From: Thyroid nodule classification in ultrasound imaging using deep transfer learning
Model_name | Accuracy | AUC | 95% CI | Sensitivity | Specificity | PPV | NPV | Precision | Recall | F1 | Overall Score | Task |
---|---|---|---|---|---|---|---|---|---|---|---|---|
LR | 0.653 | 0.711 | 0.6779—0.7440 | 0.78 | 0.538 | 0.604 | 0.729 | 0.604 | 0.78 | 0.681 | 0.709 | label-train |
LR | 0.67 | 0.726 | 0.6608—0.7909 | 0.719 | 0.619 | 0.656 | 0.686 | 0.656 | 0.719 | 0.686 | label-test | |
NaiveBayes | 0.642 | 0.678 | 0.6440—0.7129 | 0.831 | 0.471 | 0.587 | 0.754 | 0.587 | 0.831 | 0.688 | 0.709 | label-train |
NaiveBayes | 0.674 | 0.712 | 0.6451—0.7784 | 0.658 | 0.69 | 0.682 | 0.667 | 0.682 | 0.658 | 0.67 | label-test | |
SVM | 0.721 | 0.79 | 0.7606—0.8188 | 0.766 | 0.681 | 0.685 | 0.762 | 0.685 | 0.766 | 0.723 | 0.729 | label-train |
SVM | 0.705 | 0.748 | 0.6842—0.8116 | 0.746 | 0.664 | 0.691 | 0.721 | 0.691 | 0.746 | 0.717 | label-test | |
KNN | 0.777 | 0.86 | 0.8374—0.8819 | 0.819 | 0.739 | 0.74 | 0.819 | 0.74 | 0.819 | 0.778 | 0.712 | label-train |
KNN | 0.683 | 0.746 | 0.6848—0.8077 | 0.886 | 0.486 | 0.631 | 0.806 | 0.631 | 0.886 | 0.737 | label-test | |
RandomForest | 0.985 | 0.999 | 0.9979—0.9997 | 0.991 | 0.979 | 0.977 | 0.991 | 0.977 | 0.991 | 0.984 | 0.635 | label-train |
RandomForest | 0.678 | 0.721 | 0.6555—0.7871 | 0.833 | 0.527 | 0.638 | 0.756 | 0.638 | 0.833 | 0.722 | label-test | |
ExtraTrees | 1 | 1 | 1.0000—1.0000 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.684 | label-train |
ExtraTrees | 0.736 | 0.778 | 0.7186—0.8375 | 0.789 | 0.681 | 0.714 | 0.762 | 0.714 | 0.789 | 0.75 | label-test | |
XGBoost | 0.939 | 0.982 | 0.9750—0.9883 | 0.947 | 0.933 | 0.927 | 0.951 | 0.927 | 0.947 | 0.937 | 0.674 | label-train |
XGBoost | 0.687 | 0.727 | 0.6611—0.7924 | 0.93 | 0.442 | 0.627 | 0.862 | 0.627 | 0.93 | 0.749 | label-test | |
LightGBM | 0.901 | 0.962 | 0.9509—0.9730 | 0.912 | 0.891 | 0.883 | 0.918 | 0.883 | 0.912 | 0.897 | 0.649 | label-train |
LightGBM | 0.67 | 0.725 | 0.6594—0.7900 | 0.816 | 0.522 | 0.633 | 0.737 | 0.633 | 0.816 | 0.713 | label-test | |
GradientBoosting | 0.752 | 0.826 | 0.7993—0.8519 | 0.775 | 0.731 | 0.723 | 0.782 | 0.723 | 0.775 | 0.748 | 0.708 | label-train |
GradientBoosting | 0.696 | 0.733 | 0.6672—0.7980 | 0.728 | 0.664 | 0.686 | 0.708 | 0.686 | 0.728 | 0.706 | label-test | |
AdaBoost | 0.686 | 0.744 | 0.7139—0.7742 | 0.633 | 0.733 | 0.682 | 0.688 | 0.682 | 0.633 | 0.657 | 0.710 | label-train |
AdaBoost | 0.674 | 0.708 | 0.6447—0.7721 | 0.781 | 0.571 | 0.645 | 0.719 | 0.645 | 0.781 | 0.706 | label-test | |
MLP | 0.68 | 0.74 | 0.7082—0.7716 | 0.798 | 0.574 | 0.629 | 0.758 | 0.629 | 0.798 | 0.703 | 0.727 | label-train |
MLP | 0.7 | 0.748 | 0.6840—0.8112 | 0.623 | 0.779 | 0.74 | 0.672 | 0.74 | 0.623 | 0.676 | label-test |