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Abstract
Background A novel molecular diagnostic test, Percepta Nasal Swab (PNS), was developed as a noninvasive lung 
cancer biomarker to aid in risk assessment for indeterminate pulmonary nodules in individuals who smoke or have 
previously smoked. Prior research has shown that exposure of the airway epithelium to cigarette smoke results 
in epithelial gene expression alterations throughout the respiratory tree that reflect the risk of lung cancer in a 
pulmonary nodule. The PNS classifier leverages this concept using whole transcriptome sequencing (RNASeq) of cells 
collected from the nasal epithelium and provides “high”, “intermediate” and “low risk” classification calls to help guide 
clinical management decisions. The clinical validity of the PNS test was established on an independent validation set 
and demonstrated favorable sensitivity and specificity. This study aims to evaluate the analytical validity of the PNS 
test performance in our CLIA (Clinical Laboratory Improvement Amendments) laboratory.

Methods The reproducibility between RNASeq runs within a laboratory and the accuracy between laboratories were 
estimated and compared against the performance-based acceptance criterion. The impacts from varying RNA input 
amount, genomic DNA and blood RNA interference were evaluated to demonstrate the analytical sensitivity and 
specificity of the PNS test results to known conditions that may occur in routine laboratory processing.

Results Based on modeling the impact on clinical sensitivity/specificity, PNS test classifier scores can allow up 
to 0.776 score units of added noise/variability before any performance metrics drop below the pre-specified 
requirements. This allowable variability is six-fold higher than the observed variability estimated between runs and 
between laboratories under routine testing conditions, which are each less than 2% of the 98th percentile score 
range. In addition, PNS test results are shown to be robust against RNA input variation from 50 ng to 15 ng, up to 30% 
of genomic DNA by nucleic mass interference, and up to 14% of blood RNA interference.

Conclusions This study provided sufficient evidence for the accuracy, reproducibility, sensitivity, and specificity of the 
PNS molecular test and supported its utilization in clinical testing.
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Background
Lung cancer is the second most common cancer in the 
U.S. and remains the number one cause of cancer-related 
mortality for both men and women [1]. The U.S. Preven-
tative Services Task Force (USPSTF) recommends that 
certain individuals at high risk for lung cancer undergo 
annual screening with low dose CT [2], which has been 
shown to reduce the lung cancer mortality by 20% [3]. 
While highly sensitive for lung cancer, screening has 
a high false discovery rate, commonly identifying pul-
monary nodules which will ultimately be proven to be 
benign. Pulmonary nodules are also common inciden-
tal findings on CT done for other reasons, and these too 
are most often benign [4]. When a pulmonary nodule is 
identified, current guidelines recommend that physicians 
base management decisions on the estimated probabil-
ity of malignancy [5]. Currently, this estimation relies on 
known risk factors, radiographic features, and, in some 
cases, the use of validated clinical risk model calculators 
[5]. The use of a lung cancer biomarker has been sug-
gested as a way to improve the accuracy of risk assess-
ment [6], and genomic information has been shown to 
have clinical utility in this regard [7]. Extensive prior 
research has shown that a history of cigarette smoking 
is associated with temporary and permanent changes 
in gene expression in the airway epithelium in what has 
been referred to as “the field of injury”, and that patterns 
of gene expression detectable throughout the respira-
tory tree correlate with the likelihood of lung cancer in a 
pulmonary nodule in individuals with a history of smok-
ing [8–10]. This effect is manifested in individuals with 
a minimum exposure of only 100 cigarettes smoked in a 
lifetime. Classifiers leveraging gene expression profiling 
of benign-appearing bronchial epithelial cells collected 
during bronchoscopy have been developed and shown 
to successfully aid in the risk stratification for lung can-
cer management [11, 12]. The field of injury principle 
was subsequently shown to apply to cells from the nasal 
epithelium [13]. Leveraging that concept, a test [14, 15] 
utilizing patterns of gene expression in cells collected 
from the nasal epithelium along with clinical factors was 
developed to accurately predict the risk of lung cancer in 
a screen or incidentally-detected pulmonary nodule in 
individuals with a history of smoking.

