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Abstract 

Background Radiomics traditionally focuses on analyzing a single lesion within a patient to extract tumor charac‑
teristics, yet this process may overlook inter‑lesion heterogeneity, particularly in the multi‑metastatic setting. There 
is currently no established method for combining radiomic features in such settings, leading to diverse approaches 
with varying strengths and limitations. Our quantitative review aims to illuminate these methodologies, assess 
their replicability, and guide future research toward establishing best practices, offering insights into the challenges 
of multi‑lesion radiomic analysis across diverse datasets.

Methods We conducted a comprehensive literature search to identify methods for integrating data from multiple 
lesions in radiomic analyses. We replicated these methods using either the author’s code or by reconstructing them 
based on the information provided in the papers. Subsequently, we applied these identified methods to three distinct 
datasets, each depicting a different metastatic scenario.

Results We compared ten mathematical methods for combining radiomic features across three distinct datasets, 
encompassing 16,894 lesions in 3,930 patients. Performance was evaluated using the Cox proportional hazards model 
and benchmarked against univariable analysis of total tumor volume. Results varied by dataset and lesion burden, 
with no single method consistently outperforming others. In colorectal liver metastases (TCIA—CRLM, 494 lesions 
in 197 patients), averaging methods showed the highest median performance. In soft tissue sarcoma (TH CR‑406/
SARC021, 1255 lesions in 545 patients), concatenating radiomic features from multiple lesions exhibited the best per‑
formance. In head and neck cancers (TCIA—RADCURE, 15,145 lesions in 3188 patients), total tumor volume remained 
a strong predictor. These findings highlight dataset‑specific influences, including tumor type and lesion burden, 
on the effectiveness of radiomic feature aggregation methods.

Conclusions Radiomic features can be effectively selected or combined to estimate patient‑level outcomes in multi‑
metastatic patients, though the approach varies by metastatic setting. Our study fills a critical gap in radiomics 
research by examining the challenges of radiomic‑based analysis in this setting. Through a comprehensive review 
and rigorous testing of different methods across diverse datasets representing unique metastatic scenarios, we pro‑
vide valuable insights into effective radiomic analysis strategies.
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Background
Radiological imaging and its quantitative analysis, known 
as radiomics, aim to transform medical images into 
mineable data to enhance decision-making in diagno-
sis, prognosis, and treatment planning [1]. Traditionally, 
radiomics has focused on the analysis of a single lesion 
within a patient, aiming to extract relevant features and 
understand the tumor’s characteristics [2]. While this 
practical approach minimizes computational complexity 
and utilizes simpler mathematical models, relying on a 
single lesion’s analysis may not provide a complete pic-
ture of the disease’s intra- and inter-lesion heterogeneity, 
particularly in patients with multiple lesions [3].

Currently, there is no established methodology for the 
optimal combination of radiomic features for patients 
with multiple lesions [3, 4], which has led to a diverse 
array of approaches, each offering distinct advantages 
and trade-offs. While it is common to have multi-
ple approaches in various fields, specific challenges in 
radiomics warrant a more comprehensive examina-
tion. Many studies lack transparency and reproduc-
ibility, with methods and code not publicly available, 
hindering scientific progress [5]. Additionally, there is 
no comprehensive comparative study evaluating differ-
ent methods for combining information from multiple 
lesions in different metastatic scenarios. With advance-
ments in AI and segmentation [6], integrating and com-
paring multiple lesions has not only become feasible, but 

also an important problem to solve within the context of 
precision oncology.

In this study, we quantitatively reviewed the state-of-
the-art approaches for multi-lesions radiomic analysis, 
highlighting their strengths and weaknesses, to guide 
future research toward establishing best practices in this 
domain. Serving as a case study in replicability [7], we 
systematically explore literature methods and implement 
them across diverse datasets. Our goal is to not only 
assess the replicability of these methods but also high-
light their applicability and effectiveness in addressing 
the challenges of radiomic analysis in patients with multi-
ple lesions across multiple domains.

Methods
The design of the study is represented in Fig. 1.

Literature search
We employed a dual-database methodology, utiliz-
ing Scopus and PubMed, to execute a comprehensive 
and systematic review. Our search strategy involved the 
incorporation of specific keywords such as radiomics, 
metastasis, intertumor (lesion), interlesion heterogene-
ity, feature aggregation, response, and survival, aiming 
to retrieve a diverse range of scholarly articles. We spe-
cifically focused on full-length articles published in Eng-
lish. Detailed queries can be found in the Supplemental 
section.

