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Abstract
Objectives The potential of medical imaging to non-invasively assess intratumoral heterogeneity (ITH) is increasingly 
being recognized. This study aimed to investigate the value of the ITH-based deep learning model for preoperative 
prediction of histopathologic grade in hepatocellular carcinoma (HCC).

Materials and methods A total of 858 patients from primary cohort and two external cohorts were included. 3.0T or 
1.5T axial portal venous phase MRI images were collected. We conducted radiomics feature-driven K-means clustering 
for automatic partition to reveal ITH. 2.5D and 3D deep learning models based on ResNet architecture were trained 
to extract deep learning hidden features of each subregion. The selected features were used to train Random Forest 
classifier, which constructed the feature-fusion model.

Results The extracted voxel-level radiomics features were unsupervised clustered by K-means to generate three 
subregions. In the 2.5D deep learning, the feature-fusion model based on ITH had superior predictive efficacy 
than the whole-tumor model (AUC: 0.82 vs. 0.72; p = 0.004). Even in the validation and external test sets, this model 
maintained a high AUC of 0.78–0.83, and net reclassification indices indicated that it could improve prediction by 
25–28%. Regarding the prognostic value, overall survival (OS) and recurrence-free survival (RFS) could be significantly 
stratified by the 2.5D feature-fusion model, and multivariable Cox regressions indicated its signature was identified as 
a risk predictor for OS and RFS (p < 0.05).

Conclusion The ITH-based feature-fusion model provided a non-invasive method for classifying tumor differentiation 
in HCC, which may serve as a promising strategy for stratification management.
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Introduction
Hepatocellular carcinoma (HCC) ranks as the sixth 
most common malignant tumor and the fourth leading 
cause of cancer-related deaths globally [1, 2]. Despite 
the widespread use of radical resection for HCC over 
recent decades, the recurrence rate remains high, reach-
ing approximately 70% within five years after surgery [3]. 
Studies have indicated that poorly differentiated (PD) 
tumor is a significant factor resulting in the high recur-
rence rate and poor overall survival in patients with HCC 
[4, 5]. Early determination of the degree of differentiation 
of HCC is currently an important basis for clinical diag-
nosis, staging and selection of therapeutic decisions.

In recent years, radiomics has shown significant 
potential in clinical research. Radiomics can extract 
quantitative feature information from lesions in a high 
throughput, which contributes to the diagnosis and 
prognosis of HCC. Mao et al. retrospectively included 
122 patients and extracted 242 radiomics features based 
on patients’ preoperative arterial enhancement MRI [6]. 
Using LR algorithm modeling, the MRI-based radiomics 
features were found to be valuable in predicting the 
degree of HCC differentiation (AUC: 0.805 and 0.777) 
[6]. With the rapid development of artificial intelligence, 
its sub-field deep learning has been widely used in medi-
cal image processing and analysis [7–9]. Based on preop-
erative contrast enhanced CT images, Wei et al. trained 
a multi-scale and multi-region convolutional neural net-
work [10]. The results showed that the AUC of the deep 
learning model in the validation set was 0.86, which was 
better than the conventional radiomics, radiological, and 
clinical models (AUCs: 0.765, 0.695, and 0.612, respec-
tively) [10]. Both techniques, radiomics and deep learn-
ing, have shown promising performance in predicting the 
degree of differentiation of HCC preoperatively. How-
ever, currently available publications treated the entire 
tumor as a homogeneous entity, overlooking the hetero-
geneity within the tumor [11].

The intratumoral heterogeneity (ITH) can lead to dif-
ferences in oxygenation, nutrient abundance, immune 
activity, and stromal composition across different tumor 
regions, resulting in spatial heterogeneity that manifests 
as morphological variations [12, 13]. In basic research, 
ITH is a widely studied topic because it is crucial for 
understanding the biological characteristics, response 
to therapy, and progression of tumors. However, in non-
invasive assessment by medical images, the research 
investigating ITH has been relatively limited [14, 15].

In this study, we proposed a fusion framework that 
not only considers the spatial heterogeneity of HCC, but 
also combines radiomics, unsupervised K-means cluster-
ing, deep learning, and machine learning to improve the 
accuracy of predicting histopathologic grade of HCC. 
Specifically, the entire tumor was divided into subregions 

based on the spatial heterogeneity of the tumor using 
the K-means method and local voxel-level radiomics fea-
tures. Then, deep learning models were trained to acquire 
representative information from the subregions and 
extract key features and build machine learning models 
from it. This improvement allows us to better capture the 
complex structures inside the tumor. We also explored 
the potential value of predictive modeling in the prog-
nostic stratification of HCC patients and the biological 
basis of model’s prediction.

