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Abstract
Background: Carcinogenesis occurs, at least in part, due to the accumulation of mutations in
critical genes that control the mechanisms of cell proliferation, differentiation and death. Publicly
accessible databases contain millions of expressed sequence tag (EST) and single nucleotide
polymorphism (SNP) records, which have the potential to assist in the identification of SNPs
overrepresented in tumor tissue.

Methods: An in silico SNP-tumor association study was performed utilizing tissue library and SNP
information available in NCBI's dbEST (release 092002) and dbSNP (build 106).

Results: A total of 4865 SNPs were identified which were present at higher allele frequencies in
tumor compared to normal tissues. A subset of 327 (6.7%) SNPs induce amino acid changes to the
protein coding sequences. This approach identified several SNPs which have been previously
associated with carcinogenesis, as well as a number of SNPs that now warrant further investigation

Conclusions: This novel in silico approach can assist in prioritization of genes and SNPs in the
effort to elucidate the genetic mechanisms underlying the development of cancer.

Background
Expressed Sequence Tags (ESTs) are single-pass, partial
sequences of cDNA clones derived from a vast number of
disease and normal tissues [1]. ESTs have been used exten-
sively for gene discovery and transcript mapping of genes
from a wide number of organisms, including human and
mouse [1,2]. ESTs have also been used for SNP identifica-
tion [3-5], gene expression analysis and transcriptome
analysis [6,7]. Currently there are more than 4 millions
human ESTs in GenBank dbEST database and the number
is still growing.

Susceptibility to common, complex diseases is in part
genetically determined [8-11], although the genetic con-
tribution might vary greatly depending on the diseases.
Single nucleotide polymorphisms (SNPs) are the most
common genetic variation in the human genome, and the
number of SNPs identified experimentally is growing tre-
mendously. Currently, dbSNP (build 106) contains more
than 2.7 million unique SNPs. These data provides a vital
resource to study the role of specific sequence alterations
on disease susceptibility as well as drug resistance/sensi-
tivity. In recent years SNPs have been favored as more trac-
table genotypic markers [12]. As genetic markers, SNPs
have several advantages over microsatellites sequence
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repeats, including abundance (one every 750–1000 bp)
[13], stability, and suitability for high throughput analy-
sis. As a consequence, SNPs are being utilized with
increasing frequency as markers in human genetic analy-
sis, such as studies of comparative population variation
[14-16] and candidate gene association analysis [17-21].
Finally, the combination of SNP analysis with new
approaches to investigate profiles of gene expression and
proteomics should lead to fundamental insights into the
biological importance of common genetic variations in
the human genome [22].

Cancer is a polygenic, complex disease caused by the
interaction of many genetic and environmental factors
[23,24]. Presently, fewer than 10% of tumor cases are
attributable to the inheritance of mutations in a single
gene, such as BRCA1/2, BRAF and p53. Mutation in any
one gene in the polygenic pathway may have a small effect
on the risk of developing cancer in a particular individual,
but may still make a substantial contribution to cancer
incidence within the population if the mutation is present
with high frequency [22,23]. Careful study of the huge
number of single nucleotide polymorphism (SNPs) will
eventually provide new insights into carcinogenic mecha-
nisms [19,25,26]

In this report, we detail a novel approach which utilizes
the publicly available dbEST, and dbSNP datasets http://
www.ncbi.nlm.nih.gov to identify SNPs located in genes
potentially involved in tumor development.

Methods
SNP classification by clustering with dbEST and in silico 
genotyping
All unique SNP and EST records were obtained from the
NCBI databases (dbSNP build 106 :http://
www.ncbi.nlm.nih.gov/SNP, dbEST release 092002 http:/
/www.ncbi.nlm.nih.gov/dbEST/). ESTs sequences and
their associated tissue library information were extracted
and organized in a relational database (Sybase, SQL
Server Release 11.0, CA, Sybase Inc.). The EST cDNA
libraries were manually curated and cataloged into tumor
and non-tumor libraries. A total of 4153 tumor and 2178
non-tumor cDNA libraries were identified.

