. The time-dependent ROC curves for 
the fusion radiomic model, presented in Fig.  3C and D, 
indicate that the model’s predictive AUC improves over 
time (up to 60 months). The clinical impact curve reveals 
fluctuations in the number of high-risk individuals 
across different thresholds (Fig. 3E and F). Furthermore, 
the Kaplan-Meier curves demonstrate that the fusion 
radiomic model effectively stratifies patients into high-
risk and low-risk subgroups with distinct PFS outcomes, 
surpassing the performance of other models (Fig.  4). In 
contrast, both the clinical model and the T2WI-based 
radiomic model failed to distinguish between high-risk 
and low-risk groups (Fig. 4).

Fig. 3  Calibration curves and clinical impact curve. (A-B) Calibration curves in the training and validation datasets, respectively. The curves assess the 
agreement between predicted probabilities and observed outcomes, with closer alignment to the diagonal indicating better calibration. (C-D) Time-
dependent ROC curves in the training and validation datasets, respectively. These curves evaluate the model’s discrimination ability at specific time 
points, reflecting sensitivity and specificity over time. (E) Decision curve analysis quantifying the net benefit of the model across threshold probabilities. 
The curve compares the model’s predictions against default strategies (treat all or treat none), with higher net benefit indicating greater clinical utility. 
(F) Clinical impact curve illustrating the relationship between predicted risk and actual clinical outcomes. The curve demonstrates how risk thresholds 
influence patient management decisions
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Fig. 4  Kaplan-Meier survival curves of high- and low-risk groups stratified by various models. (A-G) Training dataset: Kaplan-Meier curves for the clinical 
model, DWI-based radiomic model, T1WI-based radiomic model, cT1WI-based radiomic model, T2WI-based radiomic model, T1WI- plus cT1WI-based 
radiomic model, and fusion radiomic model, respectively. (H-N) Validation dataset: Kaplan-Meier curves for the clinical model, DWI-based radiomic model, 
T1WI-based radiomic model, cT1WI-based radiomic model, T2WI-based radiomic model, T1WI- plus cT1WI-based radiomic model, and fusion radiomic 
model, respectively
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Table  4 presents the predictive performance of the 
fusion radiomic model, achieving a C-index of 0.888 (95% 
CI: 0.863–0.913) in the training dataset and 0.786 (95% 
CI: 0.757–0.815) in the validation dataset for predicting 
DMFS. For OS predictions, the model recorded a C-index 
of 0.776 (95% CI: 0.739–0.813) in the training dataset 
and 0.690 (95% CI: 0.666–0.714) in the validation data-
set. Figure 5 illustrates the Kaplan-Meier survival curves 
for high- and low-risk groups, as stratified by the fusion 
radiomic model for both DMFS and OS predictions.

Discussion
Prognostic prediction is crucial for guiding personalized 
treatment strategies for patients with LANPC. How-
ever, few studies have explored the additional benefit of 
incorporating functional MRI data into conventional 
MRI-based radiomic models. In this study, we aimed to 
develop a radiomic model that integrates DWI informa-
tion to predict prognosis in LANPC patients. The results 
demonstrate that DWI-based radiomic model achieved 
the highest accuracy among the single-layer radiomic 
models. The fusion of DWI, T1WI, and cT1WI-derived 
features showed the best predictive performance. Add-
ing the TNM stage to the fusion radiomic model failed to 
yield any incremental value.

Several studies [5, 6, 7, 8, 9, 10, 11, 12, 13] have inves-
tigated the potential of MRI-based radiomic models in 
prognostic prediction of LANPC patients, aiming to 
improve patient stratification and guide personalized 
treatment strategies. These studies have demonstrated 
the feasibility and effectiveness of utilizing MRI radiomics 
to extract quantitative imaging features that capture 
tumor heterogeneity and other relevant biological char-
acteristics. The accuracy of radiomic models were supe-
rior to clinical variables in predicting survivals. However, 
only several studies [22, 23, 24] have explored the added 
benefit of integrating functional MRI into conventional 
MRI radiomic models. Unlike conventional MRI, DWI 
provides valuable information about tissue cellularity and 
microstructural changes within tumors. By incorporating 
DWI features, MRI-based radiomic models can better 
capture tumor heterogeneity and reflect underlying bio-
logical characteristics, thereby improving the accuracy of 
prognostic prediction.