Fig. 1 Our study encompasses both a literature search and analysis pipeline. Within the literature search section, inquiries are categorized 
into article‑specific and method‑specific, accommodating papers detailing multiple radiomic‑based analysis methods in the context of multiple 
ROIs. The analysis pipeline section is divided into pre‑processing and modeling components. Radiomics features, initially forming an N × J 
lesion‑level matrix (where N is the number of lesions and J is the number of radiomic features), are transformed post‑method implementation 
into an M × J patient‑level matrix (where M represents the number of patients). Following unsupervised feature reduction, the resulting matrix 
contains fJ radiomic features, with f representing a fraction within the range [0,1]. Figure was generated using Miro
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Selection criteria
The selection criteria for inclusion focused on the key 
aspects of patient-level analysis and methodological 
clarity. Methods were excluded from the review if they 
met one or more of the exclusion criteria in Table 1 or 
were a duplicate method.

Data collection
For this pan-cancer review we leveraged three different 
datasets, each presenting a unique context for conducting 

radiomic-based analyses among patients with multiple 
lesions (Table 2). The first dataset encompasses primary 
tumors accompanied by invaded lymph nodes, offer-
ing insights into radiomic analysis within the context of 
localized spread. The second dataset focuses on metasta-
ses confined to a single organ, providing an opportunity 
to explore radiomic patterns specific to localized meta-
static disease. In contrast, the third dataset encompasses 
patients with metastases distributed ubiquitously across 
the body, allowing for a comprehensive examination of 

Table 1 Overview of the methodological exclusion criteria utilized for our quantitative review

Exclusion Criterion Description

Analysis of multiple lesions but not at patient‑level Multiple lesions were analyzed separately towards tumor‑specific predictions; data 
was not combined/selected/aggregated at the patient level

Analysis of primary tumor Analysis of the primary tumor for prediction of distant or local recurrence or some other patient‑
level outcome

Methodological applicability Detailed descriptions of employed methods lacking or insufficient and/or code unavailable, 
presenting significant challenges in method replication and/or proprietary data not available

Method dependent on time series data Measures of treatment response (e.g., change in lesion size at a secondary time point) incorpo‑
rated into method

Information integrated at the model level Transformations or interactions within a model architecture as opposed to transformations 
to the raw or pre‑processed data used as input to the model

Table 2 Overview of the datasets utilized in this pan‑cancer study. Each dataset represents a unique metastatic scenario; two of the 
datasets are publicly available and one is a private dataset. Statistics surrounding the number of lesions per patient and survival are 
expressed in terms of the median and the interquartile range (IQR)

DATASET

TCIA – RADCURE TCIA – CRLM SARC021

GENERAL
Cancer Type head and neck colorectal soft tissue sarcoma

Setting

primary tumor with invaded 
lymph nodes

metastases confined to a single organ widespread metastases

Number of Patients 3188 197 545

Publicly Available?

LESIONS
Distribution

Number of Lesions (median [IQR]) 4 [1, 7] 2 [1, 3] 2 [1, 3]
SURVIVAL
Overall Survival Time (years; median [IQR]) 3.62 [1.87,5.72] 5.51 [2.87,8.08] 1.57 [0.76,2.20]
Number of Events 1013 107 355
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radiomic features in a setting of widespread metastatic 
involvement. These varied settings enable a multifaceted 
investigation into radiomic characteristics across dif-
ferent disease extents, contributing to a more compre-
hensive understanding of radiomic signatures in diverse 
cancer scenarios.

TCIA—RADCURE
The Cancer Imaging Archive (TCIA)—RADCURE data-
set encompasses data from 3188 patients, comprising 
computed tomography (CT) images paired with contours 
delineating primary tumors and invaded lymph nodes. 
Among the patients analyzed, oropharyngeal cancer 
accounts for 44% of the population, while larynx, naso-
pharynx, and hypopharynx cancers constitute 27%, 11%, 
and 5%, respectively. Additionally, the publicly-availa-
ble dataset features clinical data linked to each patient, 
encompassing demographic details, clinical information 
and survival. Detailed information can be found in [8].

