Skip to main content

Table 2 ViT, VGG16 and ConvNet model evaluation for the 3-class scenario

From: Artificial intelligence based vision transformer application for grading histopathological images of oral epithelial dysplasia: a step towards AI-driven diagnosis

 

Precision

Recall

F1-score

Models

ViT

VGG16

ConvNet

ViT

VGG16

ConvNet

ViT

VGG16

ConvNet

Low risk

0.97

0.88

0.84

0.89

0.81

0.91

0.93

0.84

0.87

High risk

0.88

0.81

0.89

0.97

0.87

0.82

0.92

0.84

0.85

Normal

1.00

0.94

0.95

1.00

0.96

0.93

1.00

0.95

0.94

Accuracy

      

0.94

0.86

0.88

Macro average

0.95

0.87

0.89

0.95

0.88

0.89

0.95

0.88

0.89

Weighted average

0.95

0.87

0.88

0.94

0.86

0.88

0.94

0.86

0.88