The Percepta Nasal Swab (PNS) classifier was devel-
oped using nasal epithelial genomic information from 
1120 patients with a pulmonary nodule (≤ 30  mm). The 
PNS classifier consists of two machine learning mod-
els ensembled in a hierarchical structure. The upstream 
model is a logistic regression model that mainly relies 

on clinical features to up-classify patients to high risk. 
Patients not classified as high risk in the upstream model 
are fed into the downstream model: a supporting vector 
machine that relies heavily on genomic features as well as 
interactions between genomic and clinical covariates to 
stratify the remaining patients to high/intermediate/low 
risk groups. The upstream and downstream models use a 
total of five clinical features (age, pack years, years since 
quit (cigarette smoking), nodule length and nodule spicu-
lation) and 502 gene features as inputs [14, 15].

The PNS classifier was clinically validated in a set of 
249 subjects and its associated performance is used as 
the foundation for this study. The clinical validation of 
the PNS classifier demonstrated robust performance on 
the primary set, with 96% sensitivity and 42% specificity 
in classifying patients to low-risk and 58% sensitivity and 
90% specificity in classifying patients as having high risk 
of malignancy. More details regarding the clinical validity 
have been presented elsewhere [14, 15]. Taken together, 
the PNS test has the potential to provide accurate assess-
ment of malignancy for ever-smokers with a newly 
detected lung nodule.

As a novel molecular diagnostic test, analytical vali-
dation of the PNS test is required to show that the 
assay results are reproducible and robust to technical 
variations that can be expected in routine laboratory 
processing and clinical testing. Specifically, analytical val-
idation establishes the test performance in real-life set-
tings where reagent lots, equipment, and operators can 
vary from run to run, and contaminants may be present 
in the sample [16]. Criteria for analytical validity of novel 
molecular diagnostic tests are established by the Evalua-
tion of Genomic Applications in Practice and Prevention 
(EGAPP) Working Group and the Centers for Disease 
Control’s ACCE Project (Analytic validity, Clinical valid-
ity, Clinical utility and associated Ethical, legal, and social 
implications) [17, 18]. Following the established criteria, 
this study aims to evaluate PNS for its variability and 
reproducibility of test results with variation in input RNA 
quantity, potential contaminants including blood and 
genomic DNA, and intra-run, inter-run intra-lab repro-
ducibility, and inter-laboratory test accuracy. Variability 
and reproducibility of the pre-analytical phase, including 
specimen collection and RNA isolation steps, are beyond 
the scope of this analytical validation study and are not 
discussed in this paper.

Keywords Nasal Swab classifier, Analytical validation, Molecular diagnostic test, Lung cancer risk, Pulmonary nodules, 
Genomics
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Methods
Specimens
Nasal specimens utilized for analytical validation stud-
ies were collected using a Cyto-pak Cyto-Soft brush 
(CP-5B, Medical Packaging Corp., Camarillo, CA, USA). 
After sample collection, nasal specimens were stored 
in a nucleic acid preservative (RNAprotect, QIAGEN, 
Hilden, Germany) and either shipped chilled to a con-
tract research lab for RNA extraction (AEGIS) or frozen 
at -80˚C prior to RNA extraction (DECAMP-1, Lahey).

RNA extraction, amplification, and sequencing
Thawed nasal specimens in RNAprotect were agitated to 
remove cells from the CytoSoft brush either by vortexing 
or using a TissueLyser without bead (QIAGEN, Hilden, 
Germany) and then cells were pelleted by centrifugation 
(5000–10000  g, 5  min). Following removal of RNApro-
tect, the cell pellet was lysed using the QIAzol reagent 
and total RNA extracted using the miRNeasy Mini Kit 
(QIAGEN, Hilden, Germany) according to the manufac-
turer’s instructions. RNA quantification was performed 
using the QuantiFluor RNA System (Promega, Madi-
son, WI), and 50 ng of RNA were used as input to the 
TruSeq RNA Access Library Prep procedure (Illumina, 
San Diego, CA), which enriches for the coding transcrip-
tome. Libraries meeting quality control criteria for ampli-
fication yields were sequenced using NextSeq 500/550 
instruments (2 × 75  bp paired-end reads) with the High 
Output Kit (Illumina, San Diego, CA).