Materials and methods
Patient cohorts
The study was approved by the ethics board of our hos-
pital. Informed consent was waived due to the retrospec-
tive nature of this study. We collected three independent 
patient cohorts. First, a primary cohort comprised 655 
patients from the medical center A was included and 
split into training and validation set. These patients were 
diagnosed with HCC and underwent surgery between 
January 2018 and July 2022 (Appendix S1). The inclusion 
criteria were (1) histopathologically confirmed HCC, (2) 
MRI scans available within four weeks before surgery, 
and (3) radical surgical resection. The exclusion crite-
ria are as follows: (1) history of previous liver surgery, 
(2) anti-tumor therapies before surgery, (3) incomplete 
medical records, (4) patients with portal vein invasion or 
metastasis, and (5) patients with poor-quality MRI data.

Second, we collected 65 patients for an external test 
cohort. The data for this cohort were obtained from the 
medical center B (40 patients) and the Cancer Imaging 
Archive database (25 patients). Third, we collected a set 
of 138 patients with HCC diagnosed at the same medical 
center A between August 2022 and June 2023 as an inter-
nal temporal test set. The inclusion and exclusion criteria 
were the same as described earlier.

Pathological differentiation analysis
Tumor differentiation data was obtained from standard 
pathological reports, serving as the benchmark for classi-
fication. Tumors were graded into PD, moderately differ-
entiated (MD), and well differentiated (WD) categories. 
Tumors with MD and WD characteristics were collec-
tively designated as non-poorly differentiated hepatocel-
lular carcinoma (nPD) HCC. In instances where HCC 
exhibited mixed differentiation patterns, the predomi-
nant grade was used to establish the definitive diagnosis.

Image acquisition and processing
The portal venous phase of contrast-enhanced T1WI 
was obtained on 1.5T or 3.0T axial MRI scanners. The 
detailed parameters were described in Appendix S2. 
Image preprocessing included resampling (1 × 1 × 1 mm), 
normalization, and N4 bias field correction by Python 
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SimpleITK package. We utilized 3D U-Net to detect and 
segment tumors in the liver region automatically. Details 
of tumor segmentation were provided in Appendix S3. 
After the segmentation is completed, two experienced 
radiologists checked the segmentation results of each 
case one by one. If the segmentation is found to be incor-
rect or incomplete, they will made corrections. In cases 
where there was disagreement, a third expert intervened 
and provided a final decision.

Pattern partition for tumor heterogeneity
Since it is hardly possible to define the subregions 
responding to ITH from visual assessment precisely, we 
employed a data-driven K-means clustering algorithm 
for automatic and effective partition (Fig.  1) [16]. First, 
the PyRadiomics package extracted a total of 77 features 
using a 5 × 5 matrix centered on each voxel, including 
first order and texture features (Appendix S4). Second, 

we collected each patient’s voxel-level radiomics features 
to perform unsupervised K-means clustering using the 
Scikit-learn package. To determine the optimal number 
of subregions, we conducted K-means with different clus-
ter numbers from 3 to 9, respectively. The Calinski-Har-
abasz, Silhouette Coefficient, and Davies-Bouldin indices 
were then calculated to assess the clustering performance 
[17–19]. After determining the best cluster number, sub-
regions responding to ITH for each patient were auto-
matically partitioned by voxel-based K-means clustering 
methods, and each exhibits a coherent pattern of imaging 
attributes.

Deep learning procedures and model construction
We cropped the largest tumor cross-sections and its 
adjacent four slices in Subregion 1. Since the model used 
multiple 2D images from different layers, it may be in 
the middle of 2D and 3D, hence the name 2.5D approach 

Fig. 1 The flowchart illustrates the study design. Step 1 included image preprocessing, automatic tumor segmentation, extraction of voxel-level ra-
diomics features, and K-means clustering. Step 2 The deep learning model was built for each subregion or whole-tumor, and then the extracted deep 
learning hidden features from three subregions were combined to train feature-fusion model. Step 3 evaluated the predictive efficacy and clinical utility 
of the optimal model
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[20]. After data augmentation and necessary preprocess-
ing, they were input into five parallel and identical back-
bone networks with shared parameters (ResNet18). The 
ResNet18 model, which was pre-trained on the ImageNet 
dataset, was used for transfer learning supported by 
OnekeyAI platform (http://medai.icu/). Model training 
was conducted by updating the network weights using a 
cross-entropy loss function for the prediction task. We 
employed an initial learning rate of 0.001, training the 
model for 200 epochs with a batch size of 32. The net-
work parameters were fixed after training was completed 
and the fixed model was used as a feature extractor [21]. 
We applied principal component analysis to reduce the 
dimensionality of the deep learning hidden features, 
ensuring a balanced representation between features. 
By reducing the feature dimensions to 200, we aimed to 
enhance the model’s generalization ability and mitigate 
the risk of overfitting. The same method was used to 
extract deep learning hidden features from Subregion 2 
and Subregion 3. After combination, z-score normaliza-
tion, Spearman correlation analysis, and LASSO analysis 
to select the most relevant features, they were subse-
quently used to train the Random Forest classifier, which 
constructed the feature-fusion model (Fig. 1) [22].