TCIA—CRLM
The TCIA—Colorectal-Liver-Metastases (CRLM) data-
set comprises CT images and a comprehensive clinical 
record of 197 patients with colorectal liver tumors. Each 
patient within this dataset underwent major liver resec-
tion as part of their treatment regimen. The CT scan 
images acquired preoperatively, while the clinical data 
confines patients’ demographic, pathologic and sur-
vival data for each patient. Detailed descriptions can be 
found in [9].

SARC021
SARC021 is a private dataset obtained from the Sarcoma 
Alliance for Research through Collaboration (SARC). 
The dataset consists of 545 soft tissue sarcoma patients 
who were enrolled in a phase III clinical trial (TH-CR-
406/SARC021, NCT01440088). Patients presented with 
either locally advanced, unresectable or metastatic soft 
tissue sarcoma. Among the patients, leiomyosarcoma 
accounts for 37% of the population, while liposarcoma, 
undifferentiated pleomorphic sarcoma and other sar-
comas constitute 17%, 12%, and 34%, respectively. Data 
was collected retrospectively and in accordance with our 
institutional REB (#20–5707). Collected data includes 
pre-treatment CT, patient characteristics and survival. 
Detailed descriptions, including trial protocol and 
results can be found in [10].

Algorithm implementation
Our study utilized 10 different techniques for radi-
omic analysis of multiple lesions, which can be broadly 
classified into three categories: lesion selection meth-
ods, methods that incorporate information from select 
lesions, and methods that incorporate information from 
all lesions (Table 3).

Lesion selection methods
For the proposed lesion selection methods, implemen-
tation involved simply selecting a lesion for analysis 
based on either the lesion label (e.g., primary tumor) 
or computed lesion volume. For the latter, computation 

Table 3 Descriptions of the methods implemented for our analysis

 lesion information used /  lesion information not used

Category Short Name Description

Lesion Selection

Largest Largest lesion by volume, irrespective of location [4]

Largest + Largest lesion + number of lesions [4]

Smallest Smallest lesion by volume, irrespective of location [4]

Primary Primary tumor (where applicable) [1]

Lung Largest lung lesion by volume (where applicable) [11]

Information from Select Lesions

VWA (N‑largest) Volume‑weighted average of the N‑largest lesions by volume (shape features summed) [4]

Concatenation Column‑wise combination of all features from the N‑largest lesions by volume [12]

Cosine Similarity Two overall heterogeneity measurements, defined as follows [13]:
 1) Maximal Tumoral Divergence = max(Cosine Dissimilarity)
 2) Average Tumoral Heterogeneity = mean(Cosine Dissimilarity)
Where Cosine Dissimilarity = 1—Cosine Similarity

Information from All Lesions

UWA Unweighted average [4]

VWA Volume‑weighted average (shape features summed) [4]
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utilized the PyRadiomics library [14], specifically 
the ’VoxelVolume’ shape feature. Importantly, lesion 
label selection was dataset-specific; for instance, the 
TCIA-RADCURE dataset exclusively contained pri-
mary tumors, while SARC021 exclusively contained 
lung lesions. Consequently, there were variations in 
sample sizes, with only 93% of patients in the TCIA-
RADCURE dataset having primary tumors, and 60% 
of patients in the SARC021 dataset having at least one 
lung lesion (Supplementary Table S1).

Information from select lesions
In the proposed combinatorial methods utilizing infor-
mation from select lesions, we incorporated data from 
N lesions, where N represents the minimum number of 
lesions observed in any given patient across all patients.

VWA (N‑largest)
For the averaging approach, the N-largest lesions were 
selected. For the patient population where N equals 
one, this method mirrors the largest lesion approach; 
however, in groups with two or more lesions, radiomic 
features from the N-largest lesions are incorporated 
accordingly. Shape features were summed over selected 
lesions; all other features constitute a volume-weighted 
average of selected lesions ((1)).

Concatenation
For the concatenation approach, the N-largest lesions 
were selected. Similar to the averaging approach, this 
method mirrors the largest lesion approach for the 
patient population where N equals one; however, in 
groups with two or more lesions, radiomic features 
from the N-largest lesions are incorporated accord-
ingly. In the case where N equals two, let A represent a 
1× n matrix containing n radiomic features for the larg-
est lesion in a given patient. Similarly, let B represent 
a 1× n matrix containing n radiomics features for the 
second-largest lesion in the same patient. The matrices 
A and B are horizontally concatenated to create C , a 
1× (2n) matrix, containing n radiomic features for the 
largest lesion and n radiomics features for the second-
largest lesion. This can be expanded for the case where 
N equals three, and so on.