Raw sequencing (FASTQ) files were aligned to the 
Human Reference assembly 37 (Genome Reference 
Consortium) using the STAR RNA-seq aligner soft-
ware. Uniquely mapped and non-duplicate reads were 
summarized for 63,677 annotated Ensembl genes using 
HTSeq.  Data quality metrics were generated using 
RNA-SeQC. Samples were excluded when their library 
sequence data did not achieve minimum criteria for 
total reads, uniquely mapped reads, mean per-base cov-
erage, base duplication rate, percentage of bases aligned 

to coding regions, base mismatch rate and uniformity of 
coverage within each gene.

Study design overview
A simulation study was first performed to establish 
acceptance criterion of technical noise in the assay, then 
the inter-laboratory accuracy and intra-lab inter-/intra-
run reproducibility were assessed against the established 
acceptance criterion. Next, the sensitivity of the PNS 
test to RNA input amount and specificity to interference 
from genomic DNA and blood RNA were established. 
These assessments utilized similar methods and study 
designs as previously employed and described in the ana-
lytical validation of a related molecular test, the Percepta 
Genomic Sequencing Classifier [19]. In addition, samples 
selected in each study showed comparable RNA quality 
measured by RIN value when compared with the clini-
cal validation sample set of N = 249 patients, as shown in 
Supplement File 1 Figure S1.

Flip rate simulation
To establish the acceptance range for the technical noise 
that the PNS classifier can tolerate, a simulation study 
was performed to evaluate the amount of technical noise 
that could be added to classifier scores before the per-
formance of the classifier was significantly impacted. 
Thresholds or allowable ranges were pre-specified for 
each of the clinical validation performance metrics to 
indicate when the classifier performance becomes signifi-
cantly impacted (Table 1). The simulation was performed 
by generating random score noise from a normal dis-
tribution with a mean of 0 and standard deviation (SD) 
varying between 0.01 and 10. The generated random 
noise was then added to the scores from the 249 subjects 
in the independent validation set of the PNS test in the 
primary analysis [14, 15]. Simulated scores with added 
random noise were generated for both the upstream and 
downstream models of the PNS test. The amounts of 
random noise added to the upstream and downstream 
models were proportional to the expected variability 
observed in technical replicates during development. 
This is because the upstream model mainly assesses the 
patient’s clinical risk for lung cancer, which is less likely 
to be impacted by the technical noise found in the assay, 
thus the same amount of technical noise would affect the 
upstream model with less magnitude compared to that 
of the downstream model. After generating the simu-
lated validation set scores at each level of random noise, 
performance metrics including sensitivity, specificity, 
Positive Predictive Value (PPV), and Negative Predic-
tive Value (NPV) were calculated based on the simulated 
scores. Note that for PPV and NPV calculation, data 
was extrapolated to 25% cancer prevalence, a prevalence 
reported by Tanner and colleagues in an observational 

Table 1 Pre-specified performance thresholds used in flip rate 
analysis
Classification Performance Metric Clinical 

Validation 
Performance

Pre-spec-
ified Per-
formance 
Threshold

High Risk Sensitivity 58.2% 50%
Specificity 90.4% 85%
PPV 
(prevalence = 25%)

67% 60%

Low Risk Sensitivity 96.3% 90%
Specificity 41.7% 35%
NPV 
(prevalence = 25%)

97.1% 90%
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study of 18 geographically diverse community pulmonary 
practices [15]. In addition, the percentage of classifier 
calls that changed due to added noise, which is referred 
to as the flip-rate, was calculated at each noise level. The 
simulation was repeated 1000 times at each noise level, 
and median performance metrics were computed across 
all simulations at each noise level to quantify the impact 
from such noise. The maximum allowable score variabil-
ity was determined as the largest added noise or vari-
ability for which all the performance metrics continued 
to meet the pre-specified thresholds which are chosen to 
be the lower end of the 95% confidence interval for the 
performance of the clinical validation of the classifier [15] 
(Table 1). This maximum allowable score variability was 
used as an acceptance criterion for the score variability 
estimated in the following experiments.