In 3D deep learning, each subregion within the 
tumors was cropped into a 3D cube, with a dimension of 
96*96*96. Deep learning hidden features were extracted 
from pre-trained CNN via transfer learning. In the study, 
the 3D ResNet50 model was employed, which was pre-
trained on the Med3D dataset and was supported by 
OnekeyAI platform. The model was trained with 200 
epochs, and the initial learning rate was set to 0.01. Inver-
sion strategies across the X, Y, and Z axes were utilized 
to augment and diversify the dataset. Similarly, the deep 
learning hidden features of each subregion were obtained 
and compressed. These features were then combined 
and utilized for the Random Forest feature-fusion model 
using 3D input.

Regarding the construction of the whole-tumor model, 
we continued the above approach of 2.5D and 3D subre-
gion models. Briefly, for the 2.5D whole-tumor model, we 
selected the largest cross-section of the entire tumor and 
its upper and lower layers (five layers in total) as the input 
dataset. In the 3D whole-tumor model, the entire tumor 
was segmented into 3D cubes. The training process of the 
whole-tumor model and the subregion model was simi-
lar, with only slight differences in individual parameters. 
The training and analysis were performed using various 
software tools, including ITK-SNAP v.3.8.0, and custom 
code written in Python v.3.7.12. Python packages used 
in the analysis include Pandas v.1.2.4, NumPy v.1.20.2, 
PyTorch v.1.8.0, Onekey v.3.1.3, Seaborn v.0.11.1, Mat-
plotlib v.3.4.2, SciPy v.1.7.3, scikit-learn v.1.0.2, and life-
lines v.0.27.0.

Performance evaluation and statistical analysis
The predictive performance was assessed and compared 
quantitatively by receiver operating characteristic curves, 
the area under the curve (AUC), the Delong test, and the 
net reclassification index (NRI). Hyperparameter optimi-
zation for the model was conducted after analyzing the 
outcomes of five-fold cross-validation on the primary 
training set. Patient characteristics were compared using 
the t-test for continuous variables and χ2 or Fisher exact 
test for categorical variables. P < 0.05 was considered 
indicative of a statistically significant difference. Survival 
analyses were conducted using the Kaplan-Meier curves 
with log-rank tests, and Cox proportional hazards models 
were employed to assess potential prognostic variables.

Biological basis exploration
We conducted gene analysis on 24 patients with RNA 
sequencing data from the Cancer Imaging Archive 
database to explore the potential biological basis of the 
model based on ITH ( h t t p  s : /  / w w w  . c  a n c  e r i  m a g i  n g  a r c  h i 
v  e . n e  t /  c o l  l e c  t i o n  / t  c g a - l i h c /) [23]. First, we stratified the 
24 patients into two groups based on the threshold of the 
2.5D feature-fusion model. Then, we performed differen-
tial expression analysis using the edgeR package, consid-
ering genes with a log2 fold change greater than 2 and an 
adjusted p-value less than 0.1 as differentially expressed. 
Subsequently, Gene Ontology (GO) enrichment analysis 
was conducted using the clusterProfiler package, map-
ping differential expression genes (DEGs) to their corre-
sponding Entrez Gene IDs and analyzing for significant 
enrichment in all three GO domains.

Results
Baseline characteristics
This study included a total of 858 patients. The sample 
sizes of the training, validation, external test, and internal 
temporal test sets were 524, 131, 65, and 138, respectively. 
Of the 858 patients, 620 (72.3%) were under 65 years old 
and 238 (27.7%) were 65 years or older, including 706 
men (82.3%) and 152 women (17.7%). In terms of liver 
fibrosis, most patients had a diagnosis of liver cirrhosis, 
primarily due to hepatitis B virus infection. Most HCCs 
were pathologically confirmed as nPD (690, 80.4%), and 
PD HCC was identified in 168 patients (19.6%). Com-
pared to patients with PD HCC, a higher proportion of 
AFP levels less than 20 ng/mL were observed in nPD 
patients. Regarding other variables, there was no signifi-
cant difference between the PD and nPD groups in most 
cases, as detailed in Table 1.

