Skip to main content

Table 11 The performance analysis of the proposed CausalCervixNet method

From: CausalCervixNet: convolutional neural networks with causal insight (CICNN) in cervical cancer cell classification—leveraging deep learning models for enhanced diagnostic accuracy

Dataset

Models

Avg. Precision

Avg. Recall

Avg. F1-score

Avg. Accuracy

AUC

Time (sec)

SIPaKMeD

CICNN-VGG16

0.988

0.987

0.988

98.76%

0.992

10,000

CICNN-VGG19

0.986

0.985

0.985

98.52%

0.991

10,500

CICNN-ResNet-50

0.991

0.991

0.991

99.14%

0.995

11,200

CICNN-XceptionNet

0.881

0.861

0.862

86.21%

0.914

11,800

ShUCSEIT

CICNN-VGG16

0.971

0.971

0.971

97.05%

0.982

6300

CICNN-VGG19

0.969

0.970

0.970

96.82%

0.980

6700

CICNN-ResNet-50

0.991

0.991

0.991

99.09%

0.994

7400

CICNN-XceptionNet

0.933

0.933

0.932

93.18%

0.957

8000

Herlev

CICNN-VGG16

0.898

0.860

0.871

86.02%

0.918

3600

CICNN-VGG19

0.876

0.853

0.859

84.95%

0.912

3900

CICNN-ResNet-50

0.979

0.978

0.978

97.31%

0.984

4500

CICNN-XceptionNet

0.837

0.786

0.793

79.57%

0.881

5000