Assay reproducibility and accuracy
To assess the intra-run and inter-run reproducibility 
of the PNS classifier, 30 different samples, including six 
control samples, were processed in triplicate across three 
different experimental runs in a single laboratory. A 
single nasal brushing per patient, from which RNA was 
extracted and subsequently processed into aliquots, was 
used for analysis. The reagent lots, operators, and equip-
ment were varied for each experimental run to represent 
the normal variation anticipated in routine processing. 
The 24 non-control samples were chosen to represent the 
entire classification score space of PNS, evenly divided 
between high, intermediate, and low scoring samples. 
The assay reproducibility was quantified by a linear 
mixed-effects model (Eq. 1), with Sijk representing clas-
sifier scores of either upstream or downstream model 
for sample i, run j and replicate k, µ i representing the 
fixed effect from different samples, rj  representing the 
random effect from different runs, and µ i : rj  represent-
ing the random effect from interaction between sample i 
and run j.

 Sijk = µ i + rj + µ i : rj + ϵ ijk (1)

To evaluate the inter-laboratory accuracy of PNS from 
the R&D laboratory where the test was developed to the 
CLIA laboratory where future testing will be performed, 
a panel of 85 patient samples and 6 controls were pro-
cessed in the two laboratories to compare results. The 
two sets of libraries were prepared by different opera-
tors using different equipment from the two laboratories. 
Each sequencing set was performed by either the R&D 
or CLIA operators in the CLIA laboratory, on non-over-
lapping sequencers. The patient samples were selected to 
cover the entire score range of PNS. Linear modeling was 
used to evaluate inter-laboratory accuracy and variability 
(Eq. 2).

 Sik = µ i + ϵ ik (2)

In this model, Sik represents the classifier scores of 
either upstream or downstream models for sample i 
and replicate k, µ i represents the sample effect, k rep-
resents technical replicates, and ϵ ik is the residual. All 
95% confidence intervals (CI) for SDs were obtained by 
bootstrapping.

Analytical Sensitivity and specificity
The PNS test specifies 50 ng of total RNA to be used as 
input to the library preparation procedure, however, the 
actual input amount can vary due to the nominal quan-
titation measurement error or due to pipetting accuracy. 
Lowered RNA input level can result in less diverse library 
populations which may affect test results. Therefore, the 
sensitivity of the PNS test to lower RNA input amounts 
was evaluated using four nasal swab RNA samples, two 
representing “High Risk” scores (positive score with 
malignant classification) and two representing “Low 
Risk” scores (negative score with benign classification). 
The four samples were plated in triplicate using input 
amounts of 15, 20, 36, and 50 ng RNA.

Genomic DNA can be co-extracted with RNA in the 
clinical nasal swab samples, representing a potential 
contaminant in the PNS assay. To evaluate the impact 
of genomic DNA on PNS scores and results, genomic 
DNA was added to four nasal swab RNA samples at 0%, 
3%, 10%, and 30% contamination by mass of nucleic acid. 
Note that the total amount of RNA in each sample was 
constant at 50 ng. All four RNA samples were chosen 
to have low gDNA contamination level (must be < 1%), 
with two representing “High Risk” scores (positive score 
with malignant classification) and two representing “Low 
Risk” scores (negative score with benign classification). 
The four samples were plated in triplicate with 3%, 10%, 
and 30% of genomic DNA added, and in duplicate with 
0% genomic DNA addition.

Linear mixed-effect models (Eq. 3) were used to evalu-
ate the impact of total RNA input amount and interfer-
ing genomic DNA on classifier scores ( Sijk) of either the 
upstream or downstream models. In Eq. 3, µ i represents 
the random effect from different samples, bj  represents 
the fixed effect from different experimental conditions, 
i.e., varying RNA input amount or genomic DNA con-
tamination, k represents technical replicates, and ϵ ijk 
denotes the residual.