EST and SNP sequences were clustered using a "common
tag" method as previously described [7], SNP sequences
that contiged with ESTs were, for purposes of this study,
assumed to map to exons, and thus designated coding
SNPs (cSNPs). SNP sequences not aligning with ESTs were
excluded from further analysis. For each cSNP, sequence
alignment was performed against dbEST using BLASTN
[27]. In an effort to eliminate false clustering, 95% iden-
tity over 50 bp was selected as a minimum homology
threshold. The genotype for each EST at the SNP position

was fetched from the BLAST alignment. For those SNP
sequences with at least 50 EST hits, ESTs were grouped fur-
ther by their tissue sources. The cutoff of 50 ESTs was cho-
sen at random, and corresponds to an average
representation of 8 distinct tissues. One SNP allele was
picked for each tissue if it was present in greater than 80%
of ESTs. A tissue was designated heterozygous if both SNP
alleles were present in an equal number of ESTs.

SNP distribution analysis in normal vs. tumor cases
The major and minor allele frequencies for each SNP were
calculated for tumor and normal tissue. Fisher's exact test
was used to test the significance of occurrence of the SNP
genotype in both tissue types. Fisher's exact test is calcu-
lated using:

Let there exist two such variables X and Y, with m and n
observed states, respectively. Now form an n × m matrix in
which the entries aij represent the number of observations
in which x = i and y = j. Calculate the row and column
sums Ri and Cj, respectively, and the total sum of the
matrix

All SNP meeting the Fisher's exact test P value < 0.05 sig-
nificance threshold were further analyzed for amino acid
codon conservation.

Codon conservation analysis for cSNP with P < 0.05
SNP sequences were subject to BLAST analysis against
Genbank nr database ftp://ftp.ncbi.nih.gov/genbank/
using BLASTX. The top protein hit with percent identity
greater than 95% over a 30 amino acids window size was
further analyzed to determine whether the SNP resulted in
codon change. The codon which contained the IUPAC
code of the SNP was replaced with the corresponding
nucleotide codes (A,T,C,G) and tested for amino acid
codon change.

Results and Discussions
A large number of studies have focused on investigating
genetic polymorphisms in individual genes in order to
estimate genetic contribution to the development of can-
cer [28]. Cancer susceptibility SNPs have been identified
among genes with known activity in cell cycle mainte-
nance and DNA repair as well as those encoding phase I
and phase II enzymes [28]. Recent advancements in large
scale SNP genotyping have made genome-wide SNP asso-
ciation analysis possible [29,30]. However, despite large
efforts to identify SNPs in genes previously identified as
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candidates for cancer susceptibility, genome wide identi-
fication and characterization of SNPs among cancer
patients or tumor tissue has not been reported.

This report describes a comprehensive allele frequency
analysis of ~2.7 million unique SNPs in tumor vs normal
tissues. The goal of the study was to identify SNPs over-
represented in tumor-derived ESTs using dbEST tissue
library information. Initially, all SNPs from dbSNP build
106 were downloaded from NCBI. A total of 741,244
(27.5%) SNPs mapped to transcribed regions by cluster-
ing to the dbEST database (release 092002) (Table 1).
SNPs overlapping with an EST were further subject to
allele frequency analysis using dbEST tissue information.
Fisher's exact test identified 4865 (0.66%) SNPs with
allele frequencies which were significantly different
between tumor and normal tissue. A less conservative
confidence interval of P < 0.05 was used in this study. A
Multiple testing correction was not performed as we were
more willing to accept false positives than false negatives.
Multiple testing correction, including the Bonferroni cor-
rection (which assumes independent markers), would
markedly overcorrect for the inflated false-positive rate
and thereby throw away valid information. This is espe-
cially true given the large number of tests involved in this
study and the relatively small P values obtained due to the
low count of tissues for each SNP.

Table 2 [see Additional file 1, table2.pdf] summarizes
those cSNPs identified by the present analysis with allele
frequencies significantly different between tumor and
normal tissue that result in amino acid change. Many of
these genes are known to be involved in tumor
development.