Pattern partition for ITH
The voxel-level radiomics features extracted from tumor 
segmentation in each patient were subjected to K-means 
clustering to reflect the ITH (Fig. 2A). Calinski-Harabasz 

http://medai.icu/
https://www.cancerimagingarchive.net/collection/tcga-lihc/
https://www.cancerimagingarchive.net/collection/tcga-lihc/


Page 5 of 13Song et al. BMC Cancer          (2025) 25:497 

Ta
bl

e 
1 

Ba
se

lin
e 

ch
ar

ac
te

ris
tic

s o
f i

nc
lu

de
d 

pa
tie

nt
s

Tr
ai

ni
ng

 s
et

Va
lid

at
io

n 
se

t
Ex

te
rn

al
 te

st
 s

et
In

te
rn

al
 te

m
po

ra
l t

es
t s

et
nP

D
 H

CC
 

(n
 =

 4
28

)
PD

 H
CC

 
(n

 =
 9

6)
p-

va
lu

e
nP

D
 H

CC
 

(n
 =

 1
08

)
PD

 H
CC

 
(n

 =
 2

3)
p-

va
lu

e
nP

D
 H

CC
 

(n
 =

 4
0)

PD
 H

CC
 

(n
 =

 2
5)

p-
va

lu
e

nP
D

 H
CC

 
(n

 =
 1

14
)

PD
 H

CC
 

(n
 =

 2
4)

p-
va

lu
e

Ag
e

0.
96

0.
33

0.
82

0.
34

 
<

65
31

6(
73

.8
3)

70
(7

2.
92

)
81

(7
5.

00
)

20
(8

6.
96

)
28

(7
0.

00
)

16
(6

4.
00

)
71

(6
2.

28
)

18
(7

5.
00

)
 

≥
 6

5
11

2(
26

.1
7)

26
(2

7.
08

)
27

(2
5.

00
)

3(
13

.0
4)

12
(3

0.
00

)
9(

36
.0

0)
43

(3
7.

72
)

6(
25

.0
0)

Se
x

0.
31

0.
54

0.
92

0.
14

 
Fe

m
al

e
60

(1
4.

02
)

18
(1

8.
75

)
23

(2
1.

30
)

3(
13

.0
4)

13
(3

2.
50

)
7(

28
.0

0)
20

(1
7.

54
)

8(
33

.3
3)

 
M

al
e

36
8(

85
.9

8)
78

(8
1.

25
)

85
(7

8.
70

)
20

(8
6.

96
)

27
(6

7.
50

)
18

(7
2.

00
)

94
(8

2.
46

)
16

(6
6.

67
)

Ci
rr

ho
sis

0.
04

0.
32

0.
60

0.
42

 
N

o
15

7(
36

.6
8)

24
(2

5.
00

)
43

(3
9.

81
)

6(
26

.0
9)

15
(3

7.
50

)
7(

28
.0

0)
51

(4
4.

74
)

8(
33

.3
3)

 
Ye

s
27

1(
63

.3
2)

72
(7

5.
00

)
65

(6
0.

19
)

17
(7

3.
91

)
25

(6
2.

50
)

18
(7

2.
00

)
63

(5
5.

26
)

16
(6

6.
67

)
AF

P
 

<
 2

0 
ng

/m
L

24
0(

56
.0

7)
22

(2
2.

92
)

<
 0

.0
01

64
(5

9.
26

)
5(

21
.7

4)
0.

00
2

23
(5

7.
50

)
7(

28
.0

0)
0.

04
77

(6
7.

54
)

8(
33

.3
3)

0.
36

 
20

–4
00

 n
g/

m
L

10
8(

25
.2

3)
30

(3
1.

25
)

0.
28

24
(2

2.
22

)
10

(4
3.

48
)

0.
06

11
(2

7.
50

)
12

(4
8.

00
)

0.
16

21
(1

8.
42

)
7(

29
.1

7)
0.

02
 

>
 4

00
 n

g/
m

L
80

(1
8.

69
)

44
(4

5.
83

)
<

 0
.0

01
20

(1
8.

52
)

8(
34

.7
8)

0.
15

6(
15

.0
0)

6(
24

.0
0)

0.
56

16
(1

4.
04

)
9(

37
.5

0)
0.

24
Tu

m
or

 si
ze

0.
98

0.
32

1.
00

0.
24

 
<

 5
0 

m
m

26
2(

61
.2

1)
58

(6
0.

42
)

60
(5

5.
56

)
16

(6
9.

57
)

25
(6

2.
50

)
16

(6
4.

00
)

63
(5

5.
26

)
17

(7
0.

83
)

 
≥

 5
0 

m
m

16
6(

38
.7

9)
38

(3
9.

58
)

48
(4

4.
44

)
7(

30
.4

3)
15

(3
7.

50
)

9(
36

.0
0)

51
(4

4.
74

)
7(

29
.1

7)
N

um
be

r o
f t

um
or

s
1.

00
0.

