Dataset | Models | Avg. Precision | Avg. Recall | Avg. F1-score | Avg. Accuracy | AUC | Time (sec) |
---|---|---|---|---|---|---|---|
SIPaKMeD | CICNN-VGG16 | 0.988 | 0.987 | 0.988 | 98.76% | 0.992 | 10,000 |
CICNN-VGG19 | 0.986 | 0.985 | 0.985 | 98.52% | 0.991 | 10,500 | |
CICNN-ResNet-50 | 0.991 | 0.991 | 0.991 | 99.14% | 0.995 | 11,200 | |
CICNN-XceptionNet | 0.881 | 0.861 | 0.862 | 86.21% | 0.914 | 11,800 | |
ShUCSEIT | CICNN-VGG16 | 0.971 | 0.971 | 0.971 | 97.05% | 0.982 | 6300 |
CICNN-VGG19 | 0.969 | 0.970 | 0.970 | 96.82% | 0.980 | 6700 | |
CICNN-ResNet-50 | 0.991 | 0.991 | 0.991 | 99.09% | 0.994 | 7400 | |
CICNN-XceptionNet | 0.933 | 0.933 | 0.932 | 93.18% | 0.957 | 8000 | |
Herlev | CICNN-VGG16 | 0.898 | 0.860 | 0.871 | 86.02% | 0.918 | 3600 |
CICNN-VGG19 | 0.876 | 0.853 | 0.859 | 84.95% | 0.912 | 3900 | |
CICNN-ResNet-50 | 0.979 | 0.978 | 0.978 | 97.31% | 0.984 | 4500 | |
CICNN-XceptionNet | 0.837 | 0.786 | 0.793 | 79.57% | 0.881 | 5000 |