Dataset | Models | Avg. Precision | Avg. Recall | Avg. F1-score | Avg. Accuracy | AUC | Time (sec) |
---|---|---|---|---|---|---|---|
SIPaKMeD | VGG16 | 0.978 | 0.978 | 0.978 | 97.78% | 0.986 | 5200 |
VGG19 | 0.963 | 0.962 | 0.962 | 96.18% | 0.976 | 5500 | |
ResNet-50 | 0.949 | 0.948 | 0.948 | 94.82% | 0.968 | 6000 | |
XceptionNet | 0.760 | 0.656 | 0.649 | 65.64% | 0.785 | 6400 | |
ShUCSEIT | VGG16 | 0.939 | 0.937 | 0.938 | 93.64% | 0.960 | 3200 |
VGG19 | 0.929 | 0.929 | 0.929 | 92.73% | 0.955 | 3400 | |
ResNet-50 | 0.965 | 0.964 | 0.964 | 96.36% | 0.977 | 3800 | |
XceptionNet | 0.857 | 0.857 | 0.857 | 85.45% | 0.909 | 4200 | |
Herlev | VGG16 | 0.616 | 0.628 | 0.605 | 60.21% | 0.768 | 5200 |
VGG19 | 0.659 | 0.635 | 0.643 | 59.14% | 0.762 | 5400 | |
ResNet-50 | 0.825 | 0.826 | 0.824 | 81.18% | 0.890 | 5800 | |
XceptionNet | 0.434 | 0.431 | 0.387 | 40.32% | 0.652 | 6200 |