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Abstract 

Background Research on social determinants of genetic testing uptake is limited, particularly among unaffected 
patients with inherited cancer susceptibility.

Methods We conducted a secondary analysis of the Broadening the Reach, Impact, and Delivery of Genetic Services 
(BRIDGE) trial at University of Utah Health and NYU Langone Health, involving 2,760 unaffected patients meeting 
genetic testing criteria for inherited cancer susceptibility and who were initially randomized to either an automated 
chatbot or an enhanced standard of care (SOC) genetic services delivery model. We used encounters from the elec‑
tronic health record (EHR) to measure the uptake of genetic counseling and testing, including dichotomous measures 
of (1) whether participants initiated pre‑test cancer genetic services, (2) completed pre‑test cancer genetic services, 
(3) had genetic testing ordered, and (4) completed genetic testing. We merged zip codes from the EHR to construct 
census tract‑weighted social measures of the Social Vulnerability Index. Multilevel models estimated associations 
between social vulnerability and genetic services utilization. We tested whether intervention condition (i.e., chatbot 
vs. SOC) moderated the association of social vulnerability with genetic service utilization. Covariates included study 
arm, study site, age, sex, race/ethnicity, language preference, rural residence, having a recorded primary care provider, 
and number of algorithm criteria met.

Results Patients living in areas of medium socioeconomic status (SES) vulnerability had lower odds of initiating pre‑
test genetic services (adjusted OR [aOR] = 0.81, 95% CI: 0.67, 0.98) compared to patients living in low SES vulnerability 
areas. Patients in medium household vulnerability areas had a lower likelihood of completing pre‑test genetic services 
(aOR = 0.80, 95% CI: 0.66–0.97) and having genetic testing ordered (aOR = 0.79, 95% CI: 0.63–0.99) relative to patients 
in low household vulnerability areas. We did not find that social vulnerability associations varied by intervention 
condition.

Conclusions These results underscore the importance of investigating social and structural mechanisms as poten‑
tial pathways to increasing genetic testing uptake among patients with increased inherited risk of cancer. Census 
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information is publicly available but seldom used to assess social determinants of genetic testing uptake among unaf‑
fected populations. Existing and future cohort studies can incorporate census data to derive analytic insights for clini‑
cal scientists.

Trial registration BRIDGE was registered as NCT03985852 on June 6, 2019 at clinicaltrials.gov.

Keywords Health technology, Cancer predisposition syndromes, Decision making, Cancer prevention, Early 
detection, User interaction, Patient experience, Population screening, Carrier screening, Cancer disparities

Background
Recent advances in artificial intelligence have led to 
increased implementation of automated, patient-directed 
conversational agents (i.e., chatbots) to increase genetic 
service utilization [1–16]. There is a growing literature 
on the potential utility of chatbots compared with con-
ventional methods (i.e., in-person genetic counseling 
appointments) in the cancer/clinical genetics setting [13, 
14]. Chatbots have been used to provide pre-test genetics 
education, assess genetic cancer risk, offer genetic coun-
seling, and disseminate genetic testing results to family 
members [1–5, 8–15]. Despite studies of chatbot engage-
ment in various patient populations [2, 3, 5, 11, 13–15], 
research on social determinants of genetic testing uptake 
is limited, particularly among unaffected patients with 
inherited cancer susceptibility [17–19].

Results from the Early Detection of Genetic Risk 
(EDGE) study showed that individual-level socioeco-
nomic factors, particularly lower education and house-
hold income levels, were associated with decreased 
interest in hereditary cancer genetic testing among indi-
viduals with high hereditary cancer risk [17]. Yet, more 
studies are needed to further clarify determinants of 
genetic testing uptake at a structural level (e.g., social 
vulnerability) [18–23]. It is well-established that these 
structural patterns are associated with increased cancer 
mortality and later stage cancer diagnosis for historically 
minoritized populations [24]. Investigating the interrela-
tionship between social factors and patient-directed con-
versational agents would provide an added window into 
understanding roles that chatbots could play in increas-
ing genetic testing uptake among unaffected communi-
ties with inherited cancer risk [18]. Also, such research 
could help understand the potential impact of chatbots 
on equity in use of genetic testing [18]. Identifying social 
and structural barriers can also inform novel multilevel 
interventions coordinated by genetic counselors, physi-
cians, and health communication specialists [25].