 Sijk = µ i + bj + ϵ ijk (3)

For each model, analysis of variance (ANOVA) was used 
to test if the experimental conditions introduce sig-
nificant difference in the PNS test scores. P-values were 
considered significant at 5%. The number of samples and 
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replicates used for the input amount and gDNA effect 
evaluation has been determined to be sufficient, provid-
ing greater than 80% statistical power when analyzed 
using a linear mixed-effects model to detect an effect size 
at the upper bound of the 95% confidence interval for the 
intra-run standard deviation (SD).

In addition to genomic DNA, the collection of the nasal 
swab sample may introduce blood, which could poten-
tially lead to altered gene expression [20]. To evaluate 
the potential of blood as an interfering substance in the 
PNS test, 5%, 10%, 20%, 50%, and 75% of whole blood 
total RNA from two donors was added to total RNA puri-
fied from three nasal swab samples, while maintaining 
the total RNA input into the test constant at 50 ng. All 
selected blood and nasal samples were from male donors 
or patients to control for the potential interference from 
sex. Each of the three nasal swab samples was chosen 
to represent either the low, intermediate, and high can-
cer risk group, as determined by a preliminary PNS test 
result. Each of the two whole blood RNA samples was 
extracted by the same RNA isolation procedure as the 
nasal samples. Each nasal swab RNA sample with 0%, 
10%, 20% and 100% whole blood RNA sample added was 
run in triplicate, whereas each sample with 5%, 50%, 75% 
blood RNA addition was run in duplicate. PNS scores 
were generated for all nasal and blood RNA mixture sam-
ples and the best fit curve was plotted through the scores. 
For each nasal swab sample, the minimum percentage of 
blood addition that would alter its original PNS classifi-
cation call was estimated from the curve and reported as 
the blood interference tolerance limit.

Results
All aspects of the experiments were evaluated for both 
the upstream and downstream models of the PNS test. 
All data analysis was done in R version 3.2.3. The results, 
including variability and impact from interference for the 
upstream model alone, were better in all cases than the 
results of the downstream model alone. This is because 
the upstream model mainly relies on clinical features, 
while the downstream model relies heavily on genomic 
features. The downstream model is therefore subject to 
greater impact from assay variability and interference 
from potential contaminants. The impacts are being 
thoroughly evaluated in the analytical validation and 
summarized in the subsequent sections.

Flip rate simulation
As increasing amounts of technical variability were 
added to the validation set PNS scores in this simulation, 
the first observed impact was an increased probability of 
false up-classification, potentially reducing the accuracy 
of positive test calls. Specifically, when the amount of 
score variability exceeded 0.776 classifier score units, the 

PPV of the simulated validation set PNS scores dropped 
from 67 to 60% (Fig. 1), which was below the pre-speci-
fied acceptable range for this metric (Table 1). All other 
performance metrics, including Sensitivity, Specificity, 
NPV and Flip Rate, allowed higher amount of score vari-
ability. Therefore, the maximum acceptable score vari-
ability of the PNS test is limited by PPV and is established 
to be 0.776 classifier score units, which is 11.4% of the 98 
percentile of the PNS score range.

Assay reproducibility
Between-run and within-run score SDs were estimated 
using a linear mixed-effects model (Eq. 1). The between-
run SD was estimated to be 0.117 (95% CI 0.086–0.153; 
Fig. 2), and the within-run SD estimated to be 0.114 (95% 
CI 0.082–0.147; Fig.  2). This can be compared to the 
inter-class score variability between benign and malig-
nant samples, which is almost four-fold higher (Fig.  2). 
The total SD was compared to the 98-percentile score 
range in the training set using cross-validation, which 
was calculated to be 6.82 classifier score units. The 
between-run SD ascribed to technical variation therefore 
represents 1.72% of the 98 percentile PNS score range, 
six-fold lower than the acceptable score variability, 0.776, 
as established in the Flip Rate simulation study. Thus, the 
technical SD within and between runs is far lower than 
the amount of variability that can affect PNS perfor-
mance, as well as lower than the inherent biological sig-
nal on which the test operates. The conclusion remains 
valid when evaluated among samples with lower RNA 
quality, defined as those below the median of the clinical 
validation set, as shown in Supplementary File 1 Table S1.

