Your privacy, your choice

We use essential cookies to make sure the site can function. We also use optional cookies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to the processing of your personal data - including transfers to third parties. Some third parties are outside of the European Economic Area, with varying standards of data protection.

See our privacy policy for more information on the use of your personal data.

for further information and to change your choices.

Skip to main content

Table 3 Diagnostic performance of machine learning model in predicting benign and malignant thyroid nodules

From: Thyroid nodule classification in ultrasound imaging using deep transfer learning

Model_name

Accuracy

AUC

95% CI

Sensitivity

Specificity

PPV

NPV

Precision

Recall

F1

Overall Score

Task

LR

0.653

0.711

0.6779—0.7440

0.78

0.538

0.604

0.729

0.604

0.78

0.681

0.709

label-train

LR

0.67

0.726

0.6608—0.7909

0.719

0.619

0.656

0.686

0.656

0.719

0.686

label-test

NaiveBayes

0.642

0.678

0.6440—0.7129

0.831

0.471

0.587

0.754

0.587

0.831

0.688

0.709

label-train

NaiveBayes

0.674

0.712

0.6451—0.7784

0.658

0.69

0.682

0.667

0.682

0.658

0.67

label-test

SVM

0.721

0.79

0.7606—0.8188

0.766

0.681

0.685

0.762

0.685

0.766

0.723

0.729

label-train

SVM

0.705

0.748

0.6842—0.8116

0.746

0.664

0.691

0.721

0.691

0.746

0.717

label-test

KNN

0.777

0.86

0.8374—0.8819

0.819

0.739

0.74

0.819

0.74

0.819

0.778

0.712

label-train

KNN

0.683

0.746

0.6848—0.8077

0.886

0.486

0.631

0.806

0.631

0.886

0.737

label-test

RandomForest

0.985

0.999

0.9979—0.9997

0.991

0.979

0.977

0.991

0.977

0.991

0.984

0.635

label-train

RandomForest

0.678

0.721

0.6555—0.7871

0.833

0.527

0.638

0.756

0.638

0.833

0.722

label-test

ExtraTrees

1

1

1.0000—1.0000

1

1

1

1

1

1

1

0.684

label-train

ExtraTrees

0.736

0.778

0.7186—0.8375

0.789

0.681

0.714

0.762

0.714

0.789

0.75

label-test

XGBoost

0.939

0.982

0.9750—0.9883

0.947

0.933

0.927

0.951

0.927

0.947

0.937

0.674

label-train

XGBoost

0.687

0.727

0.6611—0.7924

0.93

0.442

0.627

0.862

0.627

0.93

0.749

label-test

LightGBM

0.901

0.962

0.9509—0.9730

0.912

0.891

0.883

0.918

0.883

0.912

0.897

0.649

label-train

LightGBM

0.67

0.725

0.6594—0.7900

0.816

0.522

0.633

0.737

0.633

0.816

0.713

label-test

GradientBoosting

0.752

0.826

0.7993—0.8519

0.775

0.731

0.723

0.782

0.723

0.775

0.748

0.708

label-train

GradientBoosting

0.696

0.733

0.6672—0.7980

0.728

0.664

0.686

0.708

0.686

0.728

0.706

label-test

AdaBoost

0.686

0.744

0.7139—0.7742

0.633

0.733

0.682

0.688

0.682

0.633

0.657

0.710

label-train

AdaBoost

0.674

0.708

0.6447—0.7721

0.781

0.571

0.645

0.719

0.645

0.781

0.706

label-test

MLP

0.68

0.74

0.7082—0.7716

0.798

0.574

0.629

0.758

0.629

0.798

0.703

0.727

label-train

MLP

0.7

0.748

0.6840—0.8112

0.623

0.779

0.74

0.672

0.74

0.623

0.676

label-test