Motivated by these research gaps, we constructed 
a multilevel design using American Community Sur-
vey estimates and secondary data from the Broaden-
ing the Reach, Impact, and Delivery of Genetic Services 
(BRIDGE) trial, which compared two genetic service 
delivery models (chatbot vs. enhanced standard of care 

[SOC]) [1, 16]. In the present study, we examined the 
association of area-level social vulnerability with uptake 
of genetic counseling and testing among unaffected 
patients at risk for inherited cancer susceptibility. We 
tested whether intervention condition (i.e., chatbot vs. 
SOC) moderated the association of social vulnerability 
with genetic service utilization. We hypothesized that 
individuals living in areas with higher social vulnerability 
would have lower uptake of genetic services and that this 
association would be attenuated among chatbot arm par-
ticipants. This attenuation may occur because chatbots 
can mitigate some barriers associated with social vulner-
ability, such as eliminating the need for time off work or 
transportation to appointments, thus potentially increas-
ing access to genetic services.

Methods
Study design and setting
This observational study is based on a secondary 
analysis of data from the BRIDGE study, a patient-
level randomized (1:1) equivalence trial comparing 
genetic service uptake across two genetic service deliv-
ery models (automated, patient-directed conversa-
tional agent [chatbot] versus enhanced SOC) [1, 16]. 
Details of the full study protocol have been previously 
reported [1, 16, 26]. Briefly, the Genetic Cancer Risk 
Detector (GARDE) software platform identified unaf-
fected primary care patients eligible for evaluation 
for hereditary cancer syndromes at two large health-
care systems (University of Utah Health [UHealth] and 
NYU Langone Health [NYULH]) [27–29]. GARDE is 
an open-source population health platform that scans 
patients’ electronic health records (EHRs) for cancer 
family history information to determine their eligibil-
ity for cancer genetic testing [27–29]. The eligibility 
criteria were based on the 2018 National Comprehen-
sive Cancer Network (NCCN) guidelines for genetic 
evaluation of hereditary ovarian, pancreas, breast, 
colorectal, and/or prostate cancers [27–30]. BRIDGE 
trial inclusion criteria required individuals to (1) 
meet the NCCN genetic evaluation criteria, (2) be 25 
to 60 years old, (3) speak English or Spanish, (4) have 
received primary care in the UHealth or NYULH sys-
tems within the past three years (2017–2019), (5) not 
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have any cancer history except non-melanoma skin 
cancer, (6) not have engaged in any hereditary cancer-
related genetic counseling or testing services, and (7) 
have or be willing to create a MyChart patient portal 
account in Epic® [1]. We defined primary care as inter-
nal or family medicine at both sites, as well as primary 
care visits in obstetrics and gynecology at UHealth. 
The UHealth and NYULH Institutional Review Boards 
(IRBs) approved the BRIDGE trial study protocol as 
a single IRB protocol (IRB 00115509). BRIDGE was 
registered as NCT03985852 on June 6, 2019 at clini-
caltrials.gov. This secondary analysis adhered to the 
Declaration of Helsinki and the Strengthening the 
Reporting of Observational Studies in Epidemiology 
guidelines [31].

Analytic sample
Figure  1 describes the analytic sample derivation. 
Between 2020 and 2023, a total of 5,302 potential par-
ticipants were randomly selected to participate in the 
BRIDGE trial [1]. Of these, 42% were ineligible. Of 
the 3,073 eligible study participants, we excluded 10% 
due to missing data on having a recorded primary care 
provider (n = 1), age (n = 2), sex (n = 7), race/ethnicity 
(n = 280), or geographic information (n = 23). The final 
analytic sample comprised 2,760 unaffected patients at 
increased risk for inherited cancer.

Study arms
Automated, patient‑directed conversational agent
A patient portal message recommending genetic ser-
vices was sent to patients in the chatbot intervention 
arm with a hyperlink to launch the chatbot providing 
pre-test genetics education. BRIDGE trial coordinators, 
genetic counselors, and health communication special-
ists developed the pre-test genetics education script, 
which was delivered using the Invitae chatbot platform 
[1, 4, 32]. The chatbot’s script was based on the pro-
cess of a SOC pre-test genetic counseling appointment. 
Chatbot arm patients who did not respond to the initial 
patient portal message received a one-week follow-up 
reminder, with up to two additional follow-up reminders 
by genetic counseling assistants via telephone. Patients 
who requested genetic testing at the end of the chatbot 
pre-test education were contacted by genetic counseling 
assistants to discuss the patient’s decision to pursue 
genetic testing and to confirm the patient’s family history. 
If the patient confirmed their intent to move forward 
with genetic testing, the genetic counseling assistant 
placed a request in the laboratory portal for the patient 
to be sent a saliva collection kit to their home or arranged 
for the patient to come to an in-person facility for a blood 
draw. Pan-cancer, multigene panel tests for 34–36 genes 
were conducted by Clinical Laboratory Improvement 
Act-certified and New York State approved (NYULH 
patients) commercial laboratories.