72
0.

11
0.

55
 

So
lit

ar
y

38
8(

90
.6

5)
87

(9
0.

62
)

95
(8

7.
96

)
19

(8
2.

61
)

34
(8

5.
00

)
25

(1
00

.0
0)

10
8(

94
.7

4)
24

(1
00

.0
0)

 
M

ul
tip

le
40

(9
.3

5)
9(

9.
38

)
13

(1
2.

04
)

4(
17

.3
9)

6(
15

.0
0)

0 
(0

)
6(

5.
26

)
0 

(0
)

PD
: p

oo
rly

 d
iff

er
en

tia
te

d;
 H

CC
: h

ep
at

oc
el

lu
la

r c
ar

ci
no

m
a;

 n
PD

: n
on

-p
oo

rly
 d

iff
er

en
tia

te
d,

 in
cl

ud
in

g 
m

od
er

at
el

y 
di

ffe
re

nt
ia

te
d,

 a
nd

 w
el

l d
iff

er
en

tia
te

d;
 A

FP
: a

lp
ha

-f
et

op
ro

te
in

;



Page 6 of 13Song et al. BMC Cancer          (2025) 25:497 

measures the ratio of inter-cluster variance to intra-clus-
ter variance, with higher indices indicating better clus-
tering. We observed that the mean value of this index 
reached its maximum value when k is set to 3, which 
means that the clustering results are most favorable at 
this point (Fig.  2B). The contour coefficient is a metric 
used to assess the tightness and separation of clusters. In 
this study, this index similarly supported the result that 
three-class clustering is optimal.

In the 3D clustering visualization, the different colors 
represent the different clusters (Subregions 1, 2, and 3) 
(Fig.  2C). Due to the varying distribution of heteroge-
neous subregions across different patients, we remapped 
the subregion labels generated for each patient to ensure 
similar physical meaning of subregions across all patients. 
Subsequently, we investigated the predictive potential of 
applying deep learning methods at the subregional level 
for HCC tumor differentiation (Fig. 2D).

Model efficiency evaluation
In the training set, compared to the deep learning model 
of the whole tumor (0.72; 95% CI: 0.66–0.78), the 2.5D 
feature-fusion model had a significantly higher AUC 

(0.82, 95% CI: 0.78–0.86; p = 0.004). The model achieved 
an AUC of 0.825 (95% CI, 0.74–0.92) in the validation set, 
with an accuracy, sensitivity, and specificity of 0.78, 0.79, 
and 0.78, respectively. Even in the external test set, the 
2.5D feature-fusion model maintained an AUC of 0.78 
(95% CI, 0.66–0.90). The predictive performances for the 
models were presented in Table 2. Regarding the selected 
features, a total of seven features were included in the 
2.5D feature-fusion model after Spearman correlation 
analysis and LASSO, of which three were from Subre-
gion 1, one from Subregion 2, and three from Subregion 
3 (Figure S1).

The 3D feature-fusion model (AUC = 0.74, 95%CI, 
0.69–0.80) did not show better performance compared 
to the 3D whole-tumor model (AUC:0.76, 95%CI, 0.70–
0.82; p = 0.70). This was also the case in the validation 
(0.69, 95% CI: 0.59–0.79) and external test sets (0.68, 
95% CI: 0.55–0.81) (Table  2). By comparison, although 
not statistically significant by Delong tests, the 2.5D fea-
ture-fusion model showed better and more stable perfor-
mance (Fig.  3). The NRI results also indicated that this 
model improved predictive accuracy by 25–28% com-
pared to the whole-tumor model. Regarding the selected 

Fig. 2 The diagram shows the procedure of pattern partition for tumor heterogeneity. (A) Representative plots for visualization of first-order features and 
texture features. All local features of each voxel were used for K-means unsupervised clustering; (B) The indices were calculated to evaluate the effective-
ness of K-means clustering, and the best cluster number was determined accordingly; (C) 3D scatterplot for visualization of K-means clustering results 
for a candidate patient. Each data point represents a voxel and there are 77 local features per voxel. The different colors represent the different clusters 
(Subregions 1, 2, and 3); (D) Through clustering, the tumor was divided into different subregions. These subregions were mapped back to the original 
tumor volume to reveal the overall intra-tumor heterogeneity
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features, a total of ten features were included in the 3D 
feature-fusion model, of which one were from Subregion 
1, four from Subregion 2, and five from Subregion 3 (Fig-
ure S2).

Grad-CAM from the deep learning model showed 
differences in attention areas between the 2.5D whole-
tumor model and the 2.5D feature-fusion model (Fig. 4). 
Brighter colors suggested the more significant impact of 
the features at those locations on the model’s decision-
making. Overall, the hotspots of each subregion on the 
Grad-CAM maps were more concentrated and had more 
explicit boundaries than the 2.5D whole-tumor model.