Cosine similarity
For the cosine similarity approach, N-random lesions 
were utilized to maintain alignment with the analysis 

(1)Featurei =
�j Volumej × Featurei,j

�jVolumej

in [13]. When N equals one, no pairwise comparisons 
between lesions are possible. Unsupervised feature reduc-
tion was performed prior to calculating the metrics; given 
the definition of only two metrics (Table 3), no supervised 
feature selection was carried out. Moreover, the cosine 
similarity method is distinct from other methods as it 
uses secondary features derived from radiomic features, 
rather than the radiomic features themselves.

Information from all lesions
For the proposed combinatorial methods utilizing infor-
mation from all lesions, no modifications or adjustments 
were made. Lesion volume for the volume-weighted aver-
aging was computed as described above, using the PyRa-
diomics ‘VoxelVolume’ shape feature.

UWA 
Shape features were summed over all lesions; all other 
features constitute an average of all N  lesions ((2)).

VWA
Shape features were summed over all lesions; all other 
features constitute a volume-weighted average of all N  
lesions (as in (1), but with all N  lesions).

Research reproducibility
To ensure transparency, reproducibility and reusability 
of the study outputs, we packaged all the processed data 
and computer code into a fully-specified software envi-
ronment to ensure that the results can easily be repro-
duced. To achieve this, we built a Code Ocean capsule 
and published it under https:// codeo cean. com/ capsu le/ 
79436 59/ tree.

Data analysis
In the context of this study, we have raw data with lesion-
level information and a transformed dataset with patient-
level information. The lesion-level dataset refers to the 
raw data that contains detailed information about indi-
vidual lesions. This dataset is created by extracting radi-
omic features from all lesions [in all patients] in each 
dataset, using PyRadiomics [14] (version 3.0.1). Algo-
rithms were implemented on each lesion-level dataset 
in turn, including lesion selection, combining data from 
select lesions, and utilizing information from all lesions 
(Table  3). to create patient-level datasets. The patient-
level datasets contain the transformed data, that aggre-
gates or summarizes the lesion-level information. Each 
resultant patient-level dataset was partitioned, strati-
fied by lesion count. Subsequently, unsupervised feature 

(2)Featurei =
�jFeaturei,j

N

https://codeocean.com/capsule/7943659/tree
https://codeocean.com/capsule/7943659/tree
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reduction was applied to the training set, where appli-
cable. Initially, a variance filter was employed to elimi-
nate features with less than 10% variance, followed by 
the removal of radiomic features exhibiting an absolute 
Spearman rho correlation with lesion volume greater 
than 0.1 [15]. From the resulting reduced feature set, 
a supervised feature selection technique, specifically 
mRMR, was utilized to select 10 features [16]. Overall 
survival analysis employed the Cox proportional hazards 
model, a widely utilized method for modeling time-to-
event data [17]. Optimal hyperparameters were identified 
by Grid Search [18], employing five-fold cross-validation; 
the training set was subsequently equipped with these 
hyperparameters and underwent bootstrapping to ascer-
tain a confidence interval for the concordance index 
(C-Index) [19]. A total of 100 bootstrap samples were 
used, with each sample consisting of 50% of the training 
data. The training hyperparameters were then utilized 
to train a model on the testing set. Univariable analysis 
using total lesion volume was used for benchmarking. 
Key aspects of our study, including the literature search 
and analysis pipeline, are visualized in Fig. 1.

Subgroup analysis
A subgroup analysis was conducted to compare model 
performance across lesion selection and feature aggre-
gation methods by including patients with variable 

numbers of lesions. Specifically, we examined patients 
across all lesion counts, as well as exclusive subgroups 
with two or more lesions, and three or more lesions. This 
analysis was motivated by the hypothesis that with an 
increasing number of lesions, the application of certain 
methods may exhibit performance improvements.