Fig. 1 Derivation of the analytic sample, Broadening the Reach, Impact, and Delivery of Genetic Services (BRIDGE) randomized controlled trial, 
2020–2023
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Enhanced standard of care
Patients in the enhanced SOC arm also received a patient 
portal message recommending genetic services. Instead 
of receiving the genetics education chatbot hyperlink, 
these patients were prompted to call and schedule a pre-
test genetics counseling appointment at their study site 
or via phone call. One-week follow-up reminders were 
sent with up to two additional telephone call reminders 
by genetic counseling assistants offering to schedule an 
appointment. Certified genetic counselors provided clini-
cal standard of care for pre-test genetic counseling ser-
vices to SOC arm patients. These appointments occurred 
predominately by phone, but could also be in person 
based on patient preference. As in the chatbot arm, if 
the patient decided to move forward with genetic test-
ing, a genetic counseling assistant placed an order with 
a genetic testing laboratory. Those having genetic coun-
seling by phone had a saliva kit sent to their home, and 
those seen in person had the option to give a sample of 
blood or saliva at the visit.

Uptake of genetic counseling and testing
We used encounters from the EHR of all study partici-
pants to measure the uptake of genetic counseling and 
testing. Outcomes of interest included dichotomous 
measures of (1) whether participants initiated pre-test 
cancer genetic services (defined as clicking the hyper-
link for pre-test genetics education to launch the chatbot 
in the chatbot arm, or scheduling a pre-test counseling 
appointment with a genetic counselor at their study site 
in the SOC arm), (2) completed pre-test cancer genetic 
services (defined as chatbot arm patients completing the 
chatbot pre-test genetics education or SOC arm patients 
completing the pre-test genetic counseling appoint-
ment), (3) had genetic testing ordered, and (4) completed 
genetic testing.

Social vulnerability
We obtained patients’ zip codes from the EHR to 
construct census tract-weighted social vulnerability 
measures according to the Social Vulnerability Index 
developed by the Centers for Disease Control and Pre-
vention [33]. We analyzed the socioeconomic status 
(SES) and household vulnerability metrics which are 
derived from 2018–2022 American Community Survey 
5-year estimates. SES vulnerability is based on the follow-
ing census estimates: percent of population living below 
150% of the federal poverty level, percent of population 
that is unemployed, percent of population experiencing 
housing cost burden, and percent of population with-
out a high school diploma [33]. Household vulnerability 
is based on the following census estimates: percent of 

households with adults aged 65 years or older, percent of 
households with children aged 17 years or younger, per-
cent of households that have a civilian with a disability, 
percent of households that are single-parent households, 
and percent of households with limited English language 
proficiency [33]. We proportionally weighted each met-
ric using census tract weights from the US Department 
of Housing and Urban Development ZIP Code Crosswalk 
files [34]. Index scores range from 0 to 1, indicating an 
area’s social vulnerability ranking (e.g., 0.50 represents 
the 50th percentile). Higher scores indicated greater 
social vulnerability. We categorized these continuous 
measures into low, medium, and high groups.

Covariates
We selected covariates based on prior literature from 
our group as well as others [35–42], which informed 
the selection of individual-level variables important to 
control for in order to examine the independent effect 
of social vulnerability. Covariates extracted from the 
EHR included age (measured continuously), sex (female, 
male), race/ethnicity (non-Hispanic White, non-Hispanic 
Black, Hispanic, non-Hispanic Other), language prefer-
ence (English, Spanish), and whether the patient had a 
recorded primary care provider. We assessed urbanicity 
(urban versus rural) by merging zip codes from the EHR 
with the 2010 Rural–Urban Commuting Area Codes 
established by the US Department of Agriculture [43]. 
We dichotomized the number of GARDE algorithm cri-
teria for genetic testing that were met (only one versus 
multiple) [27–30].