Clinical utility investigation
In the temporal test set, the 2.5D feature-fusion model 
based on ITH exhibited satisfactory predictive efficacy, 
achieving an AUC of 0.81 (95% CI: 0.71–0.91). This mod-
el’s accuracy, sensitivity, and specificity was 81.9%, 70.8%, 
and 84.2%, respectively.

We also explored the prognostic value of this selected 
model. Figure 5AB demonstrated the OS and RFS in the 
primary cohort (n = 354) could be significantly strati-
fied by the signature of this model (p < 0.05). In addition, 
the results of multivariable Cox regressions indicated 
that the signature from the 2.5D feature-fusion model 

was identified as a risk predictor of poor OS (HR: 2.04, 
95%CI: 1.42–2.92, p < 0.001) and RFS (HR: 1.49, 95%CI: 
1.03–2.11, p = 0.02) (Table 3).

Biologic basis exploration
As shown in Fig.  6A, significant differences in gene 
expression were found between 17 patients with low 
probability and 7 patients with high probability of being 
PD HCC according to this model. The DEGs were catego-
rized into two main clusters, which was highly consistent 
with the classification of this model. Figure 6B visualized 
the number and magnitude of DEGs. In Fig. 6C, molecu-
lar function analysis revealed the significant enhance-
ment of gated channel activity, ligand-gated channel 
activity, growth factor activity, etc. Cellular Components 
analysis showed that DEGs were most enriched in neu-
ronal cell body and perikaryon. Moreover, tumors with 
high probability are more vulnerable to some critical 
biological process that results in tumors being more het-
erogeneous, including modulation of chemical synaptic 
transmission, response to metal ions, regulation of meso-
dermal cell differentiation, and regulation of epithelial 
cell differentiation (Fig. 6CD).

Table 2 Predictive performance of different models
Data Set and Model Whole-tumor Feature-fusion of subregions from ITH

AUC (95%CI) AUC (95%CI) ACC SEN SPE p value* NRI
Training set (n = 524)
 2.5D ResNet18 0.716 (0.657, 0.775) 0.821 (0.777, 0.864) 0.784 0.684 0.807 0.004 0.172
 3D ResNet50 0.756 (0.695, 0.817) 0.741 (0.687, 0.795) 0.687 0.674 0.690 0.704 -0.063
Validation set (n = 131)
 2.5D ResNet18 0.706 (0.580, 0.831) 0.825 (0.735, 0.915) 0.779 0.792 0.776 0.187 0.250
 3D ResNet50 0.732 (0.618, 0.847) 0.690 (0.586, 0.793) 0.641 0.667 0.636 0.593 -0.111
External test set (n = 65)
 2.5D ResNet18 0.677 (0.538, 0.816) 0.783 (0.662, 0.904) 0.785 0.680 0.850 0.309 0.260
 3D ResNet50 0.705 (0.568, 0.841) 0.679 (0.546, 0.812) 0.662 0.760 0.60 0.787 0.02
Temporal test set (n = 138)
 2.5D ResNet18 0.693 (0.570, 0.817) 0.808 (0.709, 0.907) 0.819 0.708 0.842 0.195 0.279
 3D ResNet50 0.728 (0.622, 0.834) 0.666 (0.550, 0.782) 0.667 0.583 0.684 0.359 -0.140
ITH: intratumoral heterogeneity; AUC: the area under the curve; ACC: accuracy; SEN: sensitivity; SPE: specificity; *: Compared with the whole-tumor model; NRI: net 
reclassification index

Fig. 3 Performances for classifying tumor differentiation of hepatocellular carcinoma. (A) in the training set; (B) in the validation set; (C) in the external 
test set; (D) in the temporal test set. These figures demonstrated the 2.5D feature-fusion model had superior predictive efficacy than other three models
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Discussion
Preoperative definition of the histopathologic grade in 
HCC is one of the most critical factors for optimal man-
agement strategies. The primary objective of this study is 
to investigate the heterogeneity patterns within the HCC 
regions using voxel-level radiomics features and K-means 
unsupervised clustering, then to establish subregional 
2.5D and 3D deep learning feature-fusion models to 

improve the performance of predicting differentiation 
grade of HCC. In this study, the 2.5D feature-fusion 
model demonstrated superior performance in identify-
ing patients with PD HCC and was well validated across 
the other three sets. Moreover, Kaplan-Meier curves 
showed that this model’s signature had good survival 
stratification.

