Your privacy, your choice

We use essential cookies to make sure the site can function. We also use optional cookies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to the processing of your personal data - including transfers to third parties. Some third parties are outside of the European Economic Area, with varying standards of data protection.

See our privacy policy for more information on the use of your personal data.

for further information and to change your choices.

Skip to main content
Fig. 1 | BMC Cancer

Fig. 1

From: Challenges of driving CD30-directed CAR-T cells to the clinic

Fig. 1

a. Lymphodepleting chemotherapy reduces the number of suppressive cells, such as regulatory T cells and type 2 helper cells, which can disturb the tumor microenvironment. It also stimulates production of cytokines, such as IL-7 and IL-15, which can promote expansion of CAR-T cells. b. Hodgkin Reed-Sternberg cells produce thymus and activation-regulated chemokine/CC chemokine ligand 17 (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22), which attract type 2 helper cells and regulatory T cells that express CCR4. CAR-T cells that are engineered to express CCR4 may have improved trafficking to the tumor site. c. Anti-CD30 CAR-T cells have been found to express PD-1, which suggests that they may be susceptible to the PD-1/PD-L1 pathway that leads to immune inhibition. In addition, Hodgkin Reed-Sternberg cells also express PD-L1, which may have an inhibitory effect on CAR-T cells expressing PD-1. Checkpoint inhibitors can interrupt the PD-1/PD-L1 pathway and lead to improved expansion and persistence of CAR-T cells. Growth factors, such as colony-stimulating factor 1 (CSF1) stimulate tumor associated macrophages (TAM) to be anti-inflammatory and promote tumor development. Combinations with CSF1 receptor (CSF1R) inhibitors could help interrupt the inhibitory tumor microenvironment and improve CAR-T cell efficacy

Back to article page