Skip to main content

Table 2 Performance parameters of the four readers and the deep learning algorithm for the differentiation between enchondromas vs. chondrosarcomas (G1-G3), enchondromas vs. acts as well as acts vs. High-Grade chondrosarcomas on the external dataset

From: A deep learning model for classification of chondroid tumors on CT images

Enchondromas vs. Chondrosarcomas (G1 - G3)

 

Resident 1

Resident 2

Fellowship

Expert

Algorithm

Accuracy

0.770

0.840

0.870

0.900

0.750

Positive Predictive Value

0.772

0.847

0.844

0.889

0.736

Negative Predictive Value

0.762

0.821

0.957

0.929

0.846

Sensitivity

0.924

0.924

0.985

0.970

0.970

Specificity

0.471

0.676

0.647

0.765

0.324

Balanced Accuracy

0.697

0.800

0.816

0.867

0.647

F1-Score

0.841

0.884

0.909

0.928

0.837

AUC

0.810

0.891

0.910

0.932

0.884

Enchondromas vs. ACTs

 

Resident 1

Resident 2

Fellowship

Expert

Algorithm

Accuracy

0.667

0.772

0.772

0.842

0.561

Positive Predictive Value

0.550

0.656

0.647

0.733

0.477

Negative Predictive Value

0.941

0.920

0.957

0.963

0.846

Sensitivity

0.957

0.913

0.957

0.957

0.913

Specificity

0.471

0.676

0.647

0.765

0.324

Balanced Accuracy

0.714

0.795

0.802

0.861

0.618

F1-Score

0.698

0.764

0.772

0.830

0.627

AUC

0.812

0.872

0.868

0.919

0.816

ACT vs. High-Grad Chondrosarcoma

 

Resident 1

Resident 2

Fellowship

Expert

Algorithm

Accuracy

0.545

0.545

0.727

0.652

0.561

Positive Predictive Value

0.686

0.686

0.719

0.685

0.719

Negative Predictive Value

0.387

0.387

0.778

0.500

0.412

Sensitivity

0.558

0.558

0.953

0.860

0.535

Specificity

0.522

0.522

0.304

0.261

0.609

Balanced Accuracy

0.540

0.540

0.629

0.561

0.572

F1-Score

0.615

0.615

0.820

0.763

0.613

AUC

0.525

0.541

0.630

0.561

0.637

  1. Reader 1 and 2 = residents; Reader 3 = fellowship trained radiologist; Reader 4 = musculoskeletal attending radiologist; AUC = area under the receiver operating characteristic. curve