Results
Literature search
Of the 263 articles screened for our study, only 11% met 
the inclusion criteria for our study (Fig.  1). Excluded 
articles fell into one of two categories: (1) those focused 
on radiomic-based analysis of the primary tumor for 
predicting local or distant metastasis, and (2) those 
centered on radiomic-based analysis of a single lesion 
to predict its response to treatment (Fig.  1). Among 
the methods reviewed in detail, 26% were included in 
our study (Fig. 1). In addition to the exclusion criteria 
(Table 1), redundant methods from one paper that were 
identical to those from another were eliminated, consti-
tuting 7 out of 38 methods (Fig. 2).

Method implementation
TCIA—RADCURE
When considering all patients, selecting the pri-
mary tumor and using 10 features provides the best 

Fig. 2 Overall survival analysis, organized by dataset (rows) and subgroup (columns). Implemented methods are color‑coded by category. Violin 
plots depict the performance distribution of bootstrapped samples from the training data, with white circles indicating performance on the testing 
data. Vertical lines in gray and black represent performance benchmarks from a random model and univariable analysis based on total lesion 
volume, respectively. Figure was constructed using Miro; numerical results can be found in the Supplemental section
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performance among all implemented methods. For the 
different subgroups, the primary tumor was the largest 
lesion in 79%, 73%, and 72% of patients, respectively. 
This could explain the discrepancy in model perfor-
mance when comparing radiomic features from the 
primary tumor versus radiomic features from the larg-
est lesion for all patients. When different subgroups 
are considered, the performance of the model using 
radiomic features from the primary tumor worsens. 
Moreover, no radiomic-based method consistently out-
performed univariable analysis of total tumor volume.

TCIA—CRLM
In contrast with TCIA—RADCURE, where univariable 
analysis of total tumor volume consistently outper-
formed most radiomic methods, in TCIA—CRLM we 
found that many methods surpassed total tumor vol-
ume analysis. This suggests that radiomics-based analy-
sis performs well in this setting. Furthermore, subgroup 
analysis based on increasing lesion numbers revealed 
a notable improvement in model performance, under-
scoring the importance of incorporating information 
from multiple lesions. When increasing from one lesion 
to two lesions, the median performance of all models 
increased (C-Index range [0.001,0.074], with the largest 
increases observed in the VWA-N-largest and Concat-
enation methods). In terms of performance distribu-
tion, the positive shift was significant for all methods, 
save for the Smallest Lesion method (two-sample Kol-
mogorov-Smirnoff test, p-value range [1.42e-19,0.470]). 
When increasing from two lesions to three lesions, the 
median performance of all models increased (C-Index 
range [0.057,0.127], with the largest increases observed 
in the Largest + lesion and Concatenation methods). In 
terms of performance distribution, the positive shift 
was significant for all methods (two-sample Kolmogo-
rov-Smirnoff test, p-value range [3.054e-31,1.555e-7]). 
The highest median performance was observed for 
the VWA method for the three or more lesions sub-
group (C-Index 0.842). However, it’s worth noting that 
as sample sizes decreased, the distribution of model 
performance widened, indicating potential overfit-
ting. Additionally, averaging methods exhibited higher 
median values in terms of model performance.

SARC021
In SARC021, we observed a mixed pattern of results. 
Similar to TCIA—RADCURE, no radiomic-based 
method consistently outperformed univariable analysis 
of total tumor volume when considering all patients and 
the subgroup of patients with 2 or more lesions. How-
ever, akin to TCIA—CRLM, we noted a marked shift in 

overall model performance in the subgroup of patients 
with 3 or more lesions, albeit with less variability. When 
increasing from two lesions to three lesions, the median 
performance of all but two models increased (C-Index 
range [−0.012,0.073], with the largest increases observed 
in the Concatenation method). In terms of performance 
distribution, the positive shift was significant for all 
methods except the Largest, Largest + and VWA methods 
(two-sample Kolmogorov-Smirnoff test, p-value range 
[4.959e-43,0.111]). The highest median performance was 
observed for the Concatenation method for the three or 
more lesions subgroup (C-Index 0.673).

