Skip to main content

Table 10 The performance analysis of the base models

From: CausalCervixNet: convolutional neural networks with causal insight (CICNN) in cervical cancer cell classification—leveraging deep learning models for enhanced diagnostic accuracy

Dataset

Models

Avg. Precision

Avg. Recall

Avg. F1-score

Avg. Accuracy

AUC

Time (sec)

SIPaKMeD

VGG16

0.978

0.978

0.978

97.78%

0.986

5200

VGG19

0.963

0.962

0.962

96.18%

0.976

5500

ResNet-50

0.949

0.948

0.948

94.82%

0.968

6000

XceptionNet

0.760

0.656

0.649

65.64%

0.785

6400

ShUCSEIT

VGG16

0.939

0.937

0.938

93.64%

0.960

3200

VGG19

0.929

0.929

0.929

92.73%

0.955

3400

ResNet-50

0.965

0.964

0.964

96.36%

0.977

3800

XceptionNet

0.857

0.857

0.857

85.45%

0.909

4200

Herlev

VGG16

0.616

0.628

0.605

60.21%

0.768

5200

VGG19

0.659

0.635

0.643

59.14%

0.762

5400

ResNet-50

0.825

0.826

0.824

81.18%

0.890

5800

XceptionNet

0.434

0.431

0.387

40.32%

0.652

6200