Inter-laboratory accuracy
The total score variability between the R&D laboratory 
where the test was developed and the CLIA laboratory 
where future testing will be performed was modeled 
using a linear model (Eq.  2). The model estimated the 
between-lab SD to be 0.117 (95% CI 0.094 to 0.135; 
Fig. 2), which is in line with the between-run, within-lab 
SD observed in the reproducibility study. The conclusion 
remains valid when evaluated among samples with lower 
RNA quality, defined as those below the median of the 
clinical validation set, as shown in Supplementary File 1 
Table S1. This suggests that technical variation associated 
with lab, equipment and operator variation is within the 
range of normal processing run variation in the same lab. 
The PNS scores generated between the two laboratories 
also showed a very high correlation (R2 = 0.98). Between 
the two laboratories, discordant calls were made in 5 
out of 162 (3.1%) classifier calls. The discordant calls are 
due to normal between-run score variability in samples 
with scores within 2 SDs of the classifier score decision 
boundary.
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Fig. 2 Comparison of PNS classifier score variability based on the downstream model scores where the dots indicate the point estimates, and two bars 
indicate the lower and upper bound of the 95% confidence interval. The Between Class score SD includes biological variation between cancer and benign 
samples and was computed from samples in the independent clinical validation set (n = 249) [15]. The between lab score variability is calculated from 87 
samples that were sequenced both in R&D lab and CLIA lab (n = 174). The Between and within run score variability is estimated from 29 samples, each 
with 9 replicates across 3 runs (n = 261). The dashed line denotes the SD of 0.776, which was determined by flip-rate analysis to be the maximum accept-
able SD at which performance of PNS still maintains all pre-specified requirements

 

Fig. 1 Simulated high risk classification PPV in relation to increasing amount of noise added to the independent validation set scores (n = 249). Each 
box represents the PPV based on the simulated scores at each tested variability level (x-axis). The horizontal dashed line denotes the pre-specified 
performance requirement of 60% PPV. The vertical line denotes the maximum acceptable SD, 0.776, which is when PPV drops below the pre-specified 
requirement of 60%
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Analytical sensitivity–total RNA input quantity
The sensitivity of the PNS test to varying levels of total 
RNA input amount was evaluated by linear mixed-effects 
model (Eq.  3). The result indicates that the RNA input 
amount does not have a significant impact on the PNS 
test scores (p-value = 0.25 for the downstream model). 
Also, samples with each RNA input amount tested (15 
ng, 20 ng, 36 ng) were not significantly different from the 
scores of samples with the nominal input of 50 ng RNA 
(Fig. 3). This suggests that the PNS test results are robust 
over a range beyond what would be expected under rou-
tine test conditions, specifically, input amount has no 
significant impact on test results even when input is 70% 
lower than the nominal level. The conclusion remains 
valid when evaluated among samples with lower RNA 
quality, defined as those below the median of the clinical 
validation set, as shown in Supplementary File 1 Table S1.

Analytical specificity–genomic DNA
The impact on the PNS test scores from the potential 
contaminant, genomic DNA, was evaluated using a lin-
ear mixed-effects model (Eq. 3). Results indicate that the 
PNS scores of samples with gDNA additions were not 
significantly different from the corresponding pure RNA 
samples, when evaluated with a linear mixed-effects 
model (p-value = 0.93 for the downstream model), with 
no consistent trend in scores observed (Fig. 4). In addi-
tion, the amount of genomic DNA found in clinical 
samples collected as part of the AEGIS-1 and AEGIS-2 

studies were consistently ≤ 1% [18]. This study demon-
strated that PNS results were robust in the presence of 
DNA contamination 10-fold higher than what has been 
observed in clinical nasal swab samples. Hence, genomic 
DNA contamination of test RNA has no meaningful 
impact to the PNS test results.