Discussion
Despite the prevalence of multi-metastatic patients, 
most radiomic studies have traditionally focused on a 
single lesion. At time of publication, a search on Pub-
Med yielded around 12,000 hits for radiomics, yet only 
38 articles met the criteria for this study, highlighting the 
need for more comprehensive research. Moreover, there 
is currently no established methodology for effectively 
combining radiomic features from multiple lesions [3, 
4]. To address this gap, we conducted a comprehensive 
quantitative review of radiomic-based analyses involving 
multiple lesions. We replicated and applied 10 different 
methods across three distinct datasets, each representing 
a unique metastatic scenario. By collating and evaluat-
ing various methods from the literature, our study pro-
vides valuable insights into what works, and what does 
not, in different clinical scenarios. This paper serves as a 
resource for radiomics researchers, offering guidance for 
implementing similar techniques in their own data and 
serving as a foundation for further exploration in this 
field.

Our findings within the setting of localized metastatic 
spread align with those of [20], where the top-performing 
model incorporated clinical features and tumor volume; 
although [20] focused on the primary tumor and used a 
subset of our dataset, our results complement theirs by 
offering a broader analysis across multiple lesions. Our 
study illustrates that no radiomic-based method com-
bining information from multiple lesions consistently 
outperformed univariable analysis based on total tumor 
volume. In the setting of head and neck cancer with lym-
phatic spread, our findings suggest that adhering to the 
conventional approach of analyzing the primary tumor 
yields optimal results across all patients, albeit with the 
acknowledgment that total tumor volume, a simpler 
measure, performs comparably well.

Our findings within the setting of metastases confined 
to a single organ align with those of a previous study 
[4]. In both studies, averaging methods demonstrated 
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optimal performance. Although the previous study 
focused on brain metastases and utilized magnetic reso-
nance imaging, while our study centered on colorectal 
liver metastases and employed computed tomography, 
the similarity in the effectiveness of the methods is note-
worthy. In the context of colorectal liver metastases, the 
number of tumors has been identified as a prognostic 
factor [21], which could potentially explain the observed 
quantitative shift in model performance when analyzing 
subgroups with increasing numbers of lesions. Even so, 
our analysis revealed greater variability in model perfor-
mance with decreasing sample sizes, indicating potential 
overfitting and underscoring the need for cautious inter-
pretation of results in smaller datasets. To mitigate this, 
we applied standardized feature selection and cross-val-
idation strategies, but future studies with larger datasets 
are needed to further assess the stability of these models 
in different clinical contexts.

Given the limited precedent in radiomics for sarcoma, 
particularly in the context of widespread, multi-meta-
static scenarios, our study was presented with unique 
analytical challenges and opportunities. We incorporated 
the largest lung lesion method into our analysis, recog-
nizing the lung as a common metastatic site in sarco-
mas [11]. Across all patients, the largest lesion method 
showed marginally improved performance compared to 
univariable analysis of total tumor volume, highlighting 
incremental gains. However, the most intriguing findings 
surfaced when examining the subgroup of patients with 3 
or more lesions. Here, nearly all methods demonstrated 
median model performance surpassing that of total 
tumor volume, with the concatenation method standing 
out with the highest median performance. These results 
suggest that in multi-metastatic scenarios, individual 
lesions may harbor unique prognostic information that 
could potentially enhance prognostic accuracy beyond 
traditional approaches relying solely on total tumor 
volume.

One method of interest is the cosine similarity met-
rics originally proposed for characterizing inter-
tumoral heterogeneity, described in [13], which holds 
promise from both theoretical and applied perspec-
tives. However, its effectiveness is hindered by limi-
tations in lesion sampling. In the original study, the 
authors found that sampling 2 or 3 lesions at random 
recovered 48% and 67% of the average tumoral hetero-
geneity, respectively, and 27% and 55% of the maximal 
tumor divergence, respectively. However, the authors 
emphasized that "more than eight lesions per patient 
would have been necessary to recover at least 75% of 
the true heterogeneity captured by the whole lesion dis-
tribution analysis" [13]. Unfortunately, such extensive 
sampling is often not feasible due to limited availability 

of patients with multiple lesions sampled. Furthermore, 
the underwhelming performance of this method in our 
study may also be attributed to the limited number of 
features used in the model. While only two features 
were defined for this method, our analysis employed 10 
features for all other methods, potentially impacting its 
comparative performance.