HLA/MHC gene SNPs represented approximately 15%
(50/327) of cSNPs identified as differing significantly
between tumor and normal tissue. It has been previously
reported that tumor cells undergo changes in the major
histocompatibility complex (MHC) class I locus during
tumor development [31,32]. These HLA losses produce
tumor cells that are able to escape anti-tumor T cell
immune responses. Defects in the antigen processing
machinery and in HLA class I antigens in malignant cells
may have a significant impact on the clinical course of

malignant diseases and on the outcome of T cell-based
immunotherapy [32]. In addition, MHC class I loss or
down regulation in cancer cells is a major immune escape
route used by a large variety of human tumors to evade
anti-tumor immune responses mediated by cytotoxic T
lymphocytes. Multiple mechanisms are responsible for
such HLA class I alterations. These data suggest that SNPs
in HLA might be another important mechanism that
causes loss-of-function, affecting the role of HLA in pre-
senting immunogenic peptides to T cells.

Glutathione S-transferases (GST) constitute a large multi-
gene family of phase II enzymes involved in detoxification
of potentially genotoxic chemicals. Total or partial dele-
tions or SNPs in alleles encoding GSTM1, GSTM3, GSTPI,
GSTT1, GSTZ1 are associated with reduction of enzymatic
activity toward several substrates of different GST isoen-
zymes. In addition, molecular epidemiological studies
indicate that a single SNP in glutathione S-transferase
appears to be a moderate lung cancer risk factor. However,
the risk is higher when interactions with more GST poly-
morphisms and other risk factors (e.g. cigarette smoking)
occur. Individuals with decreased rate of detoxification or
with "high risk" glutathione S-transferase genotypes have
a slightly higher level of carcinogen-DNA adducts and
more cytogenetic damages [28,33]. Blackburn et al. have
reported that an A/G transition at position 94 of GSTZ1,
which reflects a Lys to Glu changes in the encoded pep-
tide, displayed differences in activity towards several sub-
strates [34]. This SNP (rs7975) was also found to display
different allele frequencies in normal compared to tumor
tissue in this study. The present study also identified a
SNP (rs1065411) in GSTM1, causing a Lys to Gln change
at reside 173. Based on the association of the SNP in
GSTZ1 with increased cancer risk, further analysis of the
variability in GSTM1 is warranted.

The protein kinase PITSLRE is part of the large family of
p34cdc2 related kinases whose functions appear to be
linked to the control of cell division and possibly pro-
grammed cell death [35]. Evidence also suggests that one
or more PITSLRE kinase isoforms may be tumor suppres-
sor genes [36]. It has been suggested that one PITSLRE
isoform p110 protein kinase are cleaved in vivo by multi-
ple caspases during Fas-mediated cell death at several sites

Table 1: SNPs counts in each analytical step. SNP sequences that overlap with ESTs are referred as (cSNPs).

Total Starting SNPs (dbSNP Build 106) ~2,700,000
SNPs Overlaps with ESTs(cSNPs) ~740,000

cSNPs with over 50 ESTs ~34,000
cSNPs with P < 0.05 4865

cSNPs with P < 0.05 and identifiable AA change 327
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within the amino-terminal domain and the caspase cleav-
age of this protein is affected by the phosphorylation [37].
This study identified one SNP (rs1059828) in PITSLRE
kinase (amino acid 401 on CDC2L1, NP_277021.1 and
amino acid 396 on CDC2L2, NP_284922.1) which yields
an amino acid alteration of Ser->Leu with significantly dif-
ferent allele frequencies in normal compared to tumor tis-
sues. Feng et al [38] discovered a similar mutation (C/T at
nucleotide location 97 of exon 7, Ser-Leu) on PITSLRE
CDC2L1 in the melanoma cell line UACC903. While their
exact role remains to be tested, the potential of these two
independently identified mutations to induce phosphor-
ylation site changes on PILSLRE kinase, suggest impor-
tance in tumor development.