Analytical specificity – blood interference
The impact on the PNS test scores from another poten-
tial contaminant, blood RNA, was evaluated by regres-
sion analysis to estimate the maximum amount of blood 
RNA that could be tolerated before any classification call 
of the nasal swab sample would be altered. Two blood 
samples were used to spike in RNA in this study, with 
the first one having a lower PNS classifier score (more 
benign) than the second, thus the same nasal swab sam-
ple can have a different tolerance level to the two blood 
samples. With 31% of the first blood RNA or 14% of the 
second blood RNA added to the low-risk nasal sample, 
the PNS classification call changed from low to inter-
mediate risk. This was due to the increase in the down-
stream model score of the nasal sample after the addition 
of blood RNA, which eventually caused the classifica-
tion call to change. With 49% of the first blood RNA or 
25% of the second blood RNA added to the intermedi-
ate risk nasal sample, the PNS classification call changed 
from intermediate risk to high risk due to the increase of 
the upstream model score with the blood addition. The 
high-risk nasal sample would be expected to be classified 

Fig. 3 Analytical sensitivity of PNS to RNA input. The y-axis is a relative scale, with 0 representing the mean score of each sample across all input levels. 
Scores of the downstream model is shown here in the boxplot with the horizontal line in each boxplot indicating the median value. Each RNA input 
amount was run in triplicate for each sample. The region between the two dashed blue lines (0.4) represents 5.87% of the 98 percentiles of the PNS score 
range
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as high risk regardless of the blood contamination level, 
due to the upstream model score, and the classification 
call remained unchanged under all blood mixture condi-
tions tested. Among all combinations of nasal and blood 
mixture samples tested (Table  2), the lowest percentage 
of blood tolerated without causing a change in the PNS 

result is 14%, suggesting that the PNS classifier can toler-
ate interference from ≤ 14% of whole blood RNA.

To alleviate the effect of blood contamination on PNS 
classifier scores, a sample exclusion criterion was set to 
exclude nasal samples with higher than 10% of blood 
from clinical and analytical validation studies, as well 
as all future samples. Hemoglobin Subunit Beta (HBB) 
gene expression level, which is highly correlated with the 
percent blood spiked-in as shown in Supplementary File 
1 Figure S2, was used as the metric for quantifying the 
blood content in the sample. This blood exclusion crite-
rion was implemented as part of the PNS algorithm. 0% 
of the nasal RNA samples from the clinical validation and 
analytical validation sample sets were subject to the blood 
exclusion criterion. Further, analysis of the blood content 
in all available nasal swab samples revealed that less than 
1% of the nasal swab RNA samples contained more than 
5% of blood-derived RNA, with the most extreme sam-
ples having around 10% of blood-derived RNA. In other 
words, this blood-based sample exclusion criterion was 
developed to proactively safeguard future patient sample 
testing quality. Given that the maximum blood content 
tolerated by the PNS classifier is 14%, excluding samples 
with > 10% of blood ensures that future patient samples’ 
PNS results will be highly unlikely impacted by blood 
contamination.

Table 2 Percentage of interfering blood required to alter 
Percepta Nasal Swab call
PNS Post-Test 
Risk with-
out blood 
interference