Statistical analysis
We computed descriptive statistics for all variables using 
the gtsummary R package [44]. We reported counts and 
percentages for categorical measures. Means and stand-
ard deviations described continuous measures. We per-
formed bivariate analyses for all variables by SES and 
household vulnerability using Pearson’s Chi-squared, 
Wilcoxon rank sum, and Fisher’s exact tests [45]. Mul-
tilevel logistic regression models were estimated using 
generalized estimating equations [46]. We employed an 
exchangeable working correlation structure to account 
for clustering within zip codes. Covariate-adjusted asso-
ciations were obtained for each social vulnerability met-
ric with the uptake of genetic counseling and testing 
outcomes. We included interaction terms to test whether 
social vulnerability associations differed by study arm. 
Odds ratios (ORs) and 95% confidence intervals (CIs) 
were tabulated. We also computed marginal effects for 
interpretability [47]. Statistical significance was assessed 
as a two-sided alpha of 0.05. We used R Version 4.4.0 to 
perform all statistical analyses [48].
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Results
Sample characteristics
Table  1 summarizes descriptive characteristics among 
the overall sample. Of the 2,760 participants, 1,361 were 
from NYULH and 1,399 were from UHealth. The average 
age of the study participants was 44 years (SD = 10). Most 
of the sample were female (73%), non-Hispanic White 
(75%), preferred to speak English (99%), had a recorded 
primary care provider recorded in the EHR (76%), and 
lived in an urban area (96%). Ninety-four percent met 
only one algorithm criterion. Regarding the outcomes of 
interest, 30% initiated pre-test genetic services, 25% com-
pleted pre-test genetic services, 17% had genetic testing 
ordered, and 13% completed genetic testing.

Sample characteristics by socioeconomic status 
and household vulnerability
We observed statistically significant differences in sev-
eral demographic characteristics by SES vulnerability 
(Table 1). Compared to the low and medium groups, the 

high SES vulnerability group had the greatest propor-
tions of females, non-Hispanic Black patients, those with 
a recorded primary care provider, individuals who lived 
in an urban area, and NYULH patients (Table  1). We 
observed relatively similar patterns by household vulner-
ability (Table 2).

Social vulnerability, pre‑test genetic services, 
and completion of genetic testing
Table  3 presents the adjusted associations between SES 
vulnerability and genetic services utilization. We found 
that patients living in areas of medium SES vulnerabil-
ity had lower odds of initiating pre-test genetic services 
(adjusted OR [aOR] = 0.81, 95% CI: 0.67, 0.98) compared 
to patients living in low SES vulnerability areas. This 
translated to a marginal effect of −0.04 (95% CI: −0.08, 
−0.01; Table 4).

We observed that patients in medium household vul-
nerability areas had a lower likelihood of completing pre-
test genetic services (aOR = 0.80, 95% CI: 0.66–0.97) and 

Table 1 Sample characteristics, overall and by socioeconomic status vulnerability, Broadening the Reach, Impact, and Delivery of 
Genetic Services (BRIDGE) trial, 2020–2023

1 Pearson’s Chi-squared test; Kruskal–Wallis rank sum test

Characteristic Overall
N = 2,760

Socioeconomic status vulnerability p‑value1

Low percentile 
≤32.2
n = 1,391

Medium percentile 
32.3 to 64.4
n = 908

High percentile 
64.5 to 96.7
n = 461

Study arm, No. (%) 0.28

 Enhanced standard of care 1,364 (49%) 687 (49%) 463 (51%) 214 (46%)

 Chatbot 1,396 (51%) 704 (51%) 445 (49%) 247 (54%)

Study site, No. (%) < 0.001
 NYU Langone Health 1,361 (49%) 597 (43%) 438 (48%) 326 (71%)

 University of Utah Health 1,399 (51%) 794 (57%) 470 (52%) 135 (29%)

Age, Mean (SD) 44 (10) 44 (10) 44 (10) 43 (10) 0.21

Female sex, No. (%) 2,023 (73%) 985 (71%) 683 (75%) 355 (77%) 0.009
Race/ethnicity, No. (%) < 0.001
 non-Hispanic White 2,068 (75%) 1,176 (85%) 665 (73%) 227 (49%)

 non-Hispanic Black 202 (7%) 39 (3%) 65 (7%) 98 (21%)

 Hispanic 313 (11%) 91 (7%) 125 (14%) 97 (21%)

 non-Hispanic Other 177 (6%) 85 (6%) 53 (6%) 39 (8%)