Fig. 5 Prognostic value of the 2.5D feature-fusion signature in hepatocellular carcinoma. (A) Overall Survival; (B) Recurrence-free Survival. These Figures 
demonstrated the OS and RFS could be significantly stratified by the signature of the 2.5D feature-fusion model

 

Fig. 4 The attention regions of an example case from the external test set. (A) Whole-tumor 2.5D deep learning model; (B) 2.5D feature-fusion deep 
learning model based on intratumoral heterogeneity; From left to right: the largest tumor section, the first and second layers on that section, and the 
first and second layers below it. The heat map generated by Grad-CAM highlights the areas of concern for the model, allowing us to see which parts are 
most important for model decisions. physicians can increase their trust in the model by looking at heat maps and understanding why the model makes 
a particular prediction
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The application of deep learning and radiomics for 
predicting tumor status of HCC shows promise. Sev-
eral recent publications have investigated the potential 
of radiomic features to classify tumor differentiation 
in HCC [6, 24–27]. Despite the success of these stud-
ies, their attention was focused on improving predictive 
capabilities rather than exploring the underlying biologi-
cal basis or investigating the clinical utility. Currently, the 
research investigating ITH has been relatively limited 
[14, 28, 29]. This study introduced an effective automated 
method to reveal the underlying patterns of ITH in HCC 
by utilizing voxel-level radiomics features from dynamic 
contrast-enhanced MRI images. Subsequently, the fea-
ture-fusion model was constructed by extracting deep 
learning hidden features from three subregions. This 
study’s 2.5D feature-fusion model demonstrated supe-
rior discriminative ability compared to the whole-tumor 
model. This model also exhibited high AUC values, rang-
ing from 0.78 to 0.81, in both the external and the tempo-
ral test sets. This fusion strategy, which integrates deep 
learning hidden features from multiple subregions, may 
result in a richer and more representative feature than a 
simple whole-tumor approach. Improving features’ qual-
ity and quantity contributes to constructing a more effi-
cient and targeted model.

As a 3D spital imaging, MRI images trained by a 3D 
network might obtain more critical information than 
the 2D or 2.5D approach [30–32]. Contrary to expecta-
tions, the 3D feature-fusion model in this study did not 
perform superior to the 2.5D feature-fusion model. A 
recent systematic review also indicated that 2D networks 
generally perform better when compared to baseline 
models [33]. Compared to 2D deep convolutional neu-
ral networks (DCNN), the training of 3D DCNN typi-
cally requires larger datasets, and the limited availability 
of pre-trained 3D networks further exacerbates this issue 
[22, 34]. Furthermore, the subregional images are discon-
tinuous, which may result in the struggle of 3D models to 
learn global features. These factors potentially influence 

the performance of the feature-fusion model based on a 
3D network.

The model’s potential application value needs further 
elucidation to understand its significance and implica-
tions for clinical decision-making. First, we employed 
visualization methods to identify and output the regions 
deemed important by the network to investigate the 
prediction process of this model [20]. Subregional deep 
learning may provide an intuitive understanding of 
tumor heterogeneity [16]. We found the 2.5D feature-
fusion model selected one feature from Subregion 2, 
and the hotspots were more widespread in Subregion 2. 
Second, although the model does not serve as a defini-
tive diagnostic criterion for classifying tumor differen-
tiation, the probabilities it generates can assist clinicians 
in optimizing treatment strategies to a large extent [35]. 
For patients predicted to have a higher probability of PD 
HCC, further molecular testing is recommended to eval-
uate the suitability and choices for neoadjuvant therapy. 
Conversely, invasive biopsies and subsequent expensive 
testing can largely be avoided in patients predicted to 
have non-PD HCC.

Moreover, there is a growing recognition that genetic 
variation plays a pivotal role in tumor biology. In this 
study, genetic analysis may have the potential to provide 
a deeper understanding of the molecular basis of tumor 
differentiation from the perspective of ITH. By integrat-
ing genetic information with imaging data, we explored 
the biological significance underlying the feature-fusion 
model based on ITH. Genetic analysis revealed that 
tumors with a high probability of PD were more suscep-
tible to several critical biological processes, including 
regulation of epithelial cell differentiation and mesoder-
mal cell differentiation. Growth factor activity, a clas-
sic molecular function associated with tumor, was also 
significantly enriched. Moreover, the response to metal 
ions was also a significant factor influencing the degree of 
tumor differentiation [36, 37]. A recently published study 
suggested ferroptosis was identified as a vulnerability and 

Table 3 Univariable and multivariable Cox proportional hazards analyses for OS and RFS
Variable Overall Survival Recurrence-free Survival