Our results demonstrate the feasibility and effective-
ness of utilizing MRI radiomics for prognostic predic-
tion in LANPC. By extracting a wide array of quantitative 

imaging features from MRI images, we could capture 
nuanced tumor characteristics and spatial heterogeneity, 
which are known to correlate with disease progression 
and patient outcomes [25, 26]. This highlights the utility 
of MRI-based radiomics as a non-invasive tool for prog-
nostic stratification in LANPC, complementing tradi-
tional clinical factors, such as TNM stage and EBV-DNA 
level. Furthermore, the integration of multi-parametric 
MRI data, including conventional and functional MRI, 
holds promise for further improving prognostic models 
in LANPC patients. By leveraging complementary infor-
mation from different MRI sequences, multi-parametric 
radiomics approaches can provide a more comprehen-
sive assessment of tumor biology and microenvironment, 
leading to enhanced prognostic stratification and per-
sonalized treatment planning [27, 28]. The incorporation 
of ML algorithms enabled robust prognostic modeling 
based on MRI radiomic features. These models exhibited 
favorable predictive performance, showcasing the ability 
of machine learning techniques to harness the rich infor-
mation contained within MRI images and extract mean-
ingful prognostic insights. Our findings underscore the 
potential of ML-driven approaches in enhancing prog-
nostic accuracy and guiding clinical decision-making in 
LANPC management. For example, by utilizing a cutoff 
value of 0.6 derived from the output of the optimal fusion 
radiomic model, the model effectively identifies high-
risk patients. This capability enables individualized risk 
assessments, guiding treatment decisions to ensure that 
high-risk patients receive more intensive therapy, while 
low-risk patients may benefit from de-escalation strate-
gies, thereby optimizing both therapeutic efficacy and 
safety.

Our study has some limitations. First, its retrospective 
design inherently comes with limitations, including reli-
ance on existing medical records and the potential for 
incomplete or missing data, which could impact the accu-
racy and reliability of our findings. Second, the relatively 
small sample size may restrict the generalizability of the 
results, a challenge also encountered in prior studies. 
However, we conducted a held-out validation to mitigate 
bias and enhance result robustness. In the future, we plan 
to expand our cohort by including additional patients 
from multiple institutions. This will not only enhance 
the statistical power of our analysis but also improve the 
representativeness of our findings across diverse popu-
lations. Third, there is a need for standardized imaging 
protocols and feature extraction methodologies to ensure 
reproducibility and generalizability across different insti-
tutions. Fourth, although tumor segmentation was per-
formed by experienced radiologists, the manual process 
may introduce subjectivity. The adoption of automated 
segmentation techniques could enhance reproduc-
ibility. Given the scale of our current dataset, we opted 

Table 4  The performance of the fusion radiomic model for 
DMFS and OS prediction
Models C-index (95%CI)

Training dataset Validation dataset
DMFS 0.888 ( 0.863–0.913 ) 0.786 (0.757–0.815)
OS 0.776 ( 0.739–0.813) 0.690 (0.666–0.714)
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for manual segmentation with expert review to ensure 
high-quality annotations. Nevertheless, we acknowl-
edge the potential advantages of deep learning-based or 

semi-automated segmentation methods, which could be 
investigated in future studies to further improve repro-
ducibility. Fifth, the radiomic models did not include 

Fig. 5  Kaplan-Meier survival curves of high- and low-risk groups stratified by the fusion radiomic model for DMFS and OS prediction. (A-B) training data-
set: DMFS, OS; (C-D) validation dataset: DMFS, OS
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the post-treatment MRI images to enhance the predic-
tive performance in the evaluation of PFS. Sixth, the 
biological interpretation of radiomic features remains 
challenging and warrants further investigation. Explor-
ing associations with digital pathology features, perform-
ing radiology-pathology co-registration, and assessing 
biological pathways or genomic correlations could offer 
valuable insights into the underlying biology and mech-
anisms driving the observed radiomic patterns [29, 30]. 
Finally, external validation of the acquired data is essen-
tial to confirm the reliability and reproducibility of the 
findings. Future prospective studies should strive to vali-
date the results using independent datasets to ensure 
the generalizability of the MRI-based radiomic models. 
Addressing these challenges will be pivotal in fully lever-
aging the potential of MRI radiomics to enhance prog-
nostic prediction and patient management in LANPC.

In conclusion, our study demonstrates that the multi-
parametric MRI radiomic model has the potential to 
assess the prognostic risk in LANPC patients. The 
radiomic model, which includes T1WI, cT1WI, and 
DWI-derived features, offers a noninvasive approach to 
predict survival outcomes. It can also help to distinguish 
high-risk patients from low-risk patients. This model has 
the potential to contribute to the field of precision medi-
cine for LANPC, fulfilling the ultimate goal of personal-
ized treatment for patients.
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