English language preference, No. (%) 2,725 (99%) 1,384 (99%) 890 (98%) 451 (98%) 0.001
Algorithm criteria met, No. (%) 0.46

 Multiple 176 (6%) 95 (7%) 57 (6%) 24 (5%)

 Only one 2,584 (94%) 1,296 (93%) 851 (94%) 437 (95%)

Has a recorded primary care provider, No. (%) 2,104 (76%) 1,050 (75%) 682 (75%) 372 (81%) 0.047
Urban residence, No. (%) 2,653 (96%) 1,335 (96%) 860 (95%) 458 (99%) < 0.001
Initiated pre‑test services, No. (%) 838 (30%) 442 (32%) 252 (28%) 144 (31%) 0.11

Completed pre‑test genetic services, No. (%) 688 (25%) 368 (26%) 208 (23%) 112 (24%) 0.15

Had genetic testing ordered, No. (%) 459 (17%) 250 (18%) 141 (16%) 68 (15%) 0.15

Completed genetic testing, No. (%) 358 (13%) 191 (14%) 111 (12%) 56 (12%) 0.49
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having genetic testing ordered (aOR = 0.79, 95% CI: 0.63–
0.99) relative to patients in low household vulnerability 
areas (Table  5). The marginal effect in the “completed 
pre-test genetic services” model was −0.04 (95% CI: 

−0.08, −0.01; Table 6), and the marginal effect in the “had 
genetic testing ordered” model was −0.03 (95% CI: −0.06, 
−0.01; Table  6). The interaction terms between study 
arm and social vulnerability metrics were not statistically 

Table 2 Sample characteristics by household vulnerability, Broadening the Reach, Impact, and Delivery of Genetic Services (BRIDGE) 
trial, 2020–2023

1 Pearson’s Chi-squared test; Kruskal–Wallis rank sum test; Fisher’s exact test

Characteristic Household vulnerability p‑value1

Low percentile 
≤31.6
n = 1,243

Medium percentile 
31.7 to 63.1
n = 1,266

High percentile 
63.2 to 94.8
n = 251

Study arm, No. (%) 0.36

 Enhanced standard of care 631 (51%) 607 (48%) 126 (50%)

 Chatbot 612 (49%) 659 (52%) 125 (50%)

Study site, No. (%) < 0.001
 NYU Langone Health 607 (49%) 582 (46%) 172 (69%)

 University of Utah Health 636 (51%) 684 (54%) 79 (31%)

Age, Mean (SD) 43 (10) 44 (10) 44 (10) 0.09

Female sex, No. (%) 874 (70%) 950 (75%) 199 (79%) 0.002
Race/ethnicity, No. (%) < 0.001
 non-Hispanic White 1,011 (81%) 938 (74%) 119 (47%)

 non-Hispanic Black 47 (4%) 103 (8%) 52 (21%)

 Hispanic 108 (9%) 142 (11%) 63 (25%)

 non-Hispanic Other 77 (6%) 83 (7%) 17 (7%)

English language preference, No. (%) 1,233 (99%) 1,246 (98%) 246 (98%) 0.10

Algorithm criteria met, No. (%) 0.009
 Multiple 98 (8%) 62 (5%) 16 (6%)

 Only one 1,145 (92%) 1,204 (95%) 235 (94%)

Has a recorded primary care provider, No. (%) 912 (73%) 992 (78%) 200 (80%) 0.005
Urban residence, No. (%) 1,195 (96%) 1,215 (96%) 243 (97%) 0.82

Initiated pre‑test services, No. (%) 390 (31%) 370 (29%) 78 (31%) 0.49

Completed pre‑test genetic services, No. (%) 332 (27%) 297 (23%) 59 (24%) 0.15

Had genetic testing ordered, No. (%) 224 (18%) 197 (16%) 38 (15%) 0.20

Completed genetic testing, No. (%) 173 (14%) 155 (12%) 30 (12%) 0.40

Table 3 Adjusted associations between socioeconomic status vulnerability and genetic service utilization

Models adjusted for study site, age, sex, race/ethnicity, language preference, residence, has a recorded primary care provider, and algorithm criteria met

OR Odds ratio, CI Confidence interval

Initiated pre‑test genetic 
services

Completed pre‑test
genetic services

Had genetic
testing ordered

Completed
genetic testing

OR 95% CI OR 95% CI OR 95% CI OR 95% CI

Socioeconomic status vulnerability  

 Low (ref.)

 Medium 0.81 0.67, 0.98 0.82 0.67, 1.02 0.84 0.66, 1.06 0.87 0.68, 1.12

 High 0.94 0.74, 1.21 0.90 0.68, 1.18 0.79 0.57, 1.09 0.86 0.61, 1.21

Study arm    

 Enhanced standard of 
care (ref.)

 Chatbot 1.09 0.93, 1.28 1.11 0.94, 1.33 0.81 0.67, 1.00 0.93 0.74, 1.16
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significant and were not included in the final models. All 
final models controlled for study arm, study site, age, sex, 
race/ethnicity, language preference, residence, having 
a recorded primary care provider, and number of algo-
rithm criteria met.

Discussion
Using data on unaffected patients with inherited cancer 
risk from two large U.S. healthcare systems, we investi-
gated the associations between social vulnerability and 
genetic services utilization. We found that patients liv-
ing in areas of medium SES vulnerability had lower odds 
of initiating pre-test genetic services than those living in 

low SES areas. We also observed that patients in medium 
household vulnerability areas had a lower likelihood of 
completing pre-test genetic services and having genetic 
testing ordered compared to patients in low household 
vulnerability areas. We did not find that the social vul-
nerability associations differed by study arm.

The significant association between SES vulnerabil-
ity and initiating pre-test genetic services is consistent 
with recent findings from a population with increased 
cancer risk [17]. Using data from the EDGE study [49], 
Dusic and colleagues found that lower educational 
attainment and household income predicted lower 
interest in hereditary cancer genetic testing among 

Table 4 Estimated conditional marginal effects of socioeconomic status vulnerability on genetic service utilization

CI Confidence interval

Initiated pre‑test genetic 
services

Completed pre‑test
genetic services

Had genetic
testing ordered

Completed
genetic testing

Marginal effect 95% CI Marginal effect 95% CI Marginal effect 95% CI Marginal effect 95% CI

Socioeconomic status vulnerability
 Low (ref.)

 Medium −0.04 −0.08, −0.01 −0.04 −0.07, 0.00 −0.02 −0.06, 0.01 −0.02 −0.04, 0.01

 High −0.01 −0.07, 0.04 −0.02 −0.07, 0.03 −0.03 −0.07, 0.01 −0.02 −0.05, 0.02

Table 5 Adjusted associations between household vulnerability and genetic service utilization

Models adjusted for study site, age, sex, race/ethnicity, language preference, residence, has a recorded primary care provider, and algorithm criteria met

OR Odds ratio, CI Confidence interval

Initiated pre‑test genetic 
services

Completed pre‑test
genetic services

Had genetic
testing ordered

Completed
genetic testing

OR 95% CI OR 95% CI OR 95% CI OR 95% CI

Household vulnerability
 Low (ref.)

 Medium 0.85 0.71, 1.01 0.80 0.66, 0.97 0.79 0.63, 0.99 0.82 0.65, 1.03

 High 0.92 0.68, 1.26 0.81 0.57, 1.13 0.78 0.53, 1.16 0.80 0.52, 1.23

Study arm
 Enhanced standard of 
care (ref.)

 Chatbot 1.10 0.93, 1.29 1.12 0.94, 1.34 0.82 0.67, 1.00 0.93 0.74, 1.16

Table 6 Estimated conditional marginal effects of household vulnerability on genetic service utilization

CI Confidence interval

Initiated pre‑test genetic 
services

Completed pre‑test
genetic services

Had genetic
testing ordered

Completed
genetic testing

Marginal effect 95% CI Marginal effect 95% CI Marginal effect 95% CI Marginal effect 95% CI

Household vulnerability
 Low (ref.)

 Medium −0.03 −0.07, 0.00 −0.04 −0.08, −0.01 −0.03 −0.06, −0.01 −0.02 −0.05, 0.00

 High −0.02 −0.08, 0.05 −0.04 −0.10, 0.02 −0.03 −0.08, 0.02 −0.02 −0.07, 0.02
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primary care patients with high cancer risk [17]. These 
authors reported that individuals who perceived them-
selves as having lower social status relative to others in 
society would be interested in genetic testing if it were 
free or discounted [17]. The results from the EDGE 
study and the present study underscore the importance 
of investigating social and structural mechanisms as 
potential pathways to increase genetic testing uptake 
among patients with cancer risk. They also highlight 
the need for more multilevel studies incorporating 
individual- and structural-level measures among popu-
lations with inherited cancer susceptibility [18, 19].