Relevant Deci-
sion Boundary

PNS Post-Test Risk with blood 
interference
% Blood 1 % Blood 2

Low Downstream 
model Low Risk

> 31%
Low changed to 
Intermediate

> 14%
Low 
changed to 
Intermediate

Intermediate Downstream 
model Low Risk

100%
Intermediate

100%
Intermediate

Downstream 
model High Risk

100%
Intermediate
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High Risk

> 49%
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High Risk
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Fig. 4 Analytical specificity of PNS against genomic DNA. The y-axis is a relative scale, with 0 representing the mean score of each sample across all input 
levels. Scores of the downstream model is shown here in the boxplot with the horizontal line in each boxplot indicating the median value. Each gDNA 
amount was run in triplicate for each sample and 0pcDNA was run in duplicate. The region between the two dashed blue lines (0.4) represents 5.87% of 
the 98 percentiles of the PNS score range
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Discussion
Newly developed molecular diagnostic tests are sub-
ject to analytical and clinical validation of performance. 
Clinical validition of the PNS test has shown it to be an 
accurate risk assessment tool for patients who have an 
indeterminate pulmonary nodule and have smoked a 
minimum of 100 cigarettes in their lifetime [14, 15]. The 
various studies described in this manuscript evaluated 
the analytical validity of the PNS test results through 
examination of technical variation and potential inter-
ference that could occur in the full workflow of sample 
collection, storage, shipping, laboratory processing, and 
generation of classification scores and calls. In-silico sim-
ulation using the clinical validation set scores established 
the acceptable range of technical variation that would sig-
nificantly reduce the reported clinical test performance. 
Then, any impact from experimental conditions on the 
PNS test was compared against this acceptable range to 
demonstrate robustness regarding clinical performance.

Following the technical assessment criteria provided by 
EGAPP and ACCE, analytical reproducibility was estab-
lished using patient samples with classifier scores cover-
ing the entire PNS score range [21]. The same panel of 
patient samples was processed and tested in two different 
laboratories: the research laboratory where the test was 
developed and the CLIA laboratory where future patient 
samples will be processed, to establish accuracy. Another 
panel of patient samples was processed in the CLIA 
laboratory using different lots of reagents, and different 
equipment used by different operators to establish rou-
tine run-to-run variability. PNS achieved 100% accuracy 
of the test result for patient samples with scores that were 
2SD away from the decision boundary. The between-lab-
oratory score variability was estimated to be 0.117 classi-
fier score units, which is 1.72% of the 98 percentiles of the 
PNS score range. The within-laboratory score variability 
across multiple runs was also estimated to be 0.117, sug-
gesting the technical variability associated with different 
laboratories are in line with the routine run-to-run vari-
ability of operating in the same laboratory. All evaluated 
score variabilities were much lower than the acceptance 
criterion, 0.776, established based on in-silico simula-
tion of the level of variability that can be accepted before 
clinical test performance is significantly impacted. This 
further provides evidence that the PNS test can maintain 
its reported clinical validation performance in the CLIA 
laboratory under routine operations.

Moreover, analytical sensitivity evaluation demon-
strated that the PNS scores did not differ significantly 
with varying levels of RNA input amount to as low as 
15 ng when the nominal input amount is 50 ng. Ana-
lytical specificity evaluation demonstrated that PNS test 
results are robust to potential contaminants including 
genomic DNA and blood RNA. Specifically, PNS scores 

showed no impact from up to 30% of genomic DNA in 
nucleic acid mass while the PNS test tends to yield < 1% 
genomic DNA content in the standard and routine RNA 
extraction processes. The PNS test results also remained 
stable and produced consistent results with interference 
from up to 14% blood-derived RNA, while > 99.9% of 
nasal samples had < 5% of blood in the entire training and 
validation cohort. A blood-based exclusion criterion was 
established to ensure that only patient samples with less 
than 10% of blood are tested in the PNS classifier. The 
potential effects of bacterial or viral contamination were 
not evaluated, as the sequencing assay employed human-
specific probes designed to target only human sequences. 
Additionally, bacterial RNA was not detected in the Bio-
Analyzer profiles of the nasal samples.

With this study and the clinical validation study [14, 
15], the PNS test successfully passed all EGAPP level 
I analytic validity criteria and demonstrated robust 
performance.

Conclusions
This study provided evidence that Percepta Nasal Swab 
test is robust against various technical variabilities and 
potential contaminants that could be expected in a clini-
cal setting. Percepta Nasal Swab for lung cancer risk 
assessment of pulmonary nodules in individuals with a 
history of smoking can be performed in clinical testing 
with high confidence of accuracy and reproducibility.
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