While our study provides a systematic comparison of 
radiomic feature aggregation methods, the variability in 
performance across datasets highlights the challenge of 
generalizing multi-lesion radiomics. The observed dif-
ferences may stem from factors such as tumor burden, 
or lesion heterogeneity. For instance, in TCIA—CRLM, 
where patients can exhibit a high number of metastases 
confined to the same organ, aggregation methods lever-
aging multiple lesions outperformed univariable analysis. 
Conversely, in TCIA—RADCURE, total tumor volume 
remained a stronger predictor, potentially due to differ-
ences in staging or the biological behavior of head and 
neck cancers. Given that head and neck cancers in this 
dataset primarily represent regional rather than distant 
metastases, inter-lesion heterogeneity may be lower 
compared to metastatic cancers with multiple organ 
involvement. These dataset-specific influences suggest 
that optimal feature aggregation strategies may depend 
on disease stage and site. Future work should explore 
adaptive approaches tailored to clinical and imaging 
characteristics.

While our study provides a systematic comparison of 
radiomic feature aggregation methods, the variability in 
performance across datasets highlights the challenge of 
generalizing multi-lesion radiomics. The observed dif-
ferences may stem from factors such as tumor burden, 
lesion heterogeneity, or imaging characteristics. For 
instance, in colorectal liver metastases, where patients 
can exhibit a high number of liver metastases, aggrega-
tion methods leveraging multiple lesions outperformed 
univariable analysis. Conversely, in TCIA—RADCURE, 
total tumor volume remained a stronger predictor, poten-
tially due to the biological behavior of head and neck 
cancers. These dataset-specific influences suggest that 
the optimal feature aggregation strategy may depend on 
disease type and imaging protocol. Future work should 
investigate adaptive approaches that tailor feature aggre-
gation methods to clinical and imaging characteristics, 
improving generalizability across patient cohorts.

Beyond the tested approaches, advanced machine 
learning techniques, such as ensemble learning and 
deep learning, may further optimize radiomic fea-
ture aggregation. A prior study using random survival 
forests and Cox models with LASSO regularization 
have demonstrated incremental gains over standard 
Cox models [4]. Ensemble methods could enhance 
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robustness by integrating multiple aggregation strat-
egies, while deep learning approaches may capture 
complex, nonlinear feature interactions. However, 
evaluating these methods was beyond our scope, which 
focused on aggregation strategies rather than predic-
tive modeling. Future work should explore integrating 
these techniques to assess whether they improve gener-
alizability and prognostic accuracy across multi-lesion 
radiomics datasets.

Our study has several potential limitations. From a 
methodological standpoint, our study relates to the 
sample size and the approach to feature selection. We 
aimed to maintain consistency across all datasets by 
employing a standardized process, including the use 
of 10 imaging features from each method, with the 
exception of the cosine method. This approach ensures 
the comparability of results across different datasets. 
However, the choice of 10 features was influenced by 
the number of events in the TCIA—CRLM dataset, 
which had 107 events. While it may have been feasible 
to use more features for datasets with a higher num-
ber of events, we opted to limit the risk of overfitting. 
This approach, while promoting consistency, may limit 
generalizability, particularly in larger datasets where a 
higher number of selected features could be justified. 
Future studies may consider tailoring feature selec-
tion to the number of events in each dataset, with 
the caveat that increasing feature count may hinder 
interpretability.

Our study also faced challenges in terms of replicabil-
ity, largely due to the limited availability of code for the 
methods included in our analysis. Unfortunately, this 
reflects a broader issue within research, where adherence 
to open science standards varies. Despite this obstacle, we 
endeavored to mitigate replicability concerns by devel-
oping modular functions closely aligned with the litera-
ture and making them publicly available. This approach 
not only enhances transparency but also enables future 
researchers to easily adapt and utilize our methods for 
their own analyses, thus contributing to the advancement 
of open science practices in radiomics research. Mov-
ing forward, greater efforts are needed across the field 
to encourage code and data sharing, as open science is 
essential for ensuring reproducibility, accelerating inno-
vation, and fostering collaboration within the radiomics 
community.

Conclusion
Our study fills a critical gap in radiomics research by 
examining the challenges of analyzing multiple lesions 
in multi-metastatic patients. Through a comprehen-
sive review and rigorous testing of different methods 
across diverse datasets representing unique metastatic 

scenarios, we provide valuable insights into effective radi-
omic analysis strategies. Moreover, our publicly available 
code on GitHub and Code Ocean enhances reproducibil-
ity and serves as a valuable resource for researchers in the 
field.
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