Univariable Analysis Multivariable Analysis Univariable Analysis Multivariable Analysis
Signature from ITH model 1.90 (1.33, 2.71) < 0.001 2.04 (1.42, 2.92) < 0.001 1.44 (1.03, 2.02) 0.03 1.49 (1.06, 2.11) 0.02
Age (> 65 years) 1.10 (0.71, 1.71) 0.67 1.04 (0.65, 1.66) 0.87 1.04 (0.71, 1.54) 0.84 0.92 (0.61, 1.40) 0.70
Gender (male) 1.10 (0.68, 1.78) 0.69 1.19 (0.73, 1.96) 0.49 1.15 (0.73, 1.80) 0.55 1.12 (0.70, 1.77) 0.64
HBV (Yes/No) 0.97 (0.65, 1.43) 0.87 0.92 (0.60, 1.40) 0.69 0.89 (0.62, 1.27) 0.52 0.89 (0.61, 1.30) 0.55
Cirrhosis (Yes/No) 1.13 (0.80, 1.59) 0.51 1.29 (0.89, 1.88) 0.18 1.03 (0.75, 1.41) 0.87 1.10 (0.79, 1.55) 0.56
INR (> 1.5 ratio) 2.61 (0.36, 18.85) 0.34 4.73 (0.63, 35.76) 0.13 3.13 (0.77, 12.68) 0.11 4.42 (1.04, 18.75) 0.04
Tumor grade (PD/nPD) 1.62 (1.09, 2.39) 0.02 1.28 (0.79, 2.08) 0.31 1.36 (0.93, 1.98) 0.12 1.21 (0.77, 1.90) 0.42
Multiple tumor (Yes/No) 1.08 (0.64, 1.83) 0.77 1.19 (0.70, 2.04) 0.52 1.38 (0.87, 2.20) 0.17 1.43 (0.89, 2.28) 0.14
Pseudocapsule (Yes/No) 0.74 (0.51, 1.07) 0.11 0.68 (0.46, 0.99) 0.05 0.89 (0.64, 1.25) 0.51 0.81 (0.57, 1.15) 0.24
Tumor size (> 50 mm) 1.35 (0.95, 1.91) 0.09 1.56 (1.08, 2.26) 0.02 1.13 (0.98, 1.30) 0.11 1.17 (1.01, 1.36) 0.04
Hazard ratio (HR), 95% CI and p-value were reported to measure the effects. HBV: hepatitis B virus; INR: international normalized ratio
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Fig. 6 (See legend on next page.)
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potential therapeutic target of high-ITH breast tumors 
[15]. The response to metal ions involves the regula-
tion of cell fate and immune status, especially in tumors 
with high ITH, where homeostatic regulation of metal 
ions may have different effects on different subsets of 
tumor cells [38, 39]. This provides the clues of correlation 
between imaging textures responding to ITH and poten-
tial biological basis. A lenient adjusted p-value threshold 
(< 0.1) was adopted for this exploratory analysis to pri-
oritize hypothesis generation given the small sample size 
of available data. Future studies with larger cohorts will 
validate these associations at stricter thresholds (< 0.05 or 
< 0.01).

ITH is a significant concept in tumor biology [40, 41]. 
In further research, the heterogeneity patterns and the 
identification of high-risk regions are expected to be 
thoroughly investigated to provide significant tumor 
characteristics. Moreover, strengthening the interdisci-
plinary collaboration between medical images and fields 
such as clinical pathology, molecular biology, and bioin-
formatics will enable a deeper insight of ITH and provide 
richer information for predicting tumor states. Future 
work will focus on correlating radiomic sub-regions 
with pathological analysis, molecular biology, and bio-
informatics to establish direct links between imaging 
phenotypes, genomic heterogeneity, and immune micro-
environmental changes.

This study has several limitations. First, this is a retro-
spective analysis; thus, patient selection bias and poten-
tial bias in tumor grade distribution are inevitable. Future 
prospective large-scale studies remain necessary. Second, 
to alleviate the computational demand caused by a large 
number of voxels, we resampled these images to a voxel 
size of 2 × 2 × 2 mm, which shortened the processing time 
but potentially sacrificed some spatial detail. This resam-
pling approach may affect the model’s ability to capture 
fine structural changes. However, our external validation 
results indicate that even at this voxel size, the model 
maintains high accuracy and stability. Future research 
could explore the impact on model performance using 
original resolution data or finer voxel sizes. Third, only 
the portal venous phase sequence was adopted in this 
study, but the combination of multi-modality imaging is 
a future direction for predictive models in medical fields. 
Future research should include multi-modality imaging 
data to comprehensively evaluate the model’s predictive 
performance based on ITH.

Conclusion
In conclusion, the 2.5D feature-fusion model based on 
ITH showed good performance for predicting preopera-
tive histopathologic grade of HCC. This feature-fusion 
model, which non-invasively assesses ITH, may serve as 
a promising strategy for satisfactory preoperative risk 
prediction in HCC and provide insights for future studies 
related to ITH in HCC.
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