We additionally found that medium levels of house-
hold vulnerability were associated with lower odds of 
genetic services utilization. The CDC defines house-
hold vulnerability as areas with a greater proportion 
of households composed of senior citizens, adoles-
cents, individuals with disabilities, single parents, and 
low English language proficiency [33]. As such, genetic 
testing may be seen as a lower priority and a financial 
burden for individuals living in areas with medium 
household vulnerability [17, 50]. Although these find-
ings need to be replicated in national and international 
healthcare systems, they warrant the consideration 
of area-level household characteristics in population 
health algorithms and targeted interventions aimed at 
increasing genetic testing uptake among communities 
with increased cancer risk.

Multivariable results suggested that intervention 
condition (i.e., chatbot vs. SOC) did not significantly 
impact the association of social vulnerability with 
genetic service utilization. One possible explanation 
for these nonsignificant findings is that we did not 
have sufficient power in this secondary data analysis 
to detect interaction effects [51]. This warrants future 
studies with adequate sample sizes to investigate 
whether automated, patient-directed conversational 
agents modify the effects of social and structural factors 
on genetic service utilization. This is critical because 
chatbots allow individuals to engage with genetic ser-
vices at any time without requiring scheduled appoint-
ments or time off work. Yet, other barriers exists, such 
as low digital inclusion (e.g., low patient portal use, 
lack of access to smartphones/computers with internet 
access, and low digital literacy/digital health literacy) 
[52]. A key direction for future research is to evaluate 
whether a text-based approach where patients are sent 
a text message with a link to a chatbot service may miti-
gate some of these barriers. Lastly, the use of chatbots 
for genetic services uptake may mitigate the hesitancies 
of racial/ethnic and/or gender-minoritized patients to 
pursue genetic testing through a provider of a different 
race/ethnicity or gender [53–55].

Strengths and limitations
Our study possessed several strengths. We merged cen-
sus data with data on unaffected patients with inherited 
cancer susceptibility from two large healthcare systems. 
We examined social determinants of genetic testing 
uptake, moving beyond the identification of racial/ethnic 
disparities [18–20, 56, 57]. We applied a semi-parametric 
modeling approach that accounts for clustering within 
zip codes and makes fewer assumptions about the data 
than parametric techniques (e.g., mixed-effects models) 
[46].

The present study is not without limitations. Our find-
ings may not be generalizable to other healthcare sys-
tems with patient population demographics that differ 
from those of UHealth and NYULH. This secondary 
data analysis may be subject to unmeasured confound-
ing, measurement error, and collider and selection bias. 
The GARDE algorithm selected unaffected patients with 
inherited cancer susceptibility using collected cancer 
family history information available in the EHR [27–29]. 
Our recent report identified differences in the availability 
of family cancer history by race/ethnicity, sex, and lan-
guage preference, which could have led to bias in the 
selection of study participants [58]. Future investigations 
are needed to elucidate the impact of missing cancer fam-
ily history on selection into randomized trials of genetic 
testing uptake interventions and the subsequent statisti-
cal analyses. Also, the data did not permit determining 
specific reasons for deciding to proceed or not proceed 
with testing. Lastly, the observed relationships should not 
be interpreted as causal.

Conclusions
In summary, our results contribute to understanding 
how social structures impact the uptake of genetic ser-
vices. We analyzed data from the BRIDGE trial to explore 
the relationship between social vulnerability and genetic 
testing uptake among unaffected individuals at risk for 
an inherited cancer susceptibility. We also investigated 
whether an automated, patient-directed conversational 
agent modified this relationship. Our findings suggest 
that future interventions to improve pre-test genetic ser-
vice initiation should focus on SES vulnerabilities, and 
interventions to enhance completion of pre-test genetic 
services and increase genetic testing orders should con-
centrate on addressing household-level vulnerabili-
ties. Additional analyses are needed to identify whether 
social vulnerability is a causal pathway for genetic test-
ing uptake among this population. Census information 
is publicly available but seldom used to assess social 
determinants of genetic testing uptake among unaf-
fected populations. Existing and future cohort studies 



Page 9 of 11Bather et al. BMC Cancer          (2025) 25:180  

can incorporate census data to derive analytic insights for 
genetic counselors, physicians, and health communica-
tion scientists.
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