Finally, mitochondria have been reported to play a key
role in various apoptotic processes including cell death
induced by cytotoxic agents [39,40]. Mitochondria under-
going permeability transition release apoptogenic pro-
teins such as cytochrome c and apoptosis-inducing factor
from the mitochondrial intermembrane space into the
cytosol, where they can activate caspases and endonucle-
ases [39,40]. This analysis has identified several mito-
chondrial genes including dUTP Pyrophosphatase and
ATP synthase with significantly difference SNP allele fre-
quencies. While their role in apoptosis remains to be
determined, the large number of SNPs in mitochondrial
genes revealed by this analysis suggests that such muta-
tions may contribute to the tumor development.

The approach described here has several limitations. Due
to the continually evolving nature of the human protein
catalog, SNPs located in previously unannotated coding
regions were not included in this analysis. A complete list
of all significant SNPs is available [see Additional file 2,
all_snp.xls], allowing the analysis to be repeated as the
protein catalog is updated. In silico analyses are also lim-
ited by the quantity and quality of the data present in
databases used in the analysis. The data present in dbEST
is not well annotated with regard to the precise origin of
the source tissue used in cDNA library construction. It is
possible, for example, that EST data from multiple tissues
sourced from the same donor were used in the present
analysis. This lack of diversity could artificially bias the
significance of any particular allelic imbalance observed.
The homogeneity of the tissue characterized as tumor-
derived is another potential source of error. Analysis of
actual tumor tissue might contain a large portion of nor-
mal tissue into which the tumor infiltrate. For those rea-
sons, the number of ESTs which contain a particular SNP
and the diversity of source tissues that contain those SNPs
will affect the quality of the analysis. In addition, limited
representation of low-abundance transcripts in dbEST
likely has introduces a bias towards SNPs present in genes
which display widespread tissue distribution, or are

present in tissue types overrepresented in the database.
SNPs present in genes expressed at low levels are under
represented from this analysis as they were likely to fall
short of the protocol thresholds. Another drawback is that
somatic mutations might be excluded from the list since
the majority of dbSNP entries represent chromosomal
mutations and therefore primarily represent inherited
polymorphisms. Somatic mutations that cause cancer in
some genes (i.e: BRAF) [19] might not be detected if the
same mutation is not stably inherited. Lastly, bias was
introduced by the using EST tissue library information to
assess allele frequencies. This limited the present analysis
to SNPs present in known or predicted amino acid coding
sequences, excluding those common, functional intronic
or promoter region SNPs which may result in splicing or
expression changes.

Large scale genotyping of samples from patients will lead
to important breakthroughs in understanding mechanism
of gene-environment and gene-gene interactions in com-
mon polygenic cancers. Effort has been initiated in large
sequencing laboratories to carry out comprehensive SNP
analysis in all disease candidate genes. However, this is a
labor intensive, lengthy and very costly effort. The in silico
analysis described here provide a quick and economic
approach to screen through a large number of identified
SNPs in the human genome to pinpoint possible cancer
susceptibility genes, utilizing the rich tissue and library
information present in the public dbEST database. Never-
theless, positive associations of SNPs with cancers
reported here are very preliminary and are subject to inter-
pretation and careful experimental validation. Only the
combined consideration of studies in different popula-
tions produce similar results will result in the belief that a
SNP is indeed a cancer risk factor.

Although we do not validate all the tumor related genes
identified in this report, the approach taken here identi-
fied numerous hits in DNA repair genes, genes encoding
phase I and phase II enzymes and other tumor related
genes, some of which are already under scrutiny by the
cancer research community. A couple of the SNPs revealed
in this analysis have been suggested to have roles in tumor
development in previously published studies [33]. Com-
plementary to any other disease gene and SNP association
study, this approach can help to prioritize the genes that
need to be validated and further help to elucidate the
genetic contribution to the development of cancer. This
method can also help to identify new genes or SNPs that
might be crucial to tumor development. Additional
genome wide screens through cancer cell DNA for somatic
mutations ultimately will provide a more complete
picture of the number and patterns of mutations underly-
ing